1
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
2
|
Funk RHW, Scholkmann F. The significance of bioelectricity on all levels of organization of an organism. Part 1: From the subcellular level to cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:185-201. [PMID: 36481271 DOI: 10.1016/j.pbiomolbio.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Bioelectricity plays an essential role in the structural and functional organization of biological organisms. In this first article of our three-part series, we summarize the importance of bioelectricity for the basic structural level of biological organization, i.e. from the subcellular level (charges, ion channels, molecules and cell organelles) to cells.
Collapse
Affiliation(s)
- Richard H W Funk
- Institute of Anatomy, Center for Theoretical Medicine, TU-Dresden, 01307, Dresden, Germany; Dresden International University, 01067, Dresden, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
3
|
Guo C, Gavrilov Y, Gupta S, Bendikov T, Levy Y, Vilan A, Pecht I, Sheves M, Cahen D. Electron transport via tyrosine-doped oligo-alanine peptide junctions: role of charges and hydrogen bonding. Phys Chem Chem Phys 2022; 24:28878-28885. [PMID: 36441625 DOI: 10.1039/d2cp02807g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried via their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue's position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen bonding of the Tyr hydroxyl to the C-terminus carboxylate reduces this coupling. Hence, the extent of such a conductance change depends on the Tyr-carboxylate distance in the peptide's sequence.
Collapse
Affiliation(s)
- Cunlan Guo
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yulian Gavrilov
- Departments of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761001, Israel.,Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Satyajit Gupta
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel. .,Department of Chemistry, Indian Institute of Technology, Bhilai, 492015, India
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Yaakov Levy
- Departments of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ayelet Vilan
- Departments of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Israel Pecht
- Department of immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Mordechai Sheves
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - David Cahen
- Departments of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 761001, Israel.
| |
Collapse
|
4
|
Stefani D, Guo C, Ornago L, Cabosart D, El Abbassi M, Sheves M, Cahen D, van der Zant HSJ. Conformation-dependent charge transport through short peptides. NANOSCALE 2021; 13:3002-3009. [PMID: 33508063 DOI: 10.1039/d0nr08556a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on charge transport across single short peptides using the Mechanically Controlled Break Junction (MCBJ) method. We record thousands of electron transport events across single-molecule junctions and with an unsupervised machine learning algorithm, we identify several classes of traces with multifarious conductance values that may correspond to different peptide conformations. Data analysis shows that very short peptides, which are more rigid, show conductance plateaus at low conductance values of about 10-3G0 and below, with G0 being the conductance quantum, whereas slightly longer, more flexible peptides also show plateaus at higher values. Fully stretched peptide chains exhibit conductance values that are of the same order as that of alkane chains of similar length. The measurements show that in the case of short peptides, different compositions and molecular lengths offer a wide range of junction conformations. Such information is crucial to understand mechanism(s) of charge transport in and across peptide-based biomolecules.
Collapse
Affiliation(s)
- Davide Stefani
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tang WK, Mu X, Li M, Martens J, Berden G, Oomens J, Chu IK, Siu CK. Formation of n → π + interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Phys Chem Chem Phys 2021; 22:21393-21402. [PMID: 32940309 DOI: 10.1039/d0cp00533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cβ bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.
Collapse
Affiliation(s)
- Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020; 59:22554-22562. [PMID: 32851761 DOI: 10.1002/anie.202004701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The majority of the protein structures have been elucidated under equilibrium conditions. The aim herein is to provide a better understanding of the dynamic behavior inherent to proteins by fabricating a label-free nanodevice comprising a single-peptide junction to measure real-time conductance, from which their structural dynamic behavior can be inferred. This device contains an azobenzene photoswitch for interconversion between a well-defined cis, and disordered trans isomer. Real-time conductance measurements revealed three distinct states for each isomer, with molecular dynamics simulations showing each state corresponds to a specific range of hydrogen bond lengths within the cis isomer, and specific dihedral angles in the trans isomer. These insights into the structural dynamic behavior of peptides may rationally extend to proteins. Also demonstrated is the capacity to modulate conductance which advances the design and development of bioinspired electronic nanodevices.
