1
|
Sun Y, Wang Z, Xu H, Ma W, Sun CL, Wu J, Pan X. Highly Sensitive Solid Ratiometric Luminescent Thermometer Based on N,C-Chelating Four-Coordinate Organoboron Compounds. Inorg Chem 2024. [PMID: 39560503 DOI: 10.1021/acs.inorgchem.4c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Realizing ratiometric thermometers using single-component organic solid-state luminophores is attractive but challenging. Here, we synthesized a series of N,C-chelated tetra-coordinated organoboron compounds and characterized their structures. Among them, sample BN2Br can be used as a luminescent thermometer and exhibits a high temperature sensitivity (3.67% K-1), a wide response range of 120-280 K, and good reversibility, which is mainly due to the temperature-dependent intermolecular stacking effect in the solid state. The proposed ratiometric thermometry protocol may provide new insights for developing photonic thermometers.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhen Wang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hao Xu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenming Ma
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Zuo J, Liu K, Harrell J, Fang L, Piotrowiak P, Shimoyama D, Lalancette RA, Jäkle F. Near-IR Emissive B-N Lewis Pair-Functionalized Anthracenes via Selective LUMO Extension in Conjugated Dimer and Polymer. Angew Chem Int Ed Engl 2024; 63:e202411855. [PMID: 38976519 DOI: 10.1002/anie.202411855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B-N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self-sensitized reactivity toward O2 to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the π-system of BDPA to a vinyl-substituted monomer, vinylene-bridged dimer, and a polymer with an average of 20 chromophores. The extension of π-conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7 %. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl-anthracene-pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time-resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π-conjugation also slows down the self-sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.
Collapse
Affiliation(s)
- Jingyao Zuo
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Kanglei Liu
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Jaren Harrell
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Lujia Fang
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Piotr Piotrowiak
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Dong Q, Ye G, Zhang L, Chen C, Xue M, Lee CS, Han Y, Li Z, Zhang Q. A 2D Metal-Free Inorganic Covalent Framework: Synthesis, Crystal Structure, and Room-Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404129. [PMID: 38940500 DOI: 10.1002/smll.202404129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/09/2024] [Indexed: 06/29/2024]
Abstract
The synthesis, crystal structure and room-temperature phosphorescence (RTP) of a 2D metal-free inorganic covalent framework ((H2en) [B5O8(OH)], named as CityU-12, and en represents for ethylenediamine) are reported. The precise structure information of CityU-12 has been disclosed through both single-crystal X-ray diffraction (SCXRD) analysis and low-dose high-resolution transmission electron microscopy (LD-HRTEM) study. The SCXRD results show that CityU-12 composes of 2D anionic B─O-based covalent inorganic frameworks with protonated ethylenediamine locating in the pore sites of 2D B─O layers while LD-HRTEM suggests that CityU-12 has an interplanar distance of 0.60 nm for (002 ¯ $\bar{2}$ ) crystal plane and 0.60 nm for (101 ¯ $\bar{1}$ ) crystal plane. The optical studies show that CityU-12 is an excellent nonconventional RTP material with the emission peak at 530 nm and a lifetime of 1.5 s. The quantum yield is 84.6% and the afterglow time is as long as 2.5 s. This work demonstrates that metal-free B─O frameworks can be promising nonconventional phosphors for RTP.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
| | - Guigui Ye
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
| | - Cailing Chen
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST) Thuwal, Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Miaomiao Xue
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
| | - Yu Han
- Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, King Abdullah University of Science and Technology (KAUST) Thuwal, Thuwal, Makkah, 23955-6900, Saudi Arabia
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
- Kong Institute of Clean Energy, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Qu Y, Wang Q, Xue J, Qu C, Huang T, Xu Y, Wang Y. Modularly Precise Construction of B,N-Embedded Large-Sized Polycyclic Aromatic Hydrocarbon Nanographene. Org Lett 2024; 26:7571-7575. [PMID: 39230051 DOI: 10.1021/acs.orglett.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A modular "fjord-stitching" reverse strategy has been disclosed to successfully prepare two large-sized B,N-embedded nanographenes: BN-TBTi and BN-TBTo. These two compounds both exhibit excellent stability, nonzero-bandgap and decent photoluminescence quantum yield. Single crystal structure of BN-TBTo features a large C78B2N4 π-skeleton with length and width of approximately 2.4 and 1.5 nm, respectively.
Collapse
Affiliation(s)
- Yupei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tingting Huang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Jihua Laboratory, 28 Huandao Nan Road, Foshan, 528200, Guangdong Province P. R. China
| |
Collapse
|
5
|
Yang M, Ou X, Li J, Sun J, Zhao Z, Lam JWY, Fan J, Tang BZ. BF 2-Bridged Azafulvene Dimer-Based 1064 nm Laser-Driven Superior Photothermal Agent for Deep-Seated Tumor Therapy. Angew Chem Int Ed Engl 2024; 63:e202407307. [PMID: 38868977 DOI: 10.1002/anie.202407307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Small organic photothermal agents (PTAs) with absorption bands located in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable for effectively combating deep-seated tumors. However, the rarely reported NIR-II absorbing PTAs still suffer from a low molar extinction coefficient (MEC, ϵ), inadequate chemostability and photostability, as well as the high light power density required during the therapeutic process. Herein, we developed a series of boron difluoride bridged azafulvene dimer acceptor-integrated small organic PTAs. The B-N coordination bonds in the π-conjugated azafulvene dimer backbone endow it the strong electron-withdrawing ability, facilitating the vigorous donor-acceptor-donor (D-A-D) structure PTAs with NIR-II absorption. Notably, the PTA namely OTTBF shows high MEC (7.21×104 M-1 cm-1), ultrahigh chemo- and photo-stability. After encapsulated into water-dispersible nanoparticles, OTTBF NPs can achieve remarkable photothermal conversion effect under 1064 nm irradiation with a light density as low as 0.7 W cm-2, which is the lowest reported NIR-II light power used in PTT process as we know. Furthermore, OTTBF NPs have been successfully applied for in vitro and in vivo deep-seated cancer treatments under 1064 nm laser. This study provides an insight into the future exploration of versatile D-A-D structured NIR-II absorption organic PTAs for biomedical applications.
