1
|
Wolfe JA, Horne WS. Application of artificial backbone connectivity in the development of metalloenzyme mimics. Curr Opin Chem Biol 2024; 81:102509. [PMID: 39098212 PMCID: PMC11345794 DOI: 10.1016/j.cbpa.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored-but similarly powerful-is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.
Collapse
Affiliation(s)
- Jacob A Wolfe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
2
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Frison G, Crestoni ME, Fornarini S. IRMPD spectroscopy and quantum-chemical simulations of the reaction products of cisplatin with the dipeptide CysGly. J Inorg Biochem 2023; 247:112342. [PMID: 37536163 DOI: 10.1016/j.jinorgbio.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e., the primary substitution product cis-[PtCl(NH3)2(CysGly)]+ and the chelate cis-[PtCl(NH3)(CysGly)]+, were submitted to IR multiple photon dissociation (IRMPD) spectroscopy obtaining their vibrational features. The experimental IR ion spectra were compared with the calculated IR absorptions of different plausible isomeric families, finding CysGly to bind preferentially platinum(II) via its deprotonated thiolic group in the monovalent complex, cis-[PtCl(NH3)2(CysGly)]+, and to evolve in the S,N-bound chelate structure cis-[PtCl(NH3)(CysGly)]+ through the SH and NH2 functionality of the cysteine residue. Moreover, our findings indicate that the platination reaction does not affect the CysGly peptide bond, which remains in its trans configuration. These results provide additional insights into the reactivity of Pt(II)-complexes with glutathione which is involved in cellular cisplatin resistance.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005 Paris, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
3
|
Coffetti G, Moraschi M, Facchetti G, Rimoldi I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023; 28:molecules28083407. [PMID: 37110640 PMCID: PMC10144581 DOI: 10.3390/molecules28083407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main problems in chemotherapy using platinum drugs as anticancer agents is the resistance phenomenon. Synthesizing and evaluating valid alternative compounds is challenging. This review focuses on the last two years of progress in the studies of platinum (II)- and platinum (IV)-based anticancer complexes. In particular, the research studies reported herein focus on the capability of some platinum-based anticancer agents to bypass resistance to chemotherapy, which is typical of well-known drugs such as cisplatin. Regarding platinum (II) complexes, this review deals with complexes in trans conformation; complexes containing bioactive ligands, as well as those that are differently charged, all experience a different reaction mechanism compared with cisplatin. Regarding platinum (IV) compounds, the focus was on complexes with biologically active ancillary ligands that exert a synergistic effect with platinum (II)-active complexes upon reduction, or those for which controllable activation can be realized thanks to intracellular stimuli.
Collapse
Affiliation(s)
- Giulia Coffetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Martina Moraschi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
4
|
The Strange Case: The Unsymmetric Cisplatin-Based Pt(IV) Prodrug [Pt(CH 3COO)Cl 2(NH 3) 2(OH)] Exhibits Higher Cytotoxic Activity with respect to Its Symmetric Congeners due to Carrier-Mediated Cellular Uptake. Bioinorg Chem Appl 2022; 2022:3698391. [PMID: 36620349 PMCID: PMC9822769 DOI: 10.1155/2022/3698391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 01/01/2023] Open
Abstract
The biological behavior of the axially unsymmetric antitumor prodrug (OC-6-44)-acetatodiamminedichloridohydroxidoplatinum(IV), 2, was deeply investigated and compared with that of analogous symmetric Pt(IV) complexes, namely, dihydroxido 1 and diacetato 3, which have a similar structure. The complexes were tested on a panel of human tumor cell lines. Complex 2 showed an anomalous higher cytotoxicity (similar to that of cisplatin) with respect to their analogues 1 and 3. Their reduction potentials, reduction kinetics, lipophilicity, and membrane affinity are compared. Cellular uptake and DNA platination of Pt(IV) complexes were deeply investigated in the sensitive A2780 human ovarian cancer cell line and in the corresponding resistant A2780cisR subline. The unexpected activity of 2 appears to be related to its peculiar cellular accumulation and not to a different rate of reduction or a different efficacy in DNA platination and/or efficiency in apoptosis induction. Although the exact mechanism of cell uptake is not fully deciphered, a series of naïve experiments indicates an energy-dependent, carrier-mediated transport: the organic cation transporters (OCTs) are the likely proteins involved.