Collapse
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.,Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Pharmaceutical Department Changzhi Medical College Changzhi 046000 P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
8
|
Li S, Chen W, Hu X, Feng F. Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS APPLIED BIO MATERIALS 2020; 3:2482-2488. [DOI: 10.1021/acsabm.0c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Zuliani C, Formaggio F, Scipionato L, Toniolo C, Antonello S, Maran F. Insights into the Distance Dependence of Electron Transfer through Conformationally Constrained Peptides. ChemElectroChem 2020. [DOI: 10.1002/celc.202000088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Claudio Zuliani
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
- Ozo Innovations Ltd, Unit 29 Chancerygate Business Centre Langford Ln Kidlington OX5 1FQ UK
| | - Fernando Formaggio
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Laura Scipionato
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Claudio Toniolo
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Sabrina Antonello
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| | - Flavio Maran
- Department of ChemistryUniversity of Padova 1, Via Marzolo 35131 Padova Italy
| |
Collapse
|
10
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
11
|
Li B, Tian L, He X, Ji X, Khalid H, Yue C, Liu Q, Yu X, Lei S, Hu W. Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Phys Chem Chem Phys 2019; 21:26058-26065. [PMID: 31746863 DOI: 10.1039/c9cp04695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histidine works as an important mediator in the charge transport process through proteins via its conjugate side group. It can also stabilize a peptide's secondary structure through hydrogen bonding of the imidazole group. In this study, the conformation of the self-assembled monolayer (SAM) and the charge transport of the tailor-made oligopeptide hepta-histidine derivative (7-His) were modulated through the pH control of the assembly environment. Histidine is found to be an efficient tunneling mediator in monolayer junctions with an attenuation factor of β = ∼0.5 Å-1. Successful theoretical model fitting indicates a linear increase in the number of tunneling sites as the 7-His SAM thickness increases, following the deprotonation of histidine. Combined with the ultraviolet photoelectron spectroscopy (UPS) measurements, a modulable charge transport pathway through 7-His with imidazole groups of histidine as tunneling foot stones is revealed. Histidine therefore possesses a large potential for modulable functional (bio)electronic devices.
Collapse
Affiliation(s)
- Baili Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jones LO, Mosquera MA, Schatz GC, Ratner MA. Molecular Junctions Inspired by Nature: Electrical Conduction through Noncovalent Nanobelts. J Phys Chem B 2019; 123:8096-8102. [PMID: 31525929 DOI: 10.1021/acs.jpcb.9b06255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Charge transport occurs in a range of biomolecular systems, whose structures have covalent and noncovalent bonds. Understanding from these systems have yet to translate into molecular junction devices. We design junctions which have hydrogen-bonds between the edges of a series of prototype noncovalent nanobelts (NCNs) and vary the number of donor-acceptors to study their electrical properties. From frontier molecular orbitals (FMOs) and projected density of state (DOS) calculations, we found these NCN dimer junctions to have low HOMO-LUMO gaps and states at the Fermi level, suggesting these are metallic-like systems. Their conductance properties were studied with nonequilibrium Green's functions density functional theory (NEGF-DFT) and was found to decrease with cooperative H-bonding, that is, the conductance decreased as the alternating donor-acceptors around the nanobelts attenuates to a uniform distribution in the H-bonding arrays. The latter gave the highest conductance of 51.3 × 10-6 S and the Seebeck coefficient showed n-type (-36 to -39 μV K-1) behavior, while the lower conductors with alternating H-bonds are p-type (49.7 to 204 μV K-1). In addition, the NCNs have appreciable binding energies (19.8 to 46.1 kcal mol-1), implying they could form self-assembled monolayer (SAM) heterojunctions leading to a polymeric network for long-range charge transport.