Collapse
Affiliation(s)
- Mingwang Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
6
|
Jin C, Yang X, Zhao W, Zhao Y, Wang Z, Tan J. Synthesis, properties and emerging applications of multi-boron coordinated chromophores. Coord Chem Rev 2024; 513:215892. [DOI: 10.1016/j.ccr.2024.215892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Qin X, Huang L, Zhan Z, Fu P, Wang Q, Zhang C, Huang J, Ding Z. Enhancing corannulene chemiluminescence, electrochemiluminescence and photoluminescence by means of an azabora-helicene to slow down its bowl inversion. Chem Sci 2024; 15:9657-9668. [PMID: 38939143 PMCID: PMC11206500 DOI: 10.1039/d4sc01524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
Aromatic system extension of corannulene (Cor) is a synthetic challenge to access non-planar polyaromatic hydrocarbons (PAHs). Herein, we report the design and synthesis of azaborahelicene corannulene 1 through hybridization of an azabora[5] helical structure and subsequent luminescence studies. Significant enhancement in chemiluminescence (CL), electroluminescence (ECL) and photoluminescence (PL) is achieved compared to those of pristine Cor. Specifically, hybrid 1 shows a notable augmentation in absolute luminescence quantum efficiencies: 25-fold for CL, up to 23-fold for ECL with BPO as a coreactant, and 30-fold for PL, respectively, compared to those of pristine Cor. Intriguingly, the blue light emission observed in all three luminescence types suggests the presence of a single excited state. As revealed by variable-temperature (VT) 1H NMR experiments, the bowl inversion frequency apparently decelerates by the steric effect of the helix motif in 1, which could contribute to the enhanced luminescent properties by reducing excited energy losses non-radiatively through fewer molecular motions; these enhanced luminescence observations could be categorized alongside the aggregation induced emission (AIE) and crystallization-induced emission (CIE) phenomena. This work not only provides fundamental insights into improved luminescence quantum efficiencies via strategic modulation of the molecular structure and geometry, but the work also reveals Cor's inherent potential to build efficient blue-light emitting materials and devices.
Collapse
Affiliation(s)
- Xiaoli Qin
- Department of Chemistry, Western University London ON N6A 5B7 Canada
- College of Chemistry and Material Science, Hunan Agricultural University Changsha 410128 China
| | - Lin Huang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Ziying Zhan
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| | - Peng Fu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Qing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- National Institute of Biological Sciences No. 7 Science Park Road, Zhongguancun Life Science Park Beijing 102206 China
| | - Congyang Zhang
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
- International Center of Chemical Science and Engineering Tianjin 300072 China
- International Joint Research Centre for Molecular Sciences, Tianjin University Tianjin 300072 China
| | - Zhifeng Ding
- Department of Chemistry, Western University London ON N6A 5B7 Canada
| |
Collapse
|
9
|
Nowak-Król A, Geppert PT, Naveen KR. Boron-containing helicenes as new generation of chiral materials: opportunities and challenges of leaving the flatland. Chem Sci 2024; 15:7408-7440. [PMID: 38784742 PMCID: PMC11110153 DOI: 10.1039/d4sc01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Increased interest in chiral functional dyes has stimulated activity in the field of boron-containing helicenes over the past few years. Despite the fact that the introduction of boron endows π-conjugated scaffolds with attractive electronic and optical properties, boron helicenes have long remained underdeveloped compared to other helicenes containing main group elements. The main reason was the lack of reliable synthetic protocols to access these scaffolds. The construction of boron helicenes proceeds against steric strain, and thus the methods developed for planar systems have sometimes proven ineffective in their synthesis. Recent advances in the general boron chemistry and the synthesis of strained derivatives have opened the way to a wide variety of boron-containing helicenes. Although the number of helically chiral derivatives is still limited, these compounds are currently at the forefront of emissive materials for circularly-polarized organic light-emitting diodes (CP-OLEDs). Yet the design of good emitters is not a trivial task. In this perspective, we discuss a number of requirements that must be met to provide an excellent emissive material. These include chemical and configurational stability, emission quantum yields, luminescence dissymmetry factors, and color purity. Understanding of these parameters and some structure-property relationships should aid in the rational design of superior boron helicenes. We also present the main achievements in their synthesis and point out niches in this area, e.g. stereoselective synthesis, necessary to accelerate the development of this fascinating class of compounds and to realize their potential in OLED devices and in other fields.
Collapse
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Patrick T Geppert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kenkera Rayappa Naveen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
10
|
Clark JA, Kusy D, Vakuliuk O, Krzeszewski M, Kochanowski KJ, Koszarna B, O'Mari O, Jacquemin D, Gryko DT, Vullev VI. The magic of biaryl linkers: the electronic coupling through them defines the propensity for excited-state symmetry breaking in quadrupolar acceptor-donor-acceptor fluorophores. Chem Sci 2023; 14:13537-13550. [PMID: 38033901 PMCID: PMC10685337 DOI: 10.1039/d3sc03812b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor-donor-acceptor or donor-acceptor-donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor-acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti-Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Damian Kusy
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Krzysztof J Kochanowski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Beata Koszarna
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Omar O'Mari
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Denis Jacquemin
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Valentine I Vullev
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
- Department of Chemistry, University of California Riverside CA 92521 USA
- Department of Biochemistry, University of California Riverside CA 92521 USA
- Materials Science and Engineering Program, University of California Riverside CA 92521 USA
| |
Collapse
|
11
|
Liu TT, Cui YS. One-Pot Access to Boron-Doped Fused Heterocycles via Domino Cyclization of Bis-Diazidoboranes with Isonitrile. Chemistry 2023; 29:e202302683. [PMID: 37753737 DOI: 10.1002/chem.202302683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Boron-doped fused heterocycles have shown great potential in the field of functional materials. This study reports on the synthesis of a new class of bis-diazidoboranes and the discovery of their cycloaddition reaction with isonitriles. Triply fused boron-doped heterocyclic compounds were constructed in a one-pot process through a domino cycloaddition, providing an effective route for constructing complex boron-doped heterocyclic systems.