Collapse
|
5
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. Elusive intermediates in cisplatin reaction with target amino acids: Platinum(II)-cysteine complexes assayed by IR ion spectroscopy and DFT calculations. J Inorg Biochem 2022; 237:112017. [PMID: 36209532 DOI: 10.1016/j.jinorgbio.2022.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The reactivity of a widely used metal based antineoplastic drug, cisplatin, cis-PtCl2(NH3)2, with L-cysteine (Cys) has been investigated using a combination of electrospray ionization mass spectrometry (ESI-MS), IRMPD gas phase ion spectroscopy and DFT calculations. The cysteine lateral chain represents one of the main platination sites in proteins, which is believed to be related to the resistance mechanisms to cisplatin. The vibrational features of the mass-selected substitution product cis-[PtCl(NH3)2(Cys)]+ and the intercepted cis-[PtCl(NH3)2(H2O)(Cys)]+ intermediate complex were compared to calculated IR spectra, enabling the assessment of the sampled ions structures. In cis-[PtCl(NH3)2(Cys)]+, cysteine was found to bind platinum through the sulfur atom as a thiolate zwitterion, highlighting the enhanced acidity of the cysteine thiol group upon metal coordination. The cis-[PtCl(NH3)2(H2O)(Cys)]+ structure complies with the non-covalent encounter complex, formed by cis-[PtCl(NH3)2(H2O)]+ and neutral cysteine. This species is able to undergo the substitution process to produce cis-[PtCl(NH3)2(Cys)]+ when activated as a mass-isolated ion suggesting its participation in the reaction mechanism of cisplatin with cysteine in solution. Finally, the DFT-calculated energy profile for the substitution reaction was correlated with the peculiar gas-phase reactivity of this non-covalent complex, resulting to be 10-fold less reactive toward substitution than the corresponding methionine complex.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
6
|
Romani AM. Cisplatin in Cancer Treatment. Biochem Pharmacol 2022; 206:115323. [DOI: 10.1016/j.bcp.2022.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
7
|
de Brito RV, Mancini MW, Palumbo MDN, de Moraes LHO, Rodrigues GJ, Cervantes O, Sercarz JA, Paiva MB. The Rationale for "Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin" Approach for Cancer Treatment. Int J Mol Sci 2022; 23:5934. [PMID: 35682611 PMCID: PMC9180481 DOI: 10.3390/ijms23115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs in the treatment of various types of solid human cancers, as well as germ cell tumors, sarcomas, and lymphomas. Strong evidence from research has demonstrated higher efficacy of a combination of cisplatin and derivatives, together with hyperthermia and light, in overcoming drug resistance and improving tumoricidal efficacy. It is well known that the antioncogenic potential of CDDP is markedly enhanced by hyperthermia compared to drug treatment alone. However, more recently, accelerators of high energy particles, such as synchrotrons, have been used to produce powerful and monochromatizable radiation to induce an Auger electron cascade in cis-platinum molecules. This is the concept that makes photoactivation of cis-platinum theoretically possible. Both heat and light increase cisplatin anticancer activity via multiple mechanisms, generating DNA lesions by interacting with purine bases in DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. For the past twenty-seven years, our group has developed infrared photo-thermal activation of cisplatin for cancer treatment from bench to bedside. The future development of photoactivatable prodrugs of platinum-based agents injected intratumorally will increase selectivity, lower toxicity and increase efficacy of this important class of antitumor drugs, particularly when treating tumors accessible to laser-based fiber-optic devices, as in head and neck cancer. In this article, the mechanistic rationale of combined intratumor injections of cisplatin and laser-induced thermal therapy (CDDP-LITT) and the clinical application of such minimally invasive treatment for cancer are reviewed.
Collapse
Affiliation(s)
- Renan Vieira de Brito
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Marília Wellichan Mancini
- Biophotonics Department, Institute of Research and Education in the Health Area (NUPEN), Sao Carlos 13562-030, SP, Brazil;
| | - Marcel das Neves Palumbo
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Luis Henrique Oliveira de Moraes
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Gerson Jhonatan Rodrigues
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Onivaldo Cervantes
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Joel Avram Sercarz
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Marcos Bandiera Paiva
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
8
|
Barbanente A, Galliani A, Iacobazzi RM, Lasorsa A, Nardella MI, Pennetta A, Margiotta N, Arnesano F. Interaction of Copper Trafficking Proteins with the Platinum Anticancer Drug Kiteplatin. ChemMedChem 2022; 17:e202100593. [PMID: 34727402 PMCID: PMC9298912 DOI: 10.1002/cmdc.202100593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Indexed: 12/31/2022]
Abstract
The interaction of metallodrugs with proteins influences their mechanism of action and side effects. In the case of platinum drugs, copper transporters modulate sensitivity and resistance to these anticancer agents. To deepen the knowledge of the structural properties underlying the reactivity of platinum drugs with copper transporters, we studied the interaction of kiteplatin and two of its derivatives with the methionine-rich motif of copper importer Ctr1 and with the dithiol motif of the first domain of Menkes ATPase. Furthermore, cellular uptake and cytotoxicity of the three complexes were evaluated in cisplatin-sensitive and -resistant ovarian cancer cells, comparing the data with those of clinically relevant drugs. Reactivity depends on the tightness of the chelate ring formed by the carrier ligands and the nature of the leaving and entering groups. The results highlight the importance of subtle changes in the platinum coordination sphere that affect drug absorption and intracellular fate.