Collapse
Affiliation(s)
- Leighton O Jones
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - Martín A Mosquera
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - George C Schatz
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| | - Mark A Ratner
- Department of Chemistry and the Materials Research Center , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
13
|
Karunakaran I, Angamuthu A, Gopalan P. Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2017-1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
We aim to understand the structure and stability of the backbone tailored Watson-Crick base pairs, Guanine-Cytosine (GC), Adenine-Thymine (AT) and Adenine-Uracil (AU) by incorporating N-(2-aminoethyl) glycine units (linked by amide bonds) at the purine and pyrimidine sites of the nucleobases. Density functional theory (DFT) is employed in which B3LYP/6-311++G∗
∗ level of theory has been used to optimize all the structures. The peptide attached base pairs are compared with the natural deoxyribose nucleic acid (DNA)/ribonucleic acid (RNA) base pairs and the calculations are carried out in both the gas and solution phases. The structural propensities of the optimized base pairs are analyzed using base pair geometries, hydrogen bond distances and stabilization energies and, compared with the standard reference data. The structural parameters were found to correlate well with the available data. The addition of peptide chain at the back bone of the DNA/RNA base pairs results only with a minimal distortion and hence does not alter the structural configuration of the base pairs. Also enhanced stability of the base pairs is spotted while adding peptidic chain at the purine site rather than the pyrimidine site of the nucleobases. The stability of the complexes is further interpreted by considering the hydrogen bonded N–H stretching frequencies of the respective base pairs. The discrimination in the interaction energies observed in both gas and solution phases are resulted due to the existence of distinct lowest unoccupied molecular orbitals (LUMO) in the solution phase. The reactivity of the base pairs is also analyzed through the in-depth examinations on the highest occupied molecular orbital (HOMO)-LUMO orbitals.
Collapse
Affiliation(s)
- Indumathi Karunakaran
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India
| | - Abiram Angamuthu
- Department of Physics , Karunya Institute of Technology and Sciences , Coimbatore 641114, Tamilnadu , India
| | - Praveena Gopalan
- Department of Physics , PSGR Krishnammal College for Women , Coimbatore 641004, Tamilnadu , India , Tel.: +91-7812844344
| |
Collapse
|
14
|
Khosa M, Ullah A. Mechanistic insight into protein supported biosorption complemented by kinetic and thermodynamics perspectives. Adv Colloid Interface Sci 2018; 261:28-40. [PMID: 30301519 DOI: 10.1016/j.cis.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
In this review, we discussed the micro-level aspects of protein supported biosorption. The mechanism, surface chemistry in terms of energy interactions and electron transfer process (ETP) of peptide systems within protein are three important areas that provide mechanistic insight into protein supported biosorption. The functional groups in proteinous material like hydroxyl (-OH), carbonyl (>C=O), carboxyl (-COOH) and sulfhydryl (-SH) play a significant role in the biosorption of variety of pollutants such as metal ions, metalloids, and organic matters in wastewaters. The mechanistic aspects of biosorption are crucial not only for the separation process but also they contribute towards stoichiometric considerations and mathematical modelling process. The surface chemistry of applied biosorbents relies on interfacial components whose interaction energies are estimated with help of classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory mathematically. Proteins are the fundamental molecules of many biomaterial used for the biosorption of contaminents and peptide bond is considered as the backbone of proteins. The charge variations on peptide bonding is the result of ETP whose discussion was made part of this review for understaning number of biological and technological processes of vital interests. In addition, this review was complemented by exhaustive overview of kinetic and thermodynamics perspectives of biosorption process.
Collapse
|
15
|
Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Tailor-Made Functional Peptide Self-Assembling Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707083. [PMID: 29989255 PMCID: PMC7616936 DOI: 10.1002/adma.201707083] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.
