1
|
Bienenmann RLM, Loyo AO, Lutz M, Broere DLJ. Mechanistic Investigation into Copper(I) Hydride Catalyzed Formic Acid Dehydrogenation. ACS Catal 2024; 14:15599-15608. [PMID: 39444528 PMCID: PMC11494502 DOI: 10.1021/acscatal.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Copper(I) hydride complexes are typically known to react with CO2 to form their corresponding copper formate counterparts. However, recently it has been observed that some multinuclear copper hydrides can feature the opposite reactivity and catalyze the dehydrogenation of formic acid. Here we report the use of a multinuclear PNNP copper hydride complex as an active (pre)catalyst for this reaction. Mechanistic investigations provide insights into the catalyst resting state and the rate-determining step and identify an off-cycle species that is responsible for the unexpected substrate inhibition in this reaction.
Collapse
Affiliation(s)
- Roel L. M. Bienenmann
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Anne Olarte Loyo
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of
Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Daniël L. J. Broere
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
2
|
Shen Y, Yang Z, Tang X, Zhang J, Lv G. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature. CHEMSUSCHEM 2024; 17:e202301532. [PMID: 38321849 DOI: 10.1002/cssc.202301532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Acetic acid reforming is a green method for sustainable hydrogen production owing to its renewable source from biomass conversion. However, conventional acetic acid reforming would produce various byproducts, including CO, CH4 and so on. Here, we develop a distinctive method for selective hydrogen production from C-C directional cleavage during acetic acid reforming. Completely different from conventional acetic acid reforming process, acetic acid would react with water over organoruthenium catalyst during its C-C cleavage at low temperature, then produce methanol and formic acid (CH3COOH+H2O→CH3OH+HCOOH). Lastly, methanol and formic acid could further decompose into hydrogen and carbon dioxide over organoruthenium selectively. As a result, there is little CO and CH4 produced in the first step of C-C bond cleavage during acetic acid reforming at 100 °C. Hydrogen production rate is up to 26.8 molH2/(h-1*mol-1 Ru) at 150 °C through a tandem catalysis. A mechanism for C-C cleavage of acetic acid is proposed based on intermediate product analysis and density functional theory (DFT) calculation. Firstly, the C-C single bond was transformed into C=C double bond by dropping one H atom to organoruthenium. Then the coming H2O molecule reacted with the C=C bond by an addition reaction, forming methanol and formic acid. This research not only proposes distinctive reaction pathway for hydrogen production from acetic acid reforming, but also provides some inspiration for selective C-C bond cleavage during ethanol reforming.
Collapse
Affiliation(s)
- Yangbin Shen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zeling Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuemei Tang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiaming Zhang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
3
|
Ruta V, Di Liberto G, Moriggi F, Ivanov YP, Divitini G, Bussetti G, Barbera V, Bajada MA, Galimberti M, Pacchioni G, Vilé G. Copper Single Atoms Chelated on Ligand-Modified Carbon for Ullmann-type C-O Coupling. CHEMSUSCHEM 2024; 17:e202301529. [PMID: 38050778 DOI: 10.1002/cssc.202301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Cross-coupling reactions are of great importance in chemistry due to their ability to facilitate the construction of complex organic molecules. Among these reactions, the Ullmann-type C-O coupling between phenols and aryl halides is particularly noteworthy and useful for preparing diarylethers. However, this reaction typically relies on homogeneous catalysts that rapidly deactivate under harsh reaction conditions. In this study, we introduce a novel heterogeneous catalyst for the Ullmann-type C-O coupling reaction, comprised of isolated Cu atoms chelated to a tetraethylenepentamine-pyrrole ligand that is immobilized on graphite nanoplatelets. The catalytic study reveals the recyclability of the material, and demonstrates the crucial role of the pyrrole linker in stabilizing the Cu sites. The work expands the potential of single-atom catalyst nanoarchitectures and underscores the significance of ligands in stabilizing metals in cationic forms, providing a novel, tailored catalyst for cross-coupling chemistries.