Collapse
Affiliation(s)
| | - Angela Galliani
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental PharmacologyIRCCS Istituto Tumori “Giovanni Paolo II”Viale O. Flacco 6570124BariItaly
| | - Alessia Lasorsa
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | | | - Antonio Pennetta
- Department of Engineering for InnovationUniversity of SalentoVia per Monteroni Km 173100LecceItaly
- Department of Cultural HeritageUniversity of SalentoVia Dalmazio Birago 6473100LecceItaly
| | - Nicola Margiotta
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| | - Fabio Arnesano
- Department of ChemistryUniversity of Bari “Aldo Moro”Via E. Orabona 470125BariItaly
| |
Collapse
|
9
|
Schueffl H, Theiner S, Hermann G, Mayr J, Fronik P, Groza D, van Schonhooven S, Galvez L, Sommerfeld NS, Schintlmeister A, Reipert S, Wagner M, Mader RM, Koellensperger G, Keppler BK, Berger W, Kowol CR, Legin A, Heffeter P. Albumin-targeting of an oxaliplatin-releasing platinum(iv) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem Sci 2021; 12:12587-12599. [PMID: 34703544 PMCID: PMC8494022 DOI: 10.1039/d1sc03311e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Oxaliplatin is a very potent platinum(ii) drug which is frequently used in poly-chemotherapy schemes against advanced colorectal cancer. However, its benefit is limited by severe adverse effects as well as resistance development. Based on their higher tolerability, platinum(iv) prodrugs came into focus of interest. However, comparable to their platinum(ii) counterparts they lack tumor specificity and are frequently prematurely activated in the blood circulation. With the aim to exploit the enhanced albumin consumption and accumulation in the malignant tissue, we have recently developed a new albumin-targeted prodrug, which supposed to release oxaliplatin in a highly tumor-specific manner. In more detail, we designed a platinum(iv) complex containing two maleimide moieties in the axial position (KP2156), which allows selective binding to the cysteine 34. In the present study, diverse cell biological and analytical tools such as laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS), isotope labeling, and nano-scale secondary ion mass spectrometry (NanoSIMS) were employed to better understand the in vivo distribution and activation process of KP2156 (in comparison to free oxaliplatin and a non-albumin-binding succinimide analogue). KP2156 forms very stable albumin adducts in the bloodstream resulting in a superior pharmacological profile, such as distinctly prolonged terminal excretion half-life and enhanced effective platinum dose (measured by ICP-MS). The albumin-bound drug is accumulating in the malignant tissue, where it enters the cancer cells via clathrin- and caveolin-dependent endocytosis, and is activated by reduction to release oxaliplatin. This results in profound, long-lasting anticancer activity of KP2156 against CT26 colon cancer tumors in vivo based on cell cycle arrest and apoptotic cell death. Summarizing, albumin-binding of platinum(iv) complexes potently enhances the efficacy of oxaliplatin therapy and should be further developed towards clinical phase I trials.
Collapse
Affiliation(s)
- Hemma Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Josef Mayr
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Philipp Fronik
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Sushilla van Schonhooven
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
| | - Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, University Biology Building (UBB) Djerassiplatz 1 A-1030 Vienna Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology and Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna Djerassiplatz 1 A-1030 Vienna Austria
| | - Robert M Mader
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 38 A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Medical University of Vienna Vienna Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Waehringer Str. 42 A-1090 Vienna Austria +43-1-4277-852601 +43-1-4277-9526 +43-1-4277-52610 +43-1-4277-52611
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a A-1090 Vienna Austria +43-1-40160-957555 +43-1-40160-57594
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria
| |
Collapse
|
10
|
Paciotti R, Corinti D, Maitre P, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. From Preassociation to Chelation: A Survey of Cisplatin Interaction with Methionine at Molecular Level by IR Ion Spectroscopy and Computations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2206-2217. [PMID: 34236851 PMCID: PMC8397306 DOI: 10.1021/jasms.1c00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Methionine (Met) plays an important role in the metabolism of cisplatin anticancer drug. Yet, methionine platination in aqueous solution presents a highly complex pattern of interconnected paths and intermediates. This study reports on the reaction of methionine with the active aqua form of cisplatin, cis-[PtCl(NH3)2(H2O)]+, isolating the encounter complex of the reactant pair, {cis-[PtCl(NH3)2(H2O)]+·Met}, by electrospray ionization. In the unsolvated state, charged intermediates are characterized for their structure and photofragmentation behavior by IR ion spectroscopy combined with quantum-chemical calculations, obtaining an outline of the cisplatin-methionine reaction at a molecular level. To summarize the major findings: (i) the {cis-[PtCl(NH3)2(H2O)]+·Met} encounter complex, lying on the reaction coordinate of the Eigen-Wilkins preassociation mechanism for ligand substitution, is delivered in the gas phase and characterized by IR ion spectroscopy; (ii) upon vibrational excitation, ligand exchange occurs within {cis-[PtCl(NH3)2(H2O)]+·Met}, releasing water and cis-[PtCl(NH3)2(Met)]+, along the calculated energy profile; (iii) activated cis-[PtCl(NH3)2(Met)]+ ions undergo NH3 departure, forming a chelate complex, [PtCl(NH3)(Met)]+, whose structure is congruent with overwhelming S-Met ligation as the primary coordination step. The latter process involving ammonia loss marks a difference with the prevailing chloride replacement in protic solvent, pointing to the effect of a low-polarity environment.
Collapse
Affiliation(s)
- Roberto Paciotti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Philippe Maitre
- Institut
de Chimie Physique, Université Paris-Saclay,
CNRS, F-91405 Orsay, France
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| |
Collapse
|
11
|
Interference between copper transport systems and platinum drugs. Semin Cancer Biol 2021; 76:173-188. [PMID: 34058339 DOI: 10.1016/j.semcancer.2021.05.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin, or cis-diamminedichloridoplatinum(II) cis-[PtCl2(NH3)2], is a platinum-based anticancer drug largely used for the treatment of various types of cancers, including testicular, ovarian and colorectal carcinomas, sarcomas, and lymphomas. Together with other platinum-based drugs, cisplatin triggers malignant cell death by binding to nuclear DNA, which appears to be the ultimate target. In addition to passive diffusion across the cell membrane, other transport systems, including endocytosis and some active or facilitated transport mechanisms, are currently proposed to play a pivotal role in the uptake of platinum-based drugs. In this review, an updated view of the current literature regarding the intracellular transport and processing of cisplatin will be presented, with special emphasis on the plasma membrane copper permease CTR1, the Cu-transporting ATPases, ATP7A and ATP7B, located in the trans-Golgi network, and the soluble copper chaperone ATOX1. Their role in eliciting cisplatin efficacy and their exploitation as pharmacological targets will be addressed.