Collapse
Affiliation(s)
- Moran Amit
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel; Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093-0407, USA
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering Ben Gurion University of the Negev Beer-Sheva 84105, Israel
| |
Collapse
|
16
|
Yu J, Horsley JR, Abell AD. Peptides as Bio-Inspired Electronic Materials: An Electrochemical and First-Principles Perspective. Acc Chem Res 2018; 51:2237-2246. [PMID: 30192512 DOI: 10.1021/acs.accounts.8b00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular electronics is at the forefront of interdisciplinary research, offering a significant extension of the capabilities of conventional silicon-based technology as well as providing a possible stand-alone alternative. Bio-inspired molecular electronics is a particularly intriguing paradigm, as charge transfer in proteins/peptides, for example, plays a critical role in the energy storage and conversion processes for all living organisms. However, the structure and conformation of even the simplest protein is extremely complex, and therefore, synthetic model peptides comprising well-defined geometry and predetermined functionality are ideal platforms to mimic nature for the elucidation of fundamental biological processes while also enhancing the design and development of single-peptide electronic components. In this Account, we first present intramolecular electron transfer within two synthetic peptides, one with a well-defined helical conformation and the other with a random geometry, using electrochemical techniques and computational simulations. This study reveals two definitive electron transfer pathways (mechanisms), the natures of which are dependent on secondary structure. Following on from this, electron transfer within a series of well-defined helical peptides, constrained by either Huisgen cycloaddition, ring-closing metathesis, or a lactam bridge, was determined. The electrochemical results indicate that each constrained peptide, in contrast to a linear counterpart, exhibits a remarkable shift of the formal potential to the positive (>460 mV) and a significant reduction of the electron transfer rate constant (up to 15-fold), which represent two distinct electronic "on/off" states. High-level calculations demonstrate that the additional backbone rigidity provided by the side-bridge constraints leads to an increased reorganization energy barrier, which impedes the vibrational fluctuations necessary for efficient intramolecular electron transfer through the peptide backbone. Further calculations reveal a clear mechanistic transition from hopping to superexchange (tunneling) stemming from side-bridge gating. We then extended our research to fine-tuning of the electronic properties of peptides through both structural and chemical manipulation, to reveal an interplay between electron-rich side chains and backbone rigidity on electron transfer. Further to this, we explored the possibility that the side-bridge constraints present in our synthetic peptides provide an additional electronic transport pathway, which led to the discovery of two distinct forms of quantum interferometer. The effects of destructive quantum interference appear essentially through both the backbone and an alternative tunneling pathway provided by the side bridge in the constrained β-strand peptide, as evidenced by a correlation between electrochemical measurements and conductance simulations for both linear and constrained β-strand peptides. In contrast, an interplay between quantum interference effects and vibrational fluctuations is revealed in the linear and constrained 310-helical peptides. Collectively, these exciting findings augment our fundamental knowledge of charge transfer dynamics and kinetics in peptides and also open up new avenues to design and develop functional bio-inspired electronic devices, such as on/off switches and quantum interferometers, for practical applications in molecular electronics.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
17
|
Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomater 2018; 69:1-30. [PMID: 29357319 DOI: 10.1016/j.actbio.2018.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.
Collapse
|
18
|
Brisendine JM, Refaely-Abramson S, Liu ZF, Cui J, Ng F, Neaton JB, Koder RL, Venkataraman L. Probing Charge Transport through Peptide Bonds. J Phys Chem Lett 2018; 9:763-767. [PMID: 29376375 PMCID: PMC6420303 DOI: 10.1021/acs.jpclett.8b00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.
Collapse
Affiliation(s)
- Joseph M Brisendine
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, and Department of Biochemistry, City College of New York , New York, New York 10031, United States
| | - Sivan Refaely-Abramson
- Department of Physics, University of California Berkeley , Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Zhen-Fei Liu
- Department of Physics, University of California Berkeley , Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jing Cui
- Department of Physics, Columbia University , New York, New York 10027, United States
| | - Fay Ng
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley , Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute at Berkeley , Berkeley, California 94720, United States
| | - Ronald L Koder
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, and Department of Biochemistry, City College of New York , New York, New York 10031, United States
- Department of Physics, City College of New York , New York, New York 10031, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University , New York, New York 10027, United States
- Department of Applied Physics, Columbia University , New York, New York 10027, United States
| |
Collapse
|
19
|
Guo C, Sarkar S, Refaely-Abramson S, Egger DA, Bendikov T, Yonezawa K, Suda Y, Yamaguchi T, Pecht I, Kera S, Ueno N, Sheves M, Kronik L, Cahen D. Electronic structure of dipeptides in the gas-phase and as an adsorbed monolayer. Phys Chem Chem Phys 2018; 20:6860-6867. [DOI: 10.1039/c7cp08043c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UPS and DFT reveal how frontier energy levels and molecular orbitals of peptides are modified upon peptide binding to a gold substrate.