Collapse
Affiliation(s)
- Tong-Tong Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
12
|
Ru C, Wang Y, Chen P, Zhang Y, Wu X, Gong C, Zhao H, Wu J, Pan X. Replacing CC Unit with B←N Unit in Isoelectronic Conjugated Polymers for Enhanced Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302384. [PMID: 37116108 DOI: 10.1002/smll.202302384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Three linear isoelectronic conjugated polymers PCC, PBC, and PBN are synthesized by Suzuki-Miyaura polycondensation for photocatalytic hydrogen (H2 ) production from water. PBN presented an excellent photocatalytic hydrogen evolution rate (HER) of 223.5 µmol h-1 (AQY420 = 23.3%) under visible light irradiation, which is 7 times that of PBC and 31 times that of PCC. The enhanced photocatalytic activity of PBN is due to the improved charge separation and transport of photo-induced electrons/holes originating from the lower exciton binding energy (Eb ), longer fluorescence lifetime, and stronger built-in electric field, caused by the introduction of the polar B←N unit into the polymer backbone. Moreover, the extension of the visible light absorption region and the enhancement of surface catalytic ability further increase the activity of PBN. This work reveals the potential of B←N fused structures as building blocks as well as proposes a rational design strategy for achieving high photocatalytic performance.
Collapse
Affiliation(s)
- Chenglong Ru
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yue Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Peiyan Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yahui Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xuan Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chenliang Gong
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao Zhao
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jincai Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaobo Pan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
13
|
Full J, Wildervanck MJ, Dillmann C, Panchal SP, Volland D, Full F, Meerholz K, Nowak-Król A. Impact of Truncation on Optoelectronic Properties of Azaborole Helicenes. Chemistry 2023:e202302808. [PMID: 37651165 DOI: 10.1002/chem.202302808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
Herein, we report configurationally stable singly-truncated (ST) and structurally flexible doubly-truncated (DT) helically chiral compounds derived from azabora[7]helicenes by a hypothetical removal of a single or two C=C double bonds. The singly-truncated constitutional isomers were synthesized from either benzoisoquinoline (BIQ) or phenantherene building blocks and the corresponding biaryls in excellent yields to give azabora[5]helicenes with a pendant phenyl ring at a sterically hindered position. These systems highlight the electronic impact of the nitrogen donor substitution position. The compounds with a disrupted BIQ moiety (STN) possess remarkable photoluminescence quantum yields of up to 0.53 in the solid state and a blue emission in solution with dissymmetry factors of up to ca. 3×10-3 . Upon cooling to 79 K all compounds exhibit phosphorescence with lifetimes of up to ca. 0.5 s. A methyl complex of azabora[7]helicene showing excellent configurational stability was used as a chiral inducer embedded in an emissive polymer (F8BT) to produce circularly polarized organic light emitting diodes with an electroluminescence dissymmetry factor gEL of up to 0.54.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martijn J Wildervanck
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Claudia Dillmann
- Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Köln, Germany
| | - Santosh P Panchal
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Klaus Meerholz
- Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Köln, Germany
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
14
|
Takahashi H, Watanabe H, Ito S, Tanaka K, Chujo Y. Design and Synthesis of Far-Red to Near-Infrared Chromophores with Pyrazine-Based Boron Complexes. Chem Asian J 2023; 18:e202300489. [PMID: 37365136 DOI: 10.1002/asia.202300489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
We synthesized new binuclear boron complexes based on pyrazine with ortho and para substitution patterns. It was demonstrated that the para-linked complexes possess a significantly narrow energy gap between highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), leading to their far-red to near-infrared emission properties. Meanwhile, the ortho-substituted complex showed orange emission. Considering the HOMO and LUMO distributions of pyrazine, the boron complexation to the nitrogen atoms would stabilize its LUMO more efficiently than its HOMO because a nodal plane in the HOMO passes through the two nitrogen atoms. The theoretical study suggests that the para-substitution would not significantly perturb such a characteristic HOMO distribution originating from pyrazine in stark contrast to the ortho-substituted one. As a result, the HOMO-LUMO gap of the para-linked complex is dramatically narrower than that of the ortho-linked one.
Collapse
Grants
- Kato Foundation for Promotion of Science
- Grant-in-Aid for Early-Career Scientists
- 21K14673 JSPS KAKENHI
- 23K13793 JSPS KAKENHI
- 21H02001 JSPS KAKENHI
- 21K19002 JSPS KAKENHI
- 2401 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
- JP24102013 The Ministry of Education, Culture, Sports, Science, and Technology, Japan
Collapse
Affiliation(s)
- Hiromasa Takahashi
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroyuki Watanabe
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
15
|
Zhang Y, Zhang Z, Ji L, Huang W. Diagonal and Vertical B ← N Lewis Pair Functionalized Perylenes. Org Lett 2023. [PMID: 37418631 DOI: 10.1021/acs.orglett.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Two novel multiple B ← N Lewis pair functionalized perylenes are reported. While OBN-Pery shows a centrosymmetric and planar architecture, PBN-Pery displays an axisymmetric and twist structure. B ← N functionalization in both of them results in a large decrease in the HOMO-LUMO energy gap. PBN-Pery in particular has a low LUMO energy level (-3.00 eV) and red emission at the NIR I region with high fluorescence quantum yield.
Collapse
Affiliation(s)
- Yufeng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100080, China
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
16
|
Hayakawa M, Kameda M, Kawasumi R, Nakatsuka S, Yasuda N, Hatakeyama T. Spiroborate-Based Host Materials with High Triplet Energies and Ambipolar Charge-Transport Properties. Angew Chem Int Ed Engl 2023; 62:e202217512. [PMID: 36718823 DOI: 10.1002/anie.202217512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) receive considerable attention because of their commercial use in flat panel displays. Herein, highly efficient spiroborate-based host materials are reported for use in blue OLEDs. Our designed spiroborates (SBOX) were simple to synthesize and exhibited high triplet excitation energies, narrow S-T gaps, and balanced charge carrier mobilities. A blue OLED containing one of the designed spiroborates, SBON, as a host exhibited a high external quantum efficiency (27.6 %) and low turn-on voltage (3.7 V) compared to those observed using 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (17.6 % and 4.5 V, respectively), indicating their potential as host materials in OLEDs.