Collapse
|
12
|
NMR spectroscopy to study the fate of metallodrugs in cells. Curr Opin Chem Biol 2021; 61:214-226. [PMID: 33882391 DOI: 10.1016/j.cbpa.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.
Collapse
|
13
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
14
|
Rimoldi I, Bucci R, Feni L, Santagostini L, Facchetti G, Pellegrino S. Exploring the copper binding ability of Mets7 hCtr-1 protein domain and His7 derivative: An insight in Michael addition catalysis. J Pept Sci 2020; 27:e3289. [PMID: 33094563 DOI: 10.1002/psc.3289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mets7 is a methionine-rich motif present in hCtr-1 transporter that is involved in copper cellular trafficking. Its ability to bind Cu(I) was recently exploited to develop metallopeptide catalysts for Henry condensation. Here, the catalytic activity of Mets7-Cu(I) complex in Michael addition reactions has been evaluated. Furthermore, His7 peptide, in which Met residues have been substituted with His ones, was also prepared. This substitution allowed His7 to coordinate Cu (II), with the obtainment of a stable turn conformation as evicted by CD experiments. His7-Cu (II) proved also to be a better catalyst than Mets7-Cu(I) in the addition reaction. In particular, when the substrate was the (E)-1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one, a conversion of 71% and a significative 58% of e.e. was observed.
Collapse
Affiliation(s)
- Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Lucia Feni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Tang FK, Zhu J, Kong FKW, Ng M, Bian Q, Yam VWW, Tse AKW, Tse YC, Leung KCF. A BODIPY-based fluorescent sensor for the detection of Pt2+ and Pt drugs. Chem Commun (Camb) 2020; 56:2695-2698. [DOI: 10.1039/d0cc00027b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel BODIPY-based fluorescent sensor PS was designed for imaging Pt2+, cisplatin and nedaplatin in aqueous medium and biological environments, providing great potential for studying the Pt-drug metabolism and the development of new platinum drugs.
Collapse
Affiliation(s)
- Fung-Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | - Jiaqian Zhu
- Centre for Cancer and Inflammation Research
- School of Chinese Medicine
- Hong Kong Baptist University
- P. R. China
| | | | - Maggie Ng
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Qingyuan Bian
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | | | - Anfernee Kai-Wing Tse
- Programme of Food Science and Technology, Division of Science and Technology
- Beijing Normal University-Hong Kong Baptist University United International College
- Zhuhai 519087
- P. R. China
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research
- Department of Biology
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| |
Collapse
|
16
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
17
|
Cheng L, Li C, Yuan S, Shi H, Zhao L, Zhang L, Arnesano F, Natile G, Liu Y. Reaction of Histone H1 with trans-Platinum Complexes and the Effect on DNA Platination. Inorg Chem 2019; 58:6485-6494. [DOI: 10.1021/acs.inorgchem.9b00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chan Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siming Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongdong Shi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linhong Zhao
- Institute of Life Sciences, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Fabio Arnesano
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Dipartimento di Chimica, University of Bari “A. Moro”, via E. Orabona 4, 70125 Bari, Italy
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53:148-158. [PMID: 30956230 PMCID: PMC6572495 DOI: 10.2478/raon-2019-0018] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 01/29/2023] Open
Abstract
Background Platinum-based anticancer drugs are widely used in the chemotherapy of human neoplasms. The major obstacle for the clinical use of this class of drugs is the development of resistance and toxicity. It is therefore very important to understand the chemical properties, transport and metabolic pathways and mechanism of actions of these compounds. There is a large body of evidence that therapeutic and toxic effects of platinum drugs on cells are not only a consequence of covalent adducts formation between platinum complexes and DNA but also with RNA and many proteins. These processes determine molecular mechanisms that underlie resistance to platinum drugs as well as their toxicity. Increased expression levels of various transporters and increased repair of platinum-DNA adducts are both considered as the most significant processes in the development of drug resistance. Functional genomics has an increasing role in predicting patients’ responses to platinum drugs. Genetic polymorphisms affecting these processes may play an important role and constitute the basis for individualized approach to cancer therapy. Similar processes may also influence therapeutic potential of nonplatinum metal compounds with anticancer activity. Conclusions Cisplatin is the most frequently used platinum based chemotherapeutic agent that is clinically proven to combat different types of cancers and sarcomas.