Collapse
|
20
|
Matsushita D, Uji H, Kimura S. Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer. Phys Chem Chem Phys 2018; 20:15216-15222. [DOI: 10.1039/c8cp02315h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer (ET) reactions via helical peptides composed of –(Aib-Pro)n– were studied in self-assembled monolayers and compared with –(Ala-Aib)n– peptides.
Collapse
Affiliation(s)
- Daisuke Matsushita
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| | - Hirotaka Uji
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| | - Shunsaku Kimura
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto-Daigaku-Katsura
- Nishikyo-ku
| |
Collapse
|
21
|
Han P, Guo R, Wang Y, Yao L, Liu C. Bidirectional Electron-Transfer in Polypeptides with Various Secondary Structures. Sci Rep 2017; 7:16445. [PMID: 29180651 PMCID: PMC5703997 DOI: 10.1038/s41598-017-16678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022] Open
Abstract
The protein-mediated bidirectional electron transfer (ET) is the foundation of protein molecular wire, and plays an important role in the rapid detection of oxo-guanine-adenine DNA mismatches by MutY glycosylase. However, the influences of structural transitions on bidirectional ET are still not clear. In this work, the modified through-bond coupling (MTBC) model was further refined to correlate the structural transition and ET rate more quantitatively. With this model, various polyglycine structures (310-helix, α-helix, β-sheets, linear, polyproline helical I and II) were studied to explore the influences of structural transitions on bidirectional ET. It was found that the HOMO-LUMO gaps (ΔE) in CN (from the carboxyl to amino terminus) direction are much lower than that in opposite direction, except for polypro I. However, with the equal tunneling energy, the differences between bidirectional ET rates are slight for all structures. In structural transitions, we found that the ET rates are not only affected by the Ramachandran angles, but also correlated to the alignment of C = O vectors, the alignment of peptide planes and the rearrangement of other structure factors. The detailed information can be used to rationalize the inhomogeneous ET across different protein structures and design more efficient protein molecular wires.
Collapse
Affiliation(s)
- Ping Han
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Ruiyou Guo
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Yefei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China.
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China
| | - Chengbu Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
22
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|
23
|
Li WQ, Huang B, Huang ML, Peng LL, Hong ZW, Zheng JF, Chen WB, Li JF, Zhou XS. Detecting Electron Transport of Amino Acids by Using Conductance Measurement. SENSORS 2017; 17:s17040811. [PMID: 28394265 PMCID: PMC5422172 DOI: 10.3390/s17040811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022]
Abstract
The single molecular conductance of amino acids was measured by a scanning tunneling microscope (STM) break junction. Conductance measurement of alanine gives out two conductance values at 10−1.85 G0 (1095 nS) and 10−3.7 G0 (15.5 nS), while similar conductance values are also observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is not the primary means of electron transport in the methionine junction, which may be caused by the strong interaction of the Au–SMe (methyl sulfide) bond for the methionine junction. The current work reveals the important role of the anchoring group in the electron transport in different amino acids junctions.
Collapse
Affiliation(s)
- Wei-Qiong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Bing Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Miao-Ling Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Lin-Lu Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ze-Wen Hong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Wen-Bo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
24
|
Sheu SY, Yang DY. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor. Sci Rep 2017; 7:39792. [PMID: 28051140 PMCID: PMC5209712 DOI: 10.1038/srep39792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/28/2016] [Indexed: 02/03/2023] Open
Abstract
Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences, Institute of Genome Sciences and Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
25
|
Yu J, Horsley JR, Abell AD. A controllable mechanistic transition of charge transfer in helical peptides: from hopping to superexchange. RSC Adv 2017. [DOI: 10.1039/c7ra07753j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A controllable mechanistic transition of charge transfer in helical peptides is demonstrated as a direct result of side-bridge gating.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
26
|
Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D. Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proc Natl Acad Sci U S A 2016; 113:10785-90. [PMID: 27621456 PMCID: PMC5047155 DOI: 10.1073/pnas.1606779113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.