Collapse
Affiliation(s)
- Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mayu Kameda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ryosuke Kawasumi
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
17
|
A Cyano-Substituted Organoboron Electron-deficient Building Block for D-A Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Ru C, Chen P, Wu X, Chen C, Zhang J, Zhao H, Wu J, Pan X. Enhanced Built-in Electric Field Promotes Photocatalytic Hydrogen Performance of Polymers Derived from the Introduction of B←N Coordination Bond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204055. [PMID: 36285682 PMCID: PMC9762295 DOI: 10.1002/advs.202204055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Indexed: 05/15/2023]
Abstract
High concentrations of active carriers on the surface of a semiconductor through energy/electron transfer are the core process in the photocatalytic hydrogen production from water. However, it remains a challenge to significantly improve photocatalytic performance by modifying simple molecular modulation. Herein, a new strategy is proposed to enhance the photocatalytic hydrogen evolution performance using boron and nitrogen elements to construct B←N coordination bonds. Experimental results show that polynaphthopyridine borane (PNBN) possessing B←N coordination bonds shows a hydrogen evolution rate of 217.4 µmol h-1 , which is significantly higher than that of the comparison materials 0 µmol h-1 for polyphenylnaphthalene (PNCC) and 0.66 µmol h-1 for polypyridylnaphthalene (PNNC), mainly attributed to the formation of a strong built-in electric field that promotes the separation of photo-generated electrons/holes. This work opens up new prospects for the design of highly efficient polymeric photocatalysts at the molecular level.
Collapse
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Changjuan Chen
- College of Chemistry and Pharmaceutical EngineeringHuanghuai UniversityNo.76 Kaiyuan AvenueZhumadianHenan463000P. R. China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- School of Physics and Electronic InformationYantai University30 Qingquan RoadYantaiShandong264005China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
- Key Laboratory of Petroleum Resources ResearchChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
| |
Collapse
|
19
|
Alahmadi AF, Zuo J, Jäkle F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 2022. [DOI: 10.1038/s41428-022-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Wang X, Tan X, Luo G, Huang J, Chen G. Weak Electron-Deficient Building Block Containing O–B ← N Bonds for Polymer Donors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoling Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Xueyan Tan
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Genggeng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Guohua Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
21
|
Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-Absorbing B-N Lewis Pair-Functionalized Anthracenes: Electronic Structure Tuning, Conformational Isomerism, and Applications in Photothermal Cancer Therapy. J Am Chem Soc 2022; 144:18908-18917. [PMID: 36194812 DOI: 10.1021/jacs.2c06538] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.
Collapse
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States.,Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China.,School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
22
|
Synthesis and Strong Solvatochromism of Push-Pull Thienylthiazole Boron Complexes. Molecules 2022; 27:molecules27175510. [PMID: 36080276 PMCID: PMC9457742 DOI: 10.3390/molecules27175510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The solvatochromic behavior of two donor-π bridge-acceptor (D-π-A) compounds based on the 2-(3-boryl-2-thienyl)thiazole π-linker and indandione acceptor moiety are investigated. DFT/TD-DFT calculations were performed in combination with steady-state absorption and emission measurements, along with electrochemical studies, to elucidate the effect of two different strongly electron-donating hydrazonyl units on the solvatochromic and fluorescence behavior of these compounds. The Lippert–Mataga equation was used to estimate the change in dipole moments (Δµ) between ground and excited states based on the measured spectroscopic properties in solvents of varying polarity with the data being supported by theoretical studies. The two asymmetrical D-π-A molecules feature strong solvatochromic shifts in fluorescence of up to ~4300 cm−1 and a concomitant change of the emission color from yellow to red. These changes were accompanied by an increase in Stokes shift to reach values as large as ~5700–5800 cm−1. Quantum yields of ca. 0.75 could be observed for the N,N-dimethylhydrazonyl derivative in nonpolar solvents, which gradually decreased along with increasing solvent polarity, as opposed to the consistently reduced values obtained for the N,N-diphenylhydrazonyl derivative of up to ca. 0.20 in nonpolar solvents. These two push–pull molecules are contrasted with a structurally similar acceptor-π bridge-acceptor (A-π-A) compound.
Collapse
|
23
|
Shao X, Liu M, Liu J, Wang L. A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202205893. [DOI: 10.1002/anie.202205893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xingxin Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Mengyu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
24
|
Shao X, Liu M, Liu J, Wang L. Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingxin Shao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Mengyu Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jun Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences State Key Labortory of Polymer Physics and Chemistry 5625 Renmin Street 130022 Changchun CHINA
| | - Lixiang Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| |
Collapse
|
25
|
Feng Y, Zhou J, Qiu H, Schnitzlein M, Hu J, Liu L, Würthner F, Xie Z. Boron-Locked Starazine - A Soluble and Fluorescent Analogue of Starphene. Chemistry 2022; 28:e202200770. [PMID: 35388924 PMCID: PMC9325424 DOI: 10.1002/chem.202200770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/26/2022]
Abstract
A starlike heterocyclic molecule containing an electron‐deficient nonaaza‐core structure and three peripheral isoquinolines locked by three tetracoordinate borons, namely isoquinoline‐nona‐starazine (QNSA), is synthesized by using readily available reactants through a rather straightforward approach. This new heteroatom‐rich QNSA possesses a quasi‐planar π‐backbone structure, and bears phenyl substituents on borons which protrude on both sides of the π‐backbones endowing it with good solubility in common organic solvents. Contrasting to its starphene analogue, QNSA shows intense fluorescence with a quantum yield (PLQY) of up to 62 % in dilute solution.
Collapse
Affiliation(s)
- Yi Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Honglin Qiu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Matthias Schnitzlein
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jingtao Hu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| |
Collapse
|
26
|
Mukundam V, Sa S, Kumari A, Ponduru TT, Das R, Venkatasubbaiah K. Synthesis, photophysical, electrochemical, and non-linear optical properties of triaryl pyrazole based B-N coordinated boron compounds. Chem Asian J 2022; 17:e202200291. [PMID: 35452174 DOI: 10.1002/asia.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022]
Abstract
We report here a set of triaryl pyrazole based B-N coordinated boron compounds ( 11 - 17 ) synthesized by electrophilic aromatic borylation strategy. All the pyrazole boron compounds were thoroughly characterized using multinuclear NMR spectroscopy, LCMS, and single crystal X-ray diffraction analysis (for 12 - 17 ). The photoluminescence measurements of 11 - 17 revealed that the emission peak maxima were tuned based on the substitution on Nphenyl. The photophysical and electrochemical properties were further supported by theoretical calculations. Z-scan based investigations at 515 nm pump wavelength showed that B-N coordination led to enhancement of nonlinear absorption (two-photon absorption (TPA)) in these compounds if an electron deficient moiety is attached. It has also been observed that an appropriate choice of moiety allows to optimally maneuver the molecular polarizability of the π-system and consequently, assists in controlling the third-order nonlinear optical response.