Collapse
Affiliation(s)
- Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Giovanni Di Liberto
- Department of Materials Science, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, IT-20125, Milano, Italy
| | - Francesco Moriggi
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Yurii P Ivanov
- Electron Spectroscopy and Nanoscopy, Italian Institute of Technology, Via Morego 30, IT-16163, Genova, Italy
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Italian Institute of Technology, Via Morego 30, IT-16163, Genova, Italy
| | - Gianlorenzo Bussetti
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Vincenzina Barbera
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Mark A Bajada
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Maurizio Galimberti
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| | - Gianfranco Pacchioni
- Department of Materials Science, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, IT-20125, Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta" Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20133, Milano, Italy
| |
Collapse
|
4
|
Tsai CP, Chen CY, Lin YL, Lan JC, Tsai ML. Catalytic Dehydrogenation of Formic Acid Promoted by Triphos-Co Complexes: Two Competing Pathways for H 2 Production. Inorg Chem 2024; 63:1759-1773. [PMID: 38217506 DOI: 10.1021/acs.inorgchem.3c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
In this study, we reported the synthesis and structural characterization of a triphos-CoII complex [(κ3-triphos)CoII(CH3CN)2]2+ (1) and a triphos-CoI-H complex [(κ2-triphos)HCoI(CO)2] (4). The facile synthetic pathways from 1 to [(κ3-triphos)CoII(κ2-O2CH)]+ (1') and [(κ3-triphos)CoI(CH3CN)]+ (2), respectively, as well as the interconversion between [(κ3-triphos)CoI(CO)2]+ (3) and 4 have been established. The activation energy barrier, associated with the dehydrogenation of a coordinated formate fragment in 1' yielding the corresponding 2 accompanied by the formation of H2 and CO2, was experimentally determined as 23.9 kcal/mol. With 0.01 mol % loading of 1, a maximum TON ∼ 1735 within 18 h and TOF ∼ 483 h-1 for the first 3 h could be achieved. Kinetic isotope effect (KIE) values of 2.25 (kHCOOH/kDCOOH) and 1.36 (kHCOOH/kHCOOD) for the dehydrogenation of formic acid and its deuterated derivatives, respectively, implicate that the H-COOH bond cleavage is likely the rate-determining step. The catalytic mechanism proposed by density functional theory (DFT) calculations coupled with experimental 1H NMR and gas chromatography-mass spectrometry (GC-MS) analysis unveils two competing pathways for H2 production; specifically, deprotonating a HCOO-H bond by a proposed Co-H intermediate C and homolytic cleavage of the CoII-H moiety of C, presumably via a dimeric Co intermediate D containing a [Co2(μ-H)2]2+ core, to yield the corresponding 2 and H2.
Collapse
Affiliation(s)
- Chou-Pen Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Yao Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Lin Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jen-Chen Lan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
5
|
Sawahara K, Tanaka S, Kodaira T, Kanega R, Kawanami H. Iridium Catalyst Immobilized on Crosslinked Polyethyleneimine for Continuous Hydrogen Production Using Formic Acid. CHEMSUSCHEM 2024; 17:e202301282. [PMID: 37837416 DOI: 10.1002/cssc.202301282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Hydrogen is an alternative fuel that can play a critical role in achieving net zero emissions, leading to global environment sustainability. An iridium-immobilized catalyst based on polyethyleneimine (PEI) was synthesized and utilized for hydrogen production via formic acid dehydrogenation (FADH). Iridium complex is cross-linked with its ligand and PEI to form the immobilized catalyst, where the iridium content could be easily varied in the range of 1-10 %. The structure of the iridium-immobilized catalyst was confirmed using solid-state NMR, DNP NMR, and FTIR spectroscopies. The iridium-immobilized catalyst with PEI showed excellent catalytic activity for FADH, exhibiting the catalyst's highest turnover frequency (TOF) value of 73 200 h-1 and a large turnover number (TON) value of over 1 130 000. The catalyst could be used for continuous hydrogen production via FADH, exhibiting high durability for over 2 000 h with TON value of 332 889 without any degradation in catalytic activity. The obtained hydrogen gas was evaluated for power generation using a standard fuel cell, as well as achieved 5 h of stable power generation.