Collapse
|
19
|
Arnesano F, Nardella MI, Natile G. Platinum drugs, copper transporters and copper chelators. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Spreckelmeyer S, van der Zee M, Bertrand B, Bodio E, Stürup S, Casini A. Relevance of Copper and Organic Cation Transporters in the Activity and Transport Mechanisms of an Anticancer Cyclometallated Gold(III) Compound in Comparison to Cisplatin. Front Chem 2018; 6:377. [PMID: 30234099 PMCID: PMC6131305 DOI: 10.3389/fchem.2018.00377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/03/2018] [Indexed: 01/23/2023] Open
Abstract
The molecular mechanisms of toxicity and cellular transport of anticancer metallodrugs, including platinum-based agents, have not yet been fully elucidated. The aim of our study was to investigate the relevance of copper transporters (CTR1 and ATP7A/B), organic cation transporters (OCT2) and the multidrug and toxin extrusion proteins (MATE) in the intracellular accumulation of a novel organometallic cytotoxic Au(III) compound in cancer cells in comparison to cisplatin. Specifically, the synthesis and characterization of the gold complex [Au(pyb-H)(PPh2Ar)Cl]PF6 (PPh2Ar = 3-[4-(diphenylphosphino)phenyl]-7-methoxy-2H-chromen-2-one] (1), featuring a coumarin ligand endowed with “smart” fluorescence properties, have been achieved. Initially, the cytotoxic effects of both cisplatin and 1 were studied in a small panel of human cancer cells, and against a non-tumorigenic cell line in vitro. Thus, the human ovarian cancer cell line A2780 and its cisplatin resistant variant A2780cisR, were selected, being most sensitive to the treatment of the gold complex. Co-incubation of the metallodrugs with CuCl2 (a CTR1 substrate) increased the cytotoxic effects of both the Au(III) complex and cisplatin; while co-incubation with cimetidine (inhibitor of OCT2 and MATE) showed some effect only after 72 h incubation. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) analysis of the cell extracts showed that co-incubation with CuCl2 increases Au and Cu accumulation in both cancer cell lines, in accordance with the enhanced antiproliferative effects. Conversely, for cisplatin, no increase in Pt content could be observed in both cell lines after co-incubation with either CuCl2 or cimetidine, excluding the involvement of CTR1, OCT2, and MATE in drug accumulation and overall anticancer effects. This result, together with the evidence for increased Cu content in A2780 cells after cisplatin co-treatment with CuCl2, suggests that copper accumulation is the reason for the observed enhanced anticancer effects in this cell line. Moreover, metal uptake studies in the same cell lines indicate that both 1 and cisplatin are not transported intracellularly by CTR1 and OCT2. Finally, preliminary fluorescence microscopy studies enabled the visualization of the sub-cellular distribution of the gold compound in A2780 cells, suggesting accumulation in specific cytosolic components/organelles.
Collapse
Affiliation(s)
- Sarah Spreckelmeyer
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Margot van der Zee
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Benoît Bertrand
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,ICMUB UMR6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Ewen Bodio
- ICMUB UMR6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stefan Stürup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Angela Casini
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,School of Chemistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Gabano E, Ravera M, Zanellato I, Tinello S, Gallina A, Rangone B, Gandin V, Marzano C, Bottone MG, Osella D. An unsymmetric cisplatin-based Pt(iv) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Trans 2018; 46:14174-14185. [PMID: 28984330 DOI: 10.1039/c7dt02928d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design, synthesis, characterization and biological properties of a Pt(iv) complex containing the very active inhibitor of histone deacetylase (2-propynyl)octanoic acid, POA, as an axial ligand are reported here. The title complex, namely (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(iv), 1, containing POA in racemic or in enantiomeric forms, was one/two orders of magnitude more active than cisplatin, depending on the chemo-sensitivity of the cancer cell lines. Moreover, 1 exhibited similar or even better antiproliferative activity than (OC-6-33)-diamminedichloridobis(2-propylpentanoato)platinum(iv), 2, containing two molecules of the well-known histone deacetylase inhibitor 2-propylpentanoic (valproic) acid. The high potency of 1 is likely due to its high cellular accumulation and to the synergism between the DNA-damaging cisplatin and the histone deacetylase inhibitor POA, both released upon the intracellular reduction of 1. Prodrug 1, after oral administration, caused an impressive reduction of the tumor mass (94%) in a model of solid tumor (murine Lewis lung carcinoma), compared to that of the control, whereas (intraperitoneal) cisplatin induced a tumor regression of 75% only. A good accumulation of 1 was observed in the tumor mass. The time course of the body weight attested that cisplatin induced elevated anorexia, whereas treatment with 1 did not induce significant body weight loss throughout the therapeutic experiment.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guo D, Xu S, Huang Y, Jiang H, Yasen W, Wang N, Su Y, Qian J, Li J, Zhang C, Zhu X. Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials 2018; 177:67-77. [PMID: 29885587 DOI: 10.1016/j.biomaterials.2018.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
A combinatorial therapy that utilizes two or more therapeutic modalities is more effective in overcoming the limitations than each individual method used alone. Despite great advances have been achieved, the combination of chemotherapy and photodynamic therapy (PDT) still cannot satisfy the clinic requirements as the antitumor efficacy could be severely affected by tumor-associated hypoxia. Herein, for the first time, we reported a platinum(IV) complex-based polyprodrug that can in situ generate the highly toxic platinum(II) species as chemotherapeutics and simultaneously induce a high level of reactive oxygen species (ROS) in a PDT-like process without the use of photosensitizer and consumption of oxygen. By in situ polymerizing the platinum(IV) complex-based prodrug monomer (PPM) and 2-methacryloyloxy ethyl phosphorylcholine (MPC), nanosized hydrogel-like polyprodrug could be synthesized. Upon being exposed to light, Pt(IV) moieties in this photoactivable polyprodrug were reduced to generate Pt(II) species. At the meantime, a high level of ROS was generated without the presence of endogenous oxygen, which was confirmed by electron spin resonance (ESR) and fluorescence probes. With the unique nanosized architecture and photoresponsive feature, the as-synthesized polyprodrug exhibited the advantages of sustained drug release, long-term circulation, preferable tumor accumulation, and reversing drug resistance by downregulating the expression of multidrug resistance-associated protein 1 (MRP1) in the anticancer treatment.