Collapse
Affiliation(s)
- Vanga Mukundam
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Shreenibasa Sa
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Anupa Kumari
- National Institute of Science Education and Research, School of Physical Sciences, INDIA
| | - Tharun Teja Ponduru
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Ritwick Das
- National Institute of Science Education and Research, School of Physical Sciences, INDIA
| | - Krishnan Venkatasubbaiah
- National Institute of Science Education and Research, School of Chemical Sciences, NISER, 752050, Bhubaneswar, INDIA
| |
Collapse
|
27
|
Mondal D, Sardar G, Kabra D, Balakrishna MS. 2,2'-Bipyridine derived doubly B ← N fused bisphosphine-chalcogenides, [C 5H 3N(BF 2){NCH 2P(E)Ph 2}] 2 (E = O, S, Se): tuning of structural features and photophysical studies. Dalton Trans 2022; 51:6884-6898. [PMID: 35441638 DOI: 10.1039/d2dt00287f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,2'-Bipyridine based bisphosphine [C5H3N{N(H)CH2PPh2}]2 (1) and its bischalcogenide derivatives [C5H3N{N(H)CH2P(E)Ph2}]2 (2, E = O; 3, E = S; 4, E = Se) were synthesized, and further reacted with BF3·Et2O/Et3N to form doubly B ← N fused compounds [C5H3N(BF2){NCH2P(E)Ph2}]2 (5, E = O; 6, E = S; 7, E = Se) in excellent yields. The influence of the PE bonds on the electronic properties of the doubly B ← N fused systems and their structural features were investigated in detail, supported by extensive experimental and computational studies. Compound 6 exhibited a very high quantum yield of ϕ = 0.56 in CH2Cl2, whereas compound 7 showed a least quantum yield of ϕ = 0.003 in acetonitrile. Density functional theory (DFT) calculations demonstrated that the LUMO/HOMO of compounds 5-7 mostly delocalized over the entire π-conjugated frameworks. The involvement of PE bonds in the HOMO energy level of these compounds follows the order: PO < PS < PSe. Time-correlated single photon counting (TCSPC) experiments of compounds 5-7 revealed the singlet lifetime of 4.26 ns for 6, followed by 4.03 ns for 5 and a lowest value of 2.18 ns (τ1) and 0.47 ns (τ2) with a double decay profile for 7. Our findings provide important strategies for the design of highly effective B ← N bridged compounds and tuning their photophysical properties by oxidizing phosphorus with different chalcogens. Compounds 5 and 6 have been employed as green emitters (λem = 515 nm) in fluorescent organic light-emitting diodes (OLEDs). For compound 5, doped into the poly(9-vinylcarbazole) (PVK) matrix with 5 wt% doping concentration, nearly 90 Cd m-2 luminance with 0.022% external quantum efficiency (EQE) was achieved. The best performance was observed for compound 6 doped into PVK by 1 wt% having a maximum luminance of 350 Cd m-2 and a similar EQE value.
Collapse
Affiliation(s)
- Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Gopa Sardar
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
28
|
Murali AC, Nayak P, Venkatasubbaiah K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans 2022; 51:5751-5771. [PMID: 35343524 DOI: 10.1039/d2dt00160h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tetra-coordinated boron compounds offer a plethora of luminescent materials. Different chelation around the boron center (O,O-, N,C-, N,O-, and N,N-) has been explored to tune the electronic and photophysical properties of tetra-coordinated boron compounds. A number of fascinating molecules with interesting properties such as aggregation induced emission, mechanochromism and tunable emission by changing the solvent polarity were realised. Owing to their rich and unique properties, some of the molecules have shown applications in making optoelectronic devices, probes and so on. This perspective provides an overview of the recent developments of tetra-coordinated boron compounds and their potential applications.
Collapse
Affiliation(s)
- Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India.
| |
Collapse
|
29
|
Fung THC, Wong CL, Tang WK, Leung MY, Low KH, Yam VWW. Photochromic dithienylethene-containing four-coordinate boron(III) compounds with a spirocyclic scaffold. Chem Commun (Camb) 2022; 58:4231-4234. [PMID: 35288724 DOI: 10.1039/d2cc00107a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new series of four-coordinate boron compounds bearing a photochromic dithienylethene-containing C^C ligand and an ancillary N^C ligand have been successfully designed and synthesised. These compounds exhibit reversible photochromism upon photoexcitation with percentage conversions of 71-96% and readily tuneable photocycloreversion quantum yields by convenient modification of the ancillary ligand to turn on the thermally activated upconversion from the lower-lying unreactive excited state to the higher-lying photoreactive excited state.
Collapse
Affiliation(s)
- Tony Ho-Ching Fung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Cheok-Lam Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wai-Kit Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ming-Yi Leung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Kam-Hung Low
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
30
|
Zhang JJ, Ma J, Liu F, Cui LS, Fu Y, Yang L, Popov AA, Weigand JJ, Liu J, Feng X. Large Acene Derivatives with B-N Lewis Pair Doping: Synthesis, Characterization, and Application. Org Lett 2022; 24:1877-1882. [PMID: 35244403 DOI: 10.1021/acs.orglett.2c00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report the synthesis of a novel class of B-N Lewis pair (LPB/N)-doped large acene derivatives (1a-1d) from the well-designed phenanthridine-based precursors. The resultant LPB/N-doped benzo-tetracene (1a), dibenzo-heptacene (1b), dibenzo-octacene (1c), and V-shaped tribenzo-nonacene (1d) are thoroughly characterized by X-ray crystallography, cyclic voltammetry, UV-vis absorption, and fluorescence spectroscopies together with DFT calculations. As a proof of concept, a 1a-based organic light-emitting diode device is fabricated to demonstrate the promising application in organic optoelectronics.