Collapse
Affiliation(s)
- Keito Sawahara
- Interdisciplinary Research Center for Catalysis Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Graduate School of Pure and Applied Science Department, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalysis Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tetsuya Kodaira
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ryoichi Kanega
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hajime Kawanami
- Interdisciplinary Research Center for Catalysis Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Graduate School of Pure and Applied Science Department, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
6
|
Guo J, Li M, Yin C, Zhong D, Zhang Y, Li X, Wang Y, Yuan J, Xie H, Qi T. Formic Acid Dehydrogenation through Ligand Design Strategy of Amidation in Half-Sandwich Ir Complexes. Inorg Chem 2023; 62:18982-18989. [PMID: 37939313 DOI: 10.1021/acs.inorgchem.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A series of Cp*Ir (Cp* = pentamethylcyclopentadienyl) complexes with amidated 8-aminoquinoline ligands were synthesized and tested for formic acid (FA) dehydrogenation. These complexes showed improved activities compared to pristine 8-anminquinoline (L1). Specially, amidation changed the outer coordination sphere of the complex (3) bearing N-8-quinolinylformamide (L3), and 3 was proved to be a proton-responsive catalyst. Our experimental results and DFT calculations demonstrated that the deprotonated carbanion in L3 could interact with a water molecule to stabilize the transition states and lower the reaction energy barrier, which improved the reaction activity. A turnover frequency of 206250 h-1 was achieved by 3 under optimized conditions. This study presents a method to develop new ligands and modify the existing ligands for efficient FA dehydrogenation.
Collapse
Affiliation(s)
- Jian Guo
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| | - Maoliang Li
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province 310015, China
| | - Chengkai Yin
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province 310015, China
| | - Dulin Zhong
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| | - Yuguan Zhang
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| | - Yilin Wang
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| | - Jingcheng Yuan
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province 310015, China
| | - Haijiao Xie
- Information Technology Co., Ltd., Y2, Second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xi hu District, Hangzhou City, Zhejiang Province 310003, P. R. China
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University, No. 932 Lushan Road, Changsha City, Hunan Province 410083, China
| |
Collapse
|
7
|
Guo L, Zhuge K, Yan S, Wang S, Zhao J, Wang S, Qiao P, Liu J, Mou X, Zhu H, Zhao Z, Yan L, Lin R, Ding Y. Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation. Nat Commun 2023; 14:7518. [PMID: 37980409 PMCID: PMC10657381 DOI: 10.1038/s41467-023-42759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/20/2023] Open
Abstract
Supported metal clusters comprising of well-tailored low-nuclearity heteroatoms have great potentials in catalysis owing to the maximized exposure of active sites and metal synergy. However, atomically precise design of these architectures is still challenging for the lack of practical approaches. Here, we report a defect-driven nanostructuring strategy through combining defect engineering of nitrogen-doped carbons and sequential metal depositions to prepare a series of Pt and Mo ensembles ranging from single atoms to sub-nanoclusters. When applied in continuous gas-phase decomposition of formic acid, the low-nuclearity ensembles with unique Pt3Mo1N3 configuration deliver high-purity hydrogen at full conversion with unexpected high activity of 0.62 molHCOOH molPt-1 s-1 and remarkable stability, significantly outperforming the previously reported catalysts. The remarkable performance is rationalized by a joint operando dual-beam Fourier transformed infrared spectroscopy and density functional theory modeling study, pointing to the Pt-Mo synergy in creating a new reaction path for consecutive HCOOH dissociations.
Collapse
Affiliation(s)
- Luyao Guo
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Kaixuan Zhuge
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Siyang Yan
- Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China
| | - Shiyi Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China
| | - Jia Zhao
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Saisai Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, PR China
| | - Jiaxu Liu
- Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012, China.
| | - Xiaoling Mou
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ronghe Lin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China.
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China.
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
8
|
Tuo Y, Chen W, Mishra N, Wang B, Zhang J. Editorial: Advanced catalytic materials and processes in hydrogen technology. Front Chem 2023; 11:1314796. [PMID: 38025050 PMCID: PMC10644756 DOI: 10.3389/fchem.2023.1314796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Yongxiao Tuo
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Nimai Mishra
- Department of Chemistry, SRM University-AP, Amaravathi, Andhra Pradesh, India
| | - Bin Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jun Zhang
- State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, China
| |
Collapse
|
9
|
Cha J, Lee J, Jeon BW, Kim YH, Kwon I. Real flue gas CO 2 hydrogenation to formate by an enzymatic reactor using O 2- and CO-tolerant hydrogenase and formate dehydrogenase. Front Bioeng Biotechnol 2023; 11:1265272. [PMID: 37854886 PMCID: PMC10579561 DOI: 10.3389/fbioe.2023.1265272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
It is challenging to capture carbon dioxide (CO2), a major greenhouse gas in the atmosphere, due to its high chemical stability. One potential practical solution to eliminate CO2 is to convert CO2 into formate using hydrogen (H2) (CO2 hydrogenation), which can be accomplished with inexpensive hydrogen from sustainable sources. While industrial flue gas could provide an adequate source of hydrogen, a suitable catalyst is needed that can tolerate other gas components, such as carbon monoxide (CO) and oxygen (O2), potential inhibitors. Our proposed CO2 hydrogenation system uses the hydrogenase derived from Ralstonia eutropha H16 (ReSH) and formate dehydrogenase derived from Methylobacterium extorquens AM1 (MeFDH1). Both enzymes are tolerant to CO and O2, which are typical inhibitors of metalloenzymes found in flue gas. We have successfully demonstrated that combining ReSH- and MeFDH1-immobilized resins can convert H2 and CO2 in real flue gas to formate via a nicotinamide adenine dinucleotide-dependent cascade reaction. We anticipated that this enzyme system would enable the utilization of diverse H2 and CO2 sources, including waste gases, biomass, and gasified plastics.