Collapse
Affiliation(s)
- Dongbo Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Huangyong Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Wumaier Yasen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jing Li
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201400, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
23
|
Zhu YH, Sun CY, Shen S, Khan MIU, Zhao YY, Liu Y, Wang YC, Wang J. A micellar cisplatin prodrug simultaneously eliminates both cancer cells and cancer stem cells in lung cancer. Biomater Sci 2018; 5:1612-1621. [PMID: 28580971 DOI: 10.1039/c7bm00278e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Platinum-based chemotherapy as first-line treatment for lung cancers encounters insufficient selectivity, severe side effects and drug resistance in clinics. In this study, we developed an amphiphilic prodrug of cisplatin-poly(ethylene glycol)-block-polycaprolactone and demonstrated that the prodrug formed micellar nanoparticles, NPPt(IV), with an average diameter of ∼100 nm. NPPt(IV) released platinum in response to the intracellular acidic and reductive environment, and in turn induced significant anti-proliferative activity in lung cancer cells. More importantly, NPPt(IV) exhibited a prominent inhibitory effect on CD133+ lung cancer stem cells (CSCs) and suppressed tumor growth in vivo. Unlike cisplatin treatment which eventually enriches CSCs, NPPt(IV) treatment prevents the accumulation of CD133+ lung CSCs in tumors. Therefore, NPPt(IV) simutaneously targeting CSCs and non-CSCs might represent a superior strategy to improve conventional anticancer therapy directed predominantly to tumor bulk populations.
Collapse
Affiliation(s)
- Yan-Hua Zhu
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Chun-Yang Sun
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Song Shen
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Malik I U Khan
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Yang-Yang Zhao
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Yang Liu
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Yu-Cai Wang
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Jun Wang
- School of Life Sciences, University of Science & Technology of China, Hefei, Anhui 230027, P.R. China.
| |
Collapse
|
24
|
Lippert B, Sanz Miguel PJ. Comparing Pt II - and Pd II -nucleobase coordination chemistry: Why Pd II not always is a good substitute for Pt II. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Fang T, Ye Z, Wu J, Wang H. Reprogramming axial ligands facilitates the self-assembly of a platinum(iv) prodrug: overcoming drug resistance and safer in vivo delivery of cisplatin. Chem Commun (Camb) 2018; 54:9167-9170. [PMID: 30062328 DOI: 10.1039/c8cc03763a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We herein reprogrammed axial ligands of platinum(iv) prodrugs, conferring the constructed prodrug entities with the ability to self-assemble in aqueous solution.
Collapse
Affiliation(s)
- Tao Fang
- Jinhua People's Hospital
- Jinhua
- P. R. China
| | - Zhijian Ye
- Jinhua People's Hospital
- Jinhua
- P. R. China
| | - Jiaping Wu
- The First Affiliated Hospital
- Key Laboratory of Combined Multi-Organ Transplantation
- Ministry of Public Health
- School of Medicine
- Zhejiang University
| | - Hangxiang Wang
- The First Affiliated Hospital
- Key Laboratory of Combined Multi-Organ Transplantation
- Ministry of Public Health
- School of Medicine
- Zhejiang University
| |
Collapse
|
26
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
28
|
Paciotti R, Corinti D, De Petris A, Ciavardini A, Piccirillo S, Coletti C, Re N, Maitre P, Bellina B, Barran P, Chiavarino B, Elisa Crestoni M, Fornarini S. Cisplatin and transplatin interaction with methionine: bonding motifs assayed by vibrational spectroscopy in the isolated ionic complexes. Phys Chem Chem Phys 2017; 19:26697-26707. [DOI: 10.1039/c7cp05203k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IRMPD spectroscopy discloses N- versus S-platination.
Collapse
|
29
|
Goh YY, Yan YK, Tan NS, Goh SA, Li S, Teoh YC, Lee PPF. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex. Sci Rep 2016; 6:36868. [PMID: 27841290 PMCID: PMC5107956 DOI: 10.1038/srep36868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Copper complexes with potent anti-tumor effect have been extensively developed. Most investigations of their modes of action focused on the biomolecular targets but not the signal transduction between target binding and cell death. We have previously shown that the cytotoxic complex pyridine(2,4-dihydroxybenzaldehyde dibenzyl semicarbazone)copper(II) (complex 1) shows selective binding to human telomeric G-quadruplex DNA over double-stranded DNA in vitro. Herein, we elucidate the mechanism of action by which complex 1 induces apoptosis in MOLT-4 cells. Complex 1 accumulates in the nuclei and differentially downregulates the expression of c-Myc, c-Kit and KRAS oncogenes. Chemical affinity capture assay results show that the complex is associated with c-Myc and KRAS quadruplex sequences in MOLT-4 cells. We further showed that the reduction in Ras protein expression resulted in attenuated MEK-ERK and PI3K-Akt signalling activities, leading to the activation of caspase-dependent apoptosis. Notably, complex 1 increased the sensitivity of MOLT-4 cells to cisplatin and vice versa. Overall, we demonstrated that complex 1 induces apoptosis, at least in part, by suppressing KRAS, c-Kit and c-Myc oncogene expression and the pro-survival MEK-ERK and PI3K-Akt signalling pathways.