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Lin-Song Cui
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Junzhi Liu
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Rokfulam Road, Hong Kong, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| |
Collapse
|
31
|
Cai M, Huang B, Luo C, Xu C. Recyclable Pd2dba3/XPhos/PEG-2000 System for Efficient Borylation of Aryl Chlorides: Practical Access to Aryl Boronates. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0037-1610787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPd2dba3/XPhos in poly(ethylene glycol) (PEG-2000) is shown to be a highly stable and efficient catalyst for the borylation of aryl chlorides with bis(pinacolato)diboron. The borylation reaction proceeds smoothly at 110 °C, delivering a wide variety of aryl boronates in good to excellent yields with high functional group tolerance. The crude products were easily isolated via simple extraction of the reaction mixture with cyclohexane. Moreover, both expensive Pd2dba3 and XPhos in PEG-2000 system could be readily recycled and reused more than six times without loss of catalytic efficiency.
Collapse
|
32
|
Zhao K, Yao ZF, Wang ZY, Zeng JC, Ding L, Xiong M, Wang JY, Pei J. "Spine Surgery" of Perylene Diimides with Covalent B-N Bonds toward Electron-Deficient BN-Embedded Polycyclic Aromatic Hydrocarbons. J Am Chem Soc 2022; 144:3091-3098. [PMID: 35138831 DOI: 10.1021/jacs.1c11782] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BN-embedded polycyclic aromatic hydrocarbons (PAHs) with unique optoelectronic properties are underdeveloped relative to their carbonaceous counterparts due to the lack of suitable and facile synthetic methods. Moreover, the dearth of electron-deficient BN-embedded PAHs further hinders their application in organic electronics. Here we present the first facile synthesis of novel perylene diimide derivatives (B2N2-PDIs) featuring n-type B-N covalent bonds. The structures of these compounds are fully confirmed through the detailed characterizations with NMR, MS, and X-ray crystallography. Further investigation shows that the introduction of BN units significantly modifies the photophysical and electronic properties of these B2N2-PDIs and is further understood with the aid of theoretical calculations. Compared with the parent perylene diimides (PDIs), B2N2-PDIs exhibit deeper highest occupied molecular orbital energy levels, new absorption peaks in the high-energy region, hypsochromic shift of absorption and emission maxima, and decrement of photoluminescent quantum yields. Single-crystal field-effect transistors based on B2N2-PDIs showcase an electron mobility up to 0.35 cm2 V-1 s-1, demonstrating their potential application in optoelectronic materials.
Collapse
Affiliation(s)
- Kexiang Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing-Cai Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miao Xiong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Campos-González R, Vázquez-Domínguez P, Remón P, Nájera F, Collado D, Pérez-Inestrosa E, Boscá F, Ros A, Pischel U. Bis-borylated arylisoquinoline-derived dyes with a central aromatic core: towards efficient fluorescent singlet-oxygen photosensitizers. Org Chem Front 2022. [DOI: 10.1039/d2qo00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclic aromatic hydrocarbon chromophores that show an ideal bipartition between fluorescence and singlet oxygen production have been developed.
Collapse
Affiliation(s)
- René Campos-González
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071 Huelva, Spain
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Cto. Exterior s/n, Coyoacán, 04510 Ciudad de México, Mexico
| | - Pablo Vázquez-Domínguez
- Institute for Chemical Research, CSIC-US, C/Américo Vespucio 49, 41092 Seville, Spain
- Department of Organic Chemistry, Innovation Centre in Advanced Chemistry, ORFEO-CINQA, University of Seville, C/Prof. García González 1, 41012 Seville, Spain
| | - Patricia Remón
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071 Huelva, Spain
| | - Francisco Nájera
- Department of Organic Chemistry, IBIMA, University of Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Daniel Collado
- Department of Organic Chemistry, IBIMA, University of Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Ezequiel Pérez-Inestrosa
- Department of Organic Chemistry, IBIMA, University of Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Francisco Boscá
- Instituto de Tecnología Química, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Abel Ros
- Institute for Chemical Research, CSIC-US, C/Américo Vespucio 49, 41092 Seville, Spain
| | - Uwe Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, 21071 Huelva, Spain
| |
Collapse
|
34
|
Synthesis and photophysical properties of tricyclic boron compounds. Experimental and theoretical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Tasior M, Kowalczyk P, Przybył M, Czichy M, Janasik P, Bousquet MHE, Łapkowski M, Rammo M, Rebane A, Jacquemin D, Gryko DT. Going beyond the borders: pyrrolo[3,2- b]pyrroles with deep red emission. Chem Sci 2021; 12:15935-15946. [PMID: 35024117 PMCID: PMC8672719 DOI: 10.1039/d1sc05007a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
A two-step route to strongly absorbing and efficiently orange to deep red fluorescent, doubly B/N-doped, ladder-type pyrrolo[3,2-b]pyrroles has been developed. We synthesize and study a series of derivatives of these four-coordinate boron-containing, nominally quadrupolar materials, which mostly exhibit one-photon absorption in the 500-600 nm range with the peak molar extinction coefficients reaching 150 000, and emission in the 520-670 nm range with the fluorescence quantum yields reaching 0.90. Within the family of these ultrastable dyes even small structural changes lead to significant variations of the photophysical properties, in some cases attributed to reversal of energy ordering of alternate-parity excited electronic states. Effective preservation of ground-state inversion symmetry was evidenced by very weak two-photon absorption (2PA) at excitation wavelengths corresponding to the lowest-energy, strongly one-photon allowed purely electronic transition. π-Expanded derivatives and those possessing electron-donating groups showed the most red-shifted absorption- and emission spectra, while displaying remarkably high peak 2PA cross-section (σ 2PA) values reaching ∼2400 GM at around 760 nm, corresponding to a two-photon allowed higher-energy excited state. At the same time, derivatives lacking π-expansion were found to have a relatively weak 2PA peak centered at ca. 800-900 nm with the maximum σ 2PA ∼50-250 GM. Our findings are augmented by theoretical calculations performed using TD-DFT method, which reproduce the main experimental trends, including the 2PA, in a nearly quantitative manner. Electrochemical studies revealed that the HOMO of the new dyes is located at ca. -5.35 eV making them relatively electron rich in spite of the presence of two B--N+ dative bonds. These dyes undergo a fully reversible first oxidation, located on the diphenylpyrrolo[3,2-b]pyrrole core, directly to the di(radical cation) stage.