Collapse
Affiliation(s)
- Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jinhee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
10
|
Knörr P, Lentz N, Albrecht M. Efficient additive-free formic acid dehydrogenation with a NNN-ruthenium complex. Catal Sci Technol 2023; 13:5625-5631. [PMID: 38013841 PMCID: PMC10544809 DOI: 10.1039/d3cy00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023]
Abstract
A new ruthenium complex containing a pyridylidene amine-based NNN ligand was developed as a catalyst precursor for formic acid dehydrogenation, which, as a rare example, does not require basic additives to display high activity (TOF ∼10 000 h-1). Conveniently, the complex is air-stable, but sensitive to light. Mechanistic investigations using UV-vis and NMR spectroscopic monitoring correlated with gas evolution profiles indicate rapid and reversible protonation of the central nitrogen of the NNN ligand as key step of catalyst activation, followed by an associative step for formic acid dehydrogenation.
Collapse
Affiliation(s)
- Pascal Knörr
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Nicolas Lentz
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
11
|
Kushwaha S, Awasthi MK, Das A, Pathak B, Singh SK. Diruthenium Catalyst for Hydrogen Production from Aqueous Formic Acid. Inorg Chem 2023; 62:8080-8092. [PMID: 37196200 DOI: 10.1021/acs.inorgchem.2c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diruthenium complexes [{(η6-arene)RuCl}2(μ-κ2:κ2-benztetraimd)]2+ containing the bridging bis-imidazole methane-based ligand {1,4-bis(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)benzene} (benztetraimd) are synthesized for catalytic formic acid dehydrogenation in water at 90 °C. Catalyst [{(η6-p-cymene)RuCl}2(μ-κ2:κ2-benztetraimd)]2+ [1-Cl2] exhibited a remarkably high turnover frequency (1993 h-1 per Ru atom) and long-term stability over 60 days for formic acid dehydrogenation, while the analogous (η6-benzene)diruthenium and mononuclear catalysts displayed low activity with poor long-term stability. Notably, catalyst [1-Cl2] also displayed an appreciably high turnover number of 93 200 for the bulk-scale reaction. In addition, the in-depth mass and nuclear magnetic resonance investigations under the catalytic and control experimental conditions revealed the active involvement of several crucial catalytic intermediate species, such as Ru-aqua species [{(η6-p-cymene)Ru(H2O)}2(μ-L)]2+ [1-(OH2)2], Ru-formato species [{(η6-p-cymene)Ru(HCOO)}2(μ-L)] [1-(HCOO)2], and Ru-hydrido species [{(η6-p-cymene)Ru(H)}2(μ-L)] [1-(H)2], in the catalytic formic acid dehydrogenation reaction.
Collapse
Affiliation(s)
- Sanjeev Kushwaha
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Mahendra Kumar Awasthi
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Amitabha Das
- Computational Materials Designing Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Biswarup Pathak
- Computational Materials Designing Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sanjay Kumar Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
12
|
Gomez-España A, Lopez-Morales JL, Español-Sanchez B, García-Orduña P, Lahoz FJ, Iglesias M, Fernández-Alvarez FJ. Iridium-(κ 2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance. Dalton Trans 2023; 52:6722-6729. [PMID: 37129044 DOI: 10.1039/d3dt00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The iridium(III) complexes [Ir(H)(Cl)(κ2-NSitBu2)(κ2-bipyMe2)] (2) and [Ir(H)(OTf)(κ2-NSitBu2)(κ2-bipyMe2)] (3) (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl) have been synthesized and characterized including X-ray studies of 3. A comparative study of the catalytic activity of complexes 2, 3, [Ir(H)(OTf)(κ2-NSitBu2)(coe)] (4), and [Ir(H)(OTf)(κ2-NSitBu2)(PCy3)] (5) (0.1 mol%) as catalysts precursors for the solventless formic acid dehydrogenation (FADH) in the presence of Et3N (40 mol%) at 353 K has been performed. The highest activity (TOF5 min ≈ 3260 h-1) has been obtained with 3 at 373 K. However, at that temperature the FTIR spectra show traces of CO together with the desired products (H2 and CO2). Thus, the best performance was achieved at 353 K (TOF5 min ≈ 1210 h-1 and no observable CO). Kinetic studies at variable temperature show that the activation energy of the 3-catalyzed FADH process is 16.76 kcal mol-1. Kinetic isotopic effect (5 min) values of 1.6, 4.5, and 4.2 were obtained for the 3-catalyzed dehydrogenation of HCOOD, DCOOH, and DCOOD, respectively, at 353 K. The strong KIE found for DCOOH and DCOOD evidenced that the hydride transfer from the C-H bond of formic acid to the metal is the rate-determining step of the process.