Collapse
Affiliation(s)
- Cunlan Guo
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100; Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Xi Yu
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Sivan Refaely-Abramson
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Lior Sepunaru
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100; Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Israel Pecht
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Ayelet Vilan
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 76100;
| |
Collapse
|
27
|
Picón A, Lehmann CS, Bostedt C, Rudenko A, Marinelli A, Osipov T, Rolles D, Berrah N, Bomme C, Bucher M, Doumy G, Erk B, Ferguson KR, Gorkhover T, Ho PJ, Kanter EP, Krässig B, Krzywinski J, Lutman AA, March AM, Moonshiram D, Ray D, Young L, Pratt ST, Southworth SH. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics. Nat Commun 2016; 7:11652. [PMID: 27212390 PMCID: PMC4879250 DOI: 10.1038/ncomms11652] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/18/2016] [Indexed: 11/09/2022] Open
Abstract
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.
Collapse
Affiliation(s)
- A. Picón
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. S. Lehmann
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C. Bostedt
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - A. Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A. Marinelli
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. Osipov
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D. Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - N. Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - C. Bomme
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - M. Bucher
- Argonne National Laboratory, Argonne, Illinois 60439, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G. Doumy
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B. Erk
- Deutsches Elektronen-Synchrotron (DESY), Hamburg 22607, Germany
| | - K. R. Ferguson
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. Gorkhover
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P. J. Ho
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - E. P. Kanter
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - B. Krässig
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J. Krzywinski
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. A. Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. M. March
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D. Moonshiram
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D. Ray
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L. Young
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - S. T. Pratt
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | |
Collapse
|
28
|
Berstis L, Beckham GT, Crowley MF. Electronic coupling through natural amino acids. J Chem Phys 2015; 143:225102. [PMID: 26671404 DOI: 10.1063/1.4936588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Laura Berstis
- National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Gregg T. Beckham
- National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Michael F. Crowley
- National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| |
Collapse
|
29
|
Shah A, Adhikari B, Martic S, Munir A, Shahzad S, Ahmad K, Kraatz HB. Electron transfer in peptides. Chem Soc Rev 2015; 44:1015-27. [PMID: 25619931 DOI: 10.1039/c4cs00297k] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.
Collapse
Affiliation(s)
- Afzal Shah
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Monney NPA, Bally T, Giese B. Electronic Structure of Hole-Conducting States in Polyprolines. J Phys Chem B 2015; 119:6584-90. [DOI: 10.1021/acs.jpcb.5b02580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Thomas Bally
- University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Bernd Giese
- University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
32
|
|
33
|
Monney NPA, Bally T, Giese B. Proline as a charge stabilizing amino acid in peptide radical cations. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Thomas Bally
- University of Fribourg; Chemin du Musée 9; CH-1700 Fribourg Switzerland
| | - Bernd Giese
- University of Fribourg; Chemin du Musée 9; CH-1700 Fribourg Switzerland
| |
Collapse
|
34
|
Juhaniewicz J, Pawlowski J, Sek S. Electron Transport Mediated by Peptides Immobilized on Surfaces. Isr J Chem 2015. [DOI: 10.1002/ijch.201400165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Horsley JR, Yu J, Moore KE, Shapter JG, Abell AD. Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires. J Am Chem Soc 2014; 136:12479-88. [PMID: 25122122 PMCID: PMC4156867 DOI: 10.1021/ja507175b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Indexed: 01/14/2023]
Abstract
Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.