Collapse
Affiliation(s)
- Yan-Yih Goh
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Yaw-Kai Yan
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore.,KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Su-Ann Goh
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shang Li
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - You-Chuan Teoh
- Natural Sciences &Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Peter P F Lee
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
30
|
|
31
|
Grabner S, Modec B, Bukovec N, Bukovec P, Čemažar M, Kranjc S, Serša G, Sčančar J. Cytotoxic trans-platinum(II) complex with 3-hydroxymethylpyridine: Synthesis, X-ray structure and biological activity evaluation. J Inorg Biochem 2016; 161:40-51. [PMID: 27189143 DOI: 10.1016/j.jinorgbio.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/07/2023]
Abstract
To assess the potential cytostatic properties of Pt(II) complexes with 3-hydroxymethylpyridine (3-hmpy) as the only carrier ligand, novel cis-[PtCl2(3-hmpy)2] (1) and trans-[PtCl2(3-hmpy)2] (2) have been prepared. Elemental analysis, FTIR spectroscopy, multinuclear NMR spectroscopy and X-ray crystallography were used to determine their structures. Based on the results obtained with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and clonogenic assay on T24 human bladder carcinoma cells (T24), the most potent compound 2 was further tested for cytotoxicity in human ovarian carcinoma cell lines - cisplatin sensitive (IGROV 1) and its resistant subclone (IGROV 1/RDDP). The cytotoxicity of compound 2 in IGROV 1/RDDP is comparable to cisplatin. Furthermore, compound 2 induced severe conformational changes in plasmid DNA, which resulted in a delayed onset of apoptosis in T24 cells, and higher amounts of Pt in tumours and serum compared to cisplatin. In addition, in vivo antitumour effectiveness was comparable to that of cisplatin with a smaller reduction of animals' body weight, thus demonstrating that it is a promising transplatin analogue which deserves further studies.
Collapse
Affiliation(s)
- Sabina Grabner
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Modec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Nataša Bukovec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Peter Bukovec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia
| | - Janez Sčančar
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Pellegrino S, Facchetti G, Contini A, Gelmi ML, Erba E, Gandolfi R, Rimoldi I. Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(i)-catalyzed asymmetric Henry reactions under green conditions. RSC Adv 2016. [DOI: 10.1039/c6ra16255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hybrid catalysts were developed from the Cu(i) binding domain of Ctr1 protein and their activity was evaluated in an asymmetric Henry reaction.
Collapse
Affiliation(s)
- Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
33
|
The reaction of a platinated methionine motif of CTR1 with cysteine and histidine is dependent upon the type of precursor platinum complex. J Inorg Biochem 2015; 153:239-246. [DOI: 10.1016/j.jinorgbio.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/15/2015] [Indexed: 01/23/2023]
|
34
|
Calandrini V, Rossetti G, Arnesano F, Natile G, Carloni P. Computational metallomics of the anticancer drug cisplatin. J Inorg Biochem 2015; 153:231-238. [PMID: 26490711 DOI: 10.1016/j.jinorgbio.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
Cisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called "Force Matching" procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs.
Collapse
Affiliation(s)
- Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany; Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Department of Chemistry, University of Bari "Aldo Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
35
|
Deng JH, Deng J, Shi DH, Ouyang XN, Niu PG. Clinical outcome of cisplatin-based chemotherapy is associated with the polymorphisms of GSTP1 and XRCC1 in advanced non-small cell lung cancer patients. Clin Transl Oncol 2015; 17:720-6. [PMID: 26033426 DOI: 10.1007/s12094-015-1299-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study is to evaluate the association of polymorphisms of glutathione S-transferase P1 (GSTP1), copper-transporting P-type adenosine triphosphatase A (ATP7A) and X-ray repair cross-complementing group 1 (XRCC1) with the efficacy and toxicity of cisplatin-based treatment in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS The outcomes of 97 advanced non-small cell lung cancer patients treated with cisplatin-based chemotherapy were estimated. GSTP1, ATP7A, and XRCC1 genetic polymorphisms were determined via polymerase chain reaction of restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing. Association of the polymorphisms with the efficacy and toxicity of cisplatin was analyzed, respectively. RESULTS Significant associations were observed between GSTP1 A313G and response rate (RR) (p = 0.027), disease control rate (DCR) (p = 0.019), and progression-free survival (PFS) (p = 0.044), respectively. Patients with AG and GG of GSTP1 have notably lower risk of anemia (p = 0.046). XRCC1 A1196G was associated with the incidence of lymphopenia (p = 0.024) and diarrhea (p = 0.020). ATP7A C2299G was not related with RR, DCR, PFS, and the risk of toxicity. CONCLUSIONS Advanced NSCLC patients with AA genotype of GSTP1 would obtain better curative effect followed with more risk of anemia when treated by cisplatin-based chemotherapy. ATP7A C2299G does not impact the efficacy and toxicity of cisplatin-based chemotherapy. XRCC1 1196A allele could predict the incidence of lymphopenia and diarrhea.
Collapse
Affiliation(s)
- J-H Deng
- Department of Pharmacy, Fujian Provincial Maternal and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian, China
| | | | | | | | | |
Collapse
|
36
|
Target-selective delivery and activation of platinum-based anticancer agents. Future Med Chem 2015; 7:911-27. [DOI: 10.4155/fmc.15.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Ravera M, Gabano E, Bianco S, Ermondi G, Caron G, Vallaro M, Pelosi G, Zanellato I, Bonarrigo I, Cassino C, Osella D. Host–guest inclusion systems of Pt(IV)-bis(benzoato) anticancer drug candidates and cyclodextrins. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ferri N, Facchetti G, Pellegrino S, Ricci C, Curigliano G, Pini E, Rimoldi I. Promising antiproliferative platinum(II) complexes based on imidazole moiety: synthesis, evaluation in HCT-116 cancer cell line and interaction with Ctr-1 Met-rich domain. Bioorg Med Chem 2015; 23:2538-47. [DOI: 10.1016/j.bmc.2015.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
39
|
Spreckelmeyer S, Orvig C, Casini A. Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 2014; 19:15584-610. [PMID: 25268716 PMCID: PMC6271550 DOI: 10.3390/molecules191015584] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir). Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.