Collapse
Affiliation(s)
- Alejandra Gomez-España
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
- Universidad Pedagógica Nacional Francisco Morazán-UPNFM, 11101, Tegucigalpa, Honduras
| | - Jorge L Lopez-Morales
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Belinda Español-Sanchez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Pilar García-Orduña
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Fernando J Lahoz
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Manuel Iglesias
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| | - Francisco J Fernández-Alvarez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza. Facultad de Ciencias 50009, Zaragoza, Spain.
| |
Collapse
|
13
|
Ye F, Zhang S, Cheng Q, Long Y, Liu D, Paul R, Fang Y, Su Y, Qu L, Dai L, Hu C. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO 2 conversion. Nat Commun 2023; 14:2040. [PMID: 37041142 PMCID: PMC10090200 DOI: 10.1038/s41467-023-37679-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Electrochemical coupling of biomass valorization with carbon dioxide (CO2) conversion provides a promising approach to generate value-added chemicals on both sides of the electrolyzer. Herein, oxygen-vacancy-rich indium oxyhydroxide (InOOH-OV) is developed as a bifunctional catalyst for CO2 reduction to formate and 5-hydroxymethylfurfural electrooxidation to 2,5-furandicarboxylic acid with faradaic efficiencies for both over 90.0% at optimized potentials. Atomic-scale electron microscopy images and density functional theory calculations reveal that the introduction of oxygen vacancy sites causes lattice distortion and charge redistribution. Operando Raman spectra indicate oxygen vacancies could protect the InOOH-OV from being further reduced during CO2 conversion and increase the adsorption competitiveness for 5-hydroxymethylfurfural over hydroxide ions in alkaline electrolytes, making InOOH-OV a main-group p-block metal oxide electrocatalyst with bifunctional activities. Based on the catalytic performance of InOOH-OV, a pH-asymmetric integrated cell is fabricated by combining the CO2 reduction and 5-hydroxymethylfurfural oxidation together in a single electrochemical cell to produce 2,5-furandicarboxylic acid and formate with high yields (both around 90.0%), providing a promising approach to generate valuable commodity chemicals simultaneously on both electrodes.
Collapse
Affiliation(s)
- Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yongde Long
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242, USA
| | - Yunming Fang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liming Dai
- ARC Centre of Excellence for Carbon Science and Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
Chen Z, Stein CAM, Qu R, Rockstroh N, Bartling S, Weiß J, Kubis C, Junge K, Junge H, Beller M. Designing a Robust Palladium Catalyst for Formic Acid Dehydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Guo J, Li M, Yin C, Li X, Wang Y, Yuan J, Qi T. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation. Dalton Trans 2023; 52:4856-4861. [PMID: 36939828 DOI: 10.1039/d2dt04079d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
New Ir complexes bearing N-(methylsulfonyl)-2-pyridinecarboxamide (C1) and N-(phenylsulfonyl)-2-pyridinecarboxamide (C2) were employed as catalysts for aqueous formic acid dehydrogenation (FADH). The ligands were designed to maintain the picolinamide skeleton and introduce strong sigma sulfonamide moieties. C1 and C2 exhibited good stability towards air and concentrated formic acid (FA). During 20 continuous cycles, C1 and C2 could achieve the complete conversion of FA with TONs of 172 916 and 172 187, respectively. C1 achieved a high TOF of 19 500 h-1 at 90 °C and an air-stable Ir-H species was observed by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Guo
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Maoliang Li
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Chengkai Yin
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Yilin Wang
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| | - Jingcheng Yuan
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., No. 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, China, 310015
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University, No. 932, Lushan Road, Changsha City, Hunan Province, 410083 China.