Collapse
Affiliation(s)
- Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Paweł Kowalczyk
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Marta Przybył
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Małgorzata Czichy
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | - Patryk Janasik
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | | | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland .,Centre of Polymer and Carbon Materials, Polish Academy of Sciences Curie-Sklodowskiej 34 41-819 Zabrze Poland
| | - Matt Rammo
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Aleksander Rebane
- National Institute of Chemical Physics and Biophysics Tallinn Estonia.,Department of Physics, Montana State University Bozeman MT 59717 USA
| | - Denis Jacquemin
- CEISAM Lab-UMR 6230, CNRS, University of Nantes Nantes France
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
36
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
37
|
Schepper JDW, Orthaber A, Pammer F. Preparation of Structurally and Electronically Diverse N → B-Ladder Boranes by [2 + 2 + 2] Cycloaddition. J Org Chem 2021; 86:14767-14776. [PMID: 34613723 DOI: 10.1021/acs.joc.1c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a series of eight N → B-ladder boranes through cobalt-mediated cyclotrimerization of (2-cyanophenyl)-dimesitylborane with different dialkynes. The resulting tetracoordinate boranes show variable electrochemical and optical properties depending on the substitution pattern in the backbone of the coordinating pyridine-derivatives. While boranes containing alkyl-substituted pyridines show lower electron affinities than the known parent compound, boranes featuring π-extended pyridine derivatives show higher electron affinities in the range of acceptor substituted triarylboranes. All derivatives show larger Stokes shifts (8790-6920 cm-1) compared to the N → B-ladder borane coordinated by an unsubstituted pyridine.
Collapse
Affiliation(s)
- Jonas D W Schepper
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.,Helmholtz-Institut Ulm, Helmholtzstrasse 11, D-89081 Ulm, Germany
| |
Collapse
|
38
|
Zhang PF, Zeng JC, Zhuang FD, Zhao KX, Sun ZH, Yao ZF, Lu Y, Wang XY, Wang JY, Pei J. Parent B 2 N 2 -Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021; 60:23313-23319. [PMID: 34431600 DOI: 10.1002/anie.202108519] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Introducing BN units into polycyclic aromatic hydrocarbons expands the chemical space of conjugated materials with novel properties. However, it is challenging to achieve accurate synthesis of BN-PAHs with specific BN positions and orientations. Here, three new parent B2 N2 -perylenes with different BN orientations are synthesized with BN-naphthalene as the building block, providing systematic insight into the effects of BN incorporation with different orientations on the structure, (anti)aromaticity, crystal packing and photophysical properties. The intermolecular dipole-dipole interaction shortens the π-π stacking distance. The crystal structure, (anti)aromaticity, and photophysical properties vary with the change of BN orientation. The revealed BN doping effects may provide a guideline for the synthesis of BN-PAHs with specific stacking structures, and the synthetic strategy employed here can be extended toward the synthesis of larger BN-embedded PAHs with adjustable BN patterns.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ke-Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
39
|
Zhang P, Zeng J, Zhuang F, Zhao K, Sun Z, Yao Z, Lu Y, Wang X, Wang J, Pei J. Parent B
2
N
2
‐Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peng‐Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jing‐Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Fang‐Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ke‐Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
40
|
Gon M, Ito S, Tanaka K, Chujo Y. Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
41
|
Rej S, Das A, Chatani N. Pyrimidine-directed metal-free C-H borylation of 2-pyrimidylanilines: a useful process for tetra-coordinated triarylborane synthesis. Chem Sci 2021; 12:11447-11454. [PMID: 34567499 PMCID: PMC8409464 DOI: 10.1039/d1sc02937a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Convenient, easily handled, laboratory friendly, robust approaches to afford synthetically important organoboron compounds are currently of great interest to researchers. Among the various available strategies, a metal-free approach would be overwhelmingly accepted, since the target boron compounds can be prepared in a metal-free state. We herein present a detailed study of the metal-free directed ortho-C–H borylation of 2-pyrimidylaniline derivatives. The approach allowed us to synthesize various boronates, which are synthetically important compounds and various four-coordinated triarylborane derivatives, which could be useful in materials science as well as Lewis-acid catalysts. This metal-free directed C–H borylation reaction proceeds smoothly without any interference by external impurities, such as inorganic salts, reactive functionalities, heterocycles and even transition metal precursors, which further enhance its importance. We present the metal-free ortho-C–H borylation of 2-pyrimidylanilines to afford synthetically important boronic esters and tetra-coordinated triarylboranes, which could be useful in materials science as well as Lewis-acid catalysts.![]()
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| | - Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 5650871 Japan
| |
Collapse
|
42
|
Shao X, Wang J, Marder TB, Xie Z, Liu J, Wang L. N–B ← N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xingxin Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jiahui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Todd B. Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
43
|
Chen CH, Zheng WH. Planar Chiral B-N Heteroarenes Based on [2.2]Paracyclophane as Circularly Polarized Luminescence Emitters. Org Lett 2021; 23:5554-5558. [PMID: 34196557 DOI: 10.1021/acs.orglett.1c01924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Planar chiral boron-nitrogen heteroarenes based on [2.2]paracyclophane were successfully synthesized in a few steps as a new family of circularly polarized luminescence emitters. It represents the first case of boron-nitrogen heteroarenes with planar chirality. Those compounds have been demonstrated to exhibit strong circularly polarized luminescence signals and high quantum yields, in both solution and doped film (with glum up to 5.0 × 10-3 and Φsolution up to 73%).
Collapse
Affiliation(s)
- Chun-Hua Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
44
|
Xia Y, Huang H, Hu W, Deng GJ. NH 4I-promoted oxidative formation of benzothiazoles and thiazoles from arylacetic acids and phenylalanines with elemental sulfur. Org Biomol Chem 2021; 19:5108-5113. [PMID: 34009226 DOI: 10.1039/d1ob00671a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A NH4I/K3PO4-based catalytic system has been established to enable oxidative formation of thiazole compounds from arylacetic acids and phenylalanines with elemental sulfur. While the three-component reaction of anilines or β-naphthylamines with arylacetic acids and elemental sulfur affords benzo[2,1-d]thiazoles and naphtho[2,1-d]thiazoles, the annulation of phenylalanines with elemental sulfur produces 2-benzyl and 2-benzoylthiazoles. This work well complements previous three-component annulations of benzothiazoles from other coupling partners.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Wei Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
45
|
Wu G, Pang B, Wang Y, Yan L, Chen L, Ma T, Ji Y. Metal-Free ortho-Selective C-H Borylation of 2-Phenylthiopyridines Using BBr 3. J Org Chem 2021; 86:5933-5942. [PMID: 33829798 DOI: 10.1021/acs.joc.1c00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel route for ortho-selective C-H borylation of 2-phenylthiopyridines using BBr3 as the boron source under metal-free conditions has been reported. The reaction exhibited site exclusivity, and the synthesized aryl boronates were freely converted to various useful intermediates. Thus, this facile method would be beneficial to synthesize structurally diversified phenylthioethers derivatives and other materials containing boron-nitrogen coordination.