Collapse
Affiliation(s)
- John R. Horsley
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Katherine E. Moore
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Joe G. Shapter
- Centre
for Nanoscale Science and Technology, School of Chemical & Physical
Science, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew D. Abell
- ARC
Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of
Chemistry and Physics, The University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
36
|
Spin-dependent electron transport in protein-like single-helical molecules. Proc Natl Acad Sci U S A 2014; 111:11658-62. [PMID: 25071198 DOI: 10.1073/pnas.1407716111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on a theoretical study of spin-dependent electron transport through single-helical molecules connected by two nonmagnetic electrodes, and explain the experiment of significant spin-selective phenomenon observed in α-helical protein and the contradictory results between the protein and single-stranded DNA. Our results reveal that the α-helical protein is an efficient spin filter and the spin polarization is robust against the disorder. These results are in excellent agreement with recent experiments [Mishra D, et al. (2013) Proc Natl Acad Sci USA 110(37):14872-14876; Göhler B, et al. (2011) Science 331(6019):894-897] and may facilitate engineering of chiral-based spintronic devices.
Collapse
|
37
|
Affiliation(s)
- Jay R. Winkler
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125
| |
Collapse
|
38
|
Yu J, Horsley JR, Moore KE, . Shapter JG, Abell AD. The effect of a macrocyclic constraint on electron transfer in helical peptides: A step towards tunable molecular wires. Chem Commun (Camb) 2014; 50:1652-4. [DOI: 10.1039/c3cc47885h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kuś T, Mignolet B, Levine RD, Remacle F. Pump and Probe of Ultrafast Charge Reorganization in Small Peptides: A Computational Study through Sudden Ionizations. J Phys Chem A 2013; 117:10513-25. [DOI: 10.1021/jp407295t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- T. Kuś
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - B. Mignolet
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - R. D. Levine
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F. Remacle
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
40
|
Duffy MJ, Kelly O, Calvert CR, King RB, Belshaw L, Kelly TJ, Costello JT, Timson DJ, Bryan WA, Kierspel T, Turcu ICE, Cacho CM, Springate E, Williams ID, Greenwood JB. Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1366-1375. [PMID: 23817831 DOI: 10.1007/s13361-013-0653-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Collapse
Affiliation(s)
- Martin J Duffy
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuleff AI, Lünnemann S, Cederbaum LS. Electron-correlation-driven charge migration in oligopeptides. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Lettieri R, Bischetti M, Gatto E, Palleschi A, Ricci E, Formaggio F, Crisma M, Toniolo C, Venanzi M. Looking for the peptide 2.05-helix: A solvent- and main-chain length-dependent conformational switch probed by electron transfer across cα,α-diethylglycine homo-oligomers. Biopolymers 2013; 100:51-63. [DOI: 10.1002/bip.22190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/08/2022]
|
43
|
Sek S. Review peptides and proteins wired into the electrical circuits: An SPM-based approach. Biopolymers 2013; 100:71-81. [DOI: 10.1002/bip.22148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/26/2012] [Accepted: 08/08/2012] [Indexed: 12/30/2022]
|
44
|
Bonanni PS, Massazza D, Busalmen JP. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 2013; 15:10300-6. [DOI: 10.1039/c3cp50411e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Han B, Chen X, Zhao J, Bu Y. A peptide loop and an α-helix N-terminal serving as alternative electron hopping relays in proteins. Phys Chem Chem Phys 2012; 14:15849-59. [PMID: 23093308 DOI: 10.1039/c2cp41566f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work presents a density functional theory calculational study for clarifying that peptide loops (-[peptide](n)-) including the N-terminal and the C-terminal oligopeptides and the α-helix N-terminal can serve as an intriguing kind of relay elements, as an addition to the known relay stations served by aromatic amino acids for electron hopping migration. For these protein motifs, an excess electron generally prefers to reside at the -NH(3)(+) group in a Rydberg state for the N-terminal peptides, or at the -COOH group in a dipole-bound state for the C-terminal peptides, and at the N-terminal in a dipole-bound π*-orbital state for the peptide loops and α-helices. The electron binding ability can be effectively enhanced by elongation for the α-helix N-terminal, and by bending, twisting, and even β-turning for the peptide chains. The relay property is determined by the local dipole instead of the total dipole of the peptide chains. Although no direct experiment supports this hypothesis, a series of recent studies regarding charge hopping migration associated with the peptide chains and helices could be viewed as strong evidence. But, further studies are still needed by considering the effects from relative redox potential between the donor and acceptor sites, protein environment, and structure water molecules.