Collapse
Affiliation(s)
- Sarah Spreckelmeyer
- Dept. Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - Angela Casini
- Dept. Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
40
|
Abdelli A, M'rabet H, Efrit ML, Gaucher A, Prim D. γ-Alkylsulfide phosphonates through the thia-Michael strategy. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2014.951856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Abderrahmen Abdelli
- Laboratoire de Synthèse Organique et Hétérocyclique, Université de Tunis El Manar-2092-Tunis, Tunisie
- Institut Lavoisier de Versailles-UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45, avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Hedi M'rabet
- Laboratoire de Synthèse Organique et Hétérocyclique, Université de Tunis El Manar-2092-Tunis, Tunisie
| | - Mohamed Lotfi Efrit
- Laboratoire de Synthèse Organique et Hétérocyclique, Université de Tunis El Manar-2092-Tunis, Tunisie
| | - Anne Gaucher
- Institut Lavoisier de Versailles-UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45, avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Damien Prim
- Institut Lavoisier de Versailles-UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45, avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
41
|
Galliani A, Losacco M, Lasorsa A, Natile G, Arnesano F. Cisplatin handover between copper transporters: the effect of reducing agents. J Biol Inorg Chem 2014; 19:705-14. [DOI: 10.1007/s00775-014-1138-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/09/2014] [Indexed: 12/26/2022]
|
42
|
Yang XZ, Du XJ, Liu Y, Zhu YH, Liu YZ, Li YP, Wang J. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:931-936. [PMID: 24338636 DOI: 10.1002/adma.201303360] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Indexed: 06/03/2023]
Abstract
Rationally designed PIC nanoparticles as next-generation delivery system: we have developed a core-shell-corona PIC nanoparticle (⊕) NP/Pt@PPC-DA as a next-generation delivery system. (⊕) NP/Pt@PPC-DA exhibits prolonged circulation and enhanced drug accumulation in tumors. Subsequently, tumor pH leads to the release of (⊕) NP/Pt, which facilitates cellular uptake followed by rapid intracellular cisplatin release. Using this delivery strategy cisplatin-resistant tumor growth in a murine xenograft model has been successfully suppressed.
Collapse
Affiliation(s)
- Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, P.R. China
| | | | | | | | | | | | | |
Collapse
|
43
|
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Inesi G, Galliani A, Sinisi M, Losacco M, Natile G, Arnesano F. Translocation of platinum anticancer drugs by human copper ATPases ATP7A and ATP7B. Angew Chem Int Ed Engl 2014; 53:1297-301. [PMID: 24375922 PMCID: PMC3937162 DOI: 10.1002/anie.201307718] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/10/2013] [Indexed: 11/08/2022]
Abstract
Cisplatin, carboplatin, and oxaliplatin are widely used anticancer drugs. Their efficacy is strongly reduced by development of cell resistance. Down-regulation of CTR1 and up-regulation of the Cu-ATPases, ATP7A and ATP7B, have been associated to augmented drug resistance. To gain information on translocation of Pt drugs by human Cu-ATPases, we performed electrical measurements on the COS-1 cell microsomal fraction, enriched with recombinant ATP7A, ATP7B, and selected mutants, and adsorbed on a solid supported membrane. The experimental results indicate that Pt drugs activate Cu-ATPases and undergo ATP-dependent translocation in a fashion similar to that of Cu. We then used NMR spectroscopy and ESI-MS to determine the binding mode of these drugs to the first N-terminal metal-binding domain of ATP7A (Mnk1).
Collapse
Affiliation(s)
- Francesco Tadini-Buoninsegni
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Gianluca Bartolommei
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Maria Rosa Moncelli
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
| | - Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Angela Galliani
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Marilù Sinisi
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Maurizio Losacco
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Giovanni Natile
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro”, via E. Orabona 4, 70125 Bari (Italy)
| |
Collapse
|
44
|
Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Inesi G, Galliani A, Sinisi M, Losacco M, Natile G, Arnesano F. Translocation of Platinum Anticancer Drugs by Human Copper ATPases ATP7A and ATP7B. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Alessio M, Zanellato I, Bonarrigo I, Gabano E, Ravera M, Osella D. Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J Inorg Biochem 2013; 129:52-7. [DOI: 10.1016/j.jinorgbio.2013.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
46
|
Palm-Espling ME, Andersson CD, Björn E, Linusson A, Wittung-Stafshede P. Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking. PLoS One 2013; 8:e70473. [PMID: 23936210 PMCID: PMC3728025 DOI: 10.1371/journal.pone.0070473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu) ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15) are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4), indicative of a possible drug detoxification mechanism.
Collapse
Affiliation(s)
| | | | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anna Linusson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
47
|
Chen S, Jiang H, Wei K, Liu Y. Tris-(2-carboxyethyl) phosphine significantly promotes the reaction of cisplatin with Sp1 zinc finger protein. Chem Commun (Camb) 2013; 49:1226-8. [DOI: 10.1039/c2cc38517a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
|
49
|
Wexselblatt E, Gibson D. What do we know about the reduction of Pt(IV) pro-drugs? J Inorg Biochem 2012; 117:220-9. [DOI: 10.1016/j.jinorgbio.2012.06.013] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
|
50
|
Plasticity in the copper–thioether bond: Manifestation in blue Cu proteins and in synthetic analogs. J Inorg Biochem 2012; 115:182-5. [DOI: 10.1016/j.jinorgbio.2012.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
|