Collapse
Affiliation(s)
- Gaorong Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Binghan Pang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Li Yan
- Analytical and Testing Center, Liangxiang Campus of Beijing Institute of Technology, Liangxiang East Road, Fangshan District, Beijing 102488, People's Republic of China
| | - Lu Chen
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Campus, Fangshan District, Beijing 102488, People's Republic of China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
46
|
Dhiman A, Giribabu L, Trivedi R. π-Conjugated Materials Derived From Boron-Chalcogenophene Combination. A Brief Description of Synthetic Routes and Optoelectronic Applications. CHEM REC 2021; 21:1738-1770. [PMID: 33844422 DOI: 10.1002/tcr.202100039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Functional materials composed of Boron-chalcogenophene conjugates have emerged as promising ensemble featuring commendable optoelectronic properties. This review describes the categories, synthetic routes and optoelectronic applications of a range of boron-chalcogenophene conjugates. Conjugation and linking of different types of tri- and tetra-coordinated boron moieties with chalcogenophenes have remained an important strategy for constructing a range of functional materials. Synthetic protocols have been devised to efficiently prepare such chemically robust conjugates, often exhibiting a myriad of photophysical properties, redox capabilities and also solid-state behaviors. Tin-boron and silicon-boron exchange protocols have been efficiently adapted to access these boron-chalcogenophenes. Few other commonly used methods namely, hydroboration of alkynes as well as electrophilic borylations are also mentioned. The chemical and electronic properties of such boron-chalcogenophene conjugates are directly influenced by the strong Lewis acid character of trivalent boranes which can further alter the intra- and inter- molecular Lewis acid-base interactions. Apart from the synthetic protocols, recent advances in the application of these boron-chalcogenophene conjugates towards analyte sensing, organic electronics, molecular switches and several other aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ankita Dhiman
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
47
|
Iqbal SA, Yuan K, Cid J, Pahl J, Ingleson MJ. Controlling selectivity in N-heterocycle directed borylation of indoles. Org Biomol Chem 2021; 19:2949-2958. [PMID: 33725086 DOI: 10.1039/d1ob00018g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrophilic borylation of indoles with BX3 (X = Cl or Br) using directing groups installed at N1 can proceed at the C2 or the C7 position. The six membered heterocycle directing groups utilised herein, pyridines and pyrimidine, result in indole C2 borylation being the dominant outcome (in the absence of a C2-substituent). In contrast, C7 borylation was achieved using five membered heterocycle directing groups, such as thiazole and benzoxazole. Calculations on the borylation of indole substituted with a five (thiazole) and a six (pyrimidine) membered heterocycle directing group indicated that borylation proceeds via borenium cations with arenium cation formation having the highest barrier in both cases. The C7 borylated isomer was calculated to be the thermodynamically favoured product with both five and six membered heterocycle directing groups, but for pyrimidine directed indole borylation the C2 product was calculated to be the kinetic product. This is in contrast to thiazole directed indole borylation with BCl3 where the C7 borylated isomer is the kinetic product too. Thus, heterocycle ring size is a useful way to control C2 vs. C7 selectivity in N-heterocycle directed indole C-H borylation.
Collapse
Affiliation(s)
- S A Iqbal
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | | | | | | | | |
Collapse
|
48
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
49
|
Zhang C, Wang H, Lan X, Shi YE, Wang Z. Modulating Emission of Nonconventional Luminophores from Nonemissive to Fluorescence and Room-Temperature Phosphorescence via Dehydration-Induced Through-Space Conjugation. J Phys Chem Lett 2021; 12:1413-1420. [PMID: 33522814 DOI: 10.1021/acs.jpclett.0c03614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Processing nonconventional luminophores into ultralong room-temperature phosphorescence (RTP) materials with bright emission is extremely difficult but highly desired because of their intrinsic advantages together with the relatively weak spin-orbit coupling and rapid nonradiative decay in comparison to traditional aromatic compounds. Here, a straightforward heat treatment method was developed to promote the intersystem crossing efficiency and to suppress nonradiative pathways. A "dehydration-induced through-space conjugation" mechanism was proposed for explaining the activating of fluorescence and RTP of nonconventional luminophores. RTP materials with a phosphorescence quantum yield of 23.8% and emission lifetime of 1.3 s are developed. In addition, the emission color and lifetimes can be modulated by tuning the structure of ligands, which allows their applications in multilevel information encryption. These results open the door for designing highly efficient ultralong RTP materials, which also provides a clue to clarify the detailed emission profiles of RTP materials.
Collapse
Affiliation(s)
- Chuanchuan Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Henggang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
50
|
Cao Y, Zhu C, Barłóg M, Barker KP, Ji X, Kalin AJ, Al-Hashimi M, Fang L. Electron-Deficient Polycyclic π-System Fused with Multiple B←N Coordinate Bonds. J Org Chem 2021; 86:2100-2106. [PMID: 33412007 DOI: 10.1021/acs.joc.0c02052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An extensive polycyclic π-system with 23 fused rings is synthesized via a highly efficient borylation reaction, in which four B-N covalent bonds and four B←N coordinate bonds are formed in one pot. B←N coordinate bonds not only lock the backbone into a near-coplanar conformation but also decrease the LUMO energy level to around -3.82 eV, demonstrating the dual utility of this strategy for the synthesis of extensive rigid polycyclic molecules and the development of n-type conjugated materials for organic electronics and organic photovoltaics.
Collapse
Affiliation(s)
| | | | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | | | | | | | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | | |
Collapse
|