Collapse
Affiliation(s)
- Boran Han
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | | | | | | |
Collapse
|
46
|
Sansone G, Pfeifer T, Simeonidis K, Kuleff AI. Electron Correlation in Real Time. Chemphyschem 2011; 13:661-80. [DOI: 10.1002/cphc.201100528] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Indexed: 11/11/2022]
|
47
|
Outer-valence Green’s function method using natural orbitals for ultrafast electron density dynamics. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. J Fluoresc 2011; 21:2143-53. [PMID: 21773693 DOI: 10.1007/s10895-011-0916-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
The understanding of cellular processes and functions and the elucidation of their physiological mechanisms is an important aim in the life sciences. One important aspect is the uptake and the release of essential substances as well as their interactions with the cellular environment. As green fluorescent protein (GFP) can be genetically encoded in cells it can be used as an internal sensor giving a deeper insight into biochemical pathways. Here we report that the presence of copper(II) ions leads to a decrease of the fluorescence lifetime (τ(fl)) of GFP and provide evidence for Förster resonance energy transfer (FRET) as the responsible quenching mechanism. We identify the His(6)-tag as the responsible binding site for Cu(2+) with a dissociation constant K(d) = 9 ± 2 μM and a Förster radius R(0) = 2.1 ± 0.1 nm. The extent of the lifetime quenching depends on [Cu(2+)] which is comprehended by a mathematical titration model. We envision that Cu(2+) can be quantified noninvasively and in real-time by measuring τ(fl) of GFP.
Collapse
|
49
|
Donoli A, Marcuzzo V, Moretto A, Toniolo C, Cardena R, Bisello A, Santi S. Charge mapping in 3(10)-helical peptide chains by oxidation of the terminal ferrocenyl group. Org Lett 2011; 13:1282-5. [PMID: 21341757 DOI: 10.1021/ol102864s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two series of 3(10)-helical peptides of different lengths and rigidity, based on the strongly foldameric α-aminoisobutyric acid and containing a terminal ferrocenyl unit, have been synthesized. Oxidation-state sensitive spectroscopic tags of helical peptides, the N-H groups, allowed mapping of the charge delocalization triggered by oxidation of the terminal ferrocenyl moiety and were monitored by IR spectroelectrochemistry.
Collapse
Affiliation(s)
- Alessandro Donoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Arikuma Y, Nakayama H, Morita T, Kimura S. Ultra-long-range electron transfer through a self-assembled monolayer on gold composed of 120-Å-long α-helices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1530-1535. [PMID: 21090665 DOI: 10.1021/la103882r] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electron transfer through α-helices has attracted much attention from the viewpoints of their contributions to efficient long-range electron transfer occurring in biological systems and their utility as molecular-electronics elements. In this study, we synthesized a long 80mer helical peptide carrying a redox-active ferrocene unit at the terminal and immobilized the helical peptide on a gold surface. The molecular length is calculated to be 134 Å, in which the helix accounts for 120 Å. The preparation conditions of the self-assembled monolayers were intentionally changed to obtain monolayers with different physical states to study the correlation between molecular motions and electron transfer. Ellipsometry and infrared spectroscopy showed that the helical peptide forms a self-assembled monolayer with vertical orientation. Electrochemical measurements revealed that an electron is transferred from the ferrocene unit to gold through the monolayer composed of this long helical peptide, and the experimental data are well explained by theoretical results calculated under the assumption that electron transfer occurs by a unique hopping mechanism with the amide groups as hopping sites. Furthermore, we have observed a unique dependence of electron transfer on the monolayer packing, suggesting the importance of structural fluctuations of peptides on the electron transfer controlled by the hopping mechanism.
Collapse
Affiliation(s)
- Yoko Arikuma
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|