| |
Collapse
|
16
|
Cha J, Bak H, Kwon I. Hydrogen-fueled CO 2 reduction using oxygen-tolerant oxidoreductases. Front Bioeng Biotechnol 2023; 10:1078164. [PMID: 36686231 PMCID: PMC9849572 DOI: 10.3389/fbioe.2022.1078164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Hydrogen gas obtained from cheap or sustainable sources has been investigated as an alternative to fossil fuels. By using hydrogenase (H2ase) and formate dehydrogenase (FDH), H2 and CO2 gases can be converted to formate, which can be conveniently stored and transported. However, developing an enzymatic process that converts H2 and CO2 obtained from cheap sources into formate is challenging because even a very small amount of O2 included in the cheap sources damages most H2ases and FDHs. In order to overcome this limitation, we investigated a pair of oxygen-tolerant H2ase and FDH. We achieved the cascade reaction between H2ase from Ralstonia eutropha H16 (ReSH) and FDH from Rhodobacter capsulatus (RcFDH) to convert H2 and CO2 to formate using in situ regeneration of NAD+/NADH in the presence of O2.
Collapse
Affiliation(s)
- Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Hyeonseon Bak
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea,Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea,*Correspondence: Inchan Kwon,
| |
Collapse
|
17
|
Additive-free photocatalyzed Hydrogen production from formic acid aqueous solution on molybdenum carbides. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO 2/HCO 2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
19
|
Guillamón E, Sorribes I, Safont VS, Algarra AG, Fernández-Trujillo MJ, Pedrajas E, Llusar R, Basallote MG. Base-Free Catalytic Hydrogen Production from Formic Acid Mediated by a Cubane-Type Mo 3S 4 Cluster Hydride. Inorg Chem 2022; 61:16730-16739. [PMID: 36239439 PMCID: PMC9690164 DOI: 10.1021/acs.inorgchem.2c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo-H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent β-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.
Collapse
Affiliation(s)
- Eva Guillamón
- Departament
de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071Castelló, Spain
| | - Iván Sorribes
- Departament
de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071Castelló, Spain
| | - Vicent S. Safont
- Departament
de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071Castelló, Spain
| | - Andrés G. Algarra
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Instituto de Biomoléculas
(INBIO), Facultad de Ciencias, Universidad
de Cádiz, Apartado
40, Puerto Real, 11510Cádiz, Spain
| | - M. Jesús Fernández-Trujillo
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Instituto de Biomoléculas
(INBIO), Facultad de Ciencias, Universidad
de Cádiz, Apartado
40, Puerto Real, 11510Cádiz, Spain
| | - Elena Pedrajas
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Instituto de Biomoléculas
(INBIO), Facultad de Ciencias, Universidad
de Cádiz, Apartado
40, Puerto Real, 11510Cádiz, Spain
| | - Rosa Llusar
- Departament
de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071Castelló, Spain
| | - Manuel G. Basallote
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Instituto de Biomoléculas
(INBIO), Facultad de Ciencias, Universidad
de Cádiz, Apartado
40, Puerto Real, 11510Cádiz, Spain
| |
Collapse
|
20
|
Lentz N, Albrecht M. A Low-Coordinate Iridium Complex with a Donor-Flexible O,N-Ligand for Highly Efficient Formic Acid Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nicolas Lentz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
21
|
Cheng S, Lang Z, Du J, Du Z, Li Y, Tan H, Li Y. Engineering of iridium complexes for the efficient hydrogen evolution of formic acid without additives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Guo X, Xu SM, Zhou H, Ren Y, Ge R, Xu M, Zheng L, Kong X, Shao M, Li Z, Duan H. Engineering Hydrogen Generation Sites to Promote Electrocatalytic CO 2 Reduction to Formate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, 30 Shuangqing Rd., Haidian Qu, Beijing 100084, People’s Republic of China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, 30 Shuangqing Rd., Haidian Qu, Beijing 100084, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| |
Collapse
|
23
|
Wang Q, Xia Y, Chen Z, Wang Y, Cheng F, Qin L, Zheng Z. Hydrogen Production via Aqueous-Phase Reforming of Ethanol Catalyzed by Ruthenium Alkylidene Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qian Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yihao Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhijian Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifan Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fanrui Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
24
|
Formic Acid Dehydrogenation Using Noble-Metal Nanoheterogeneous Catalysts: Towards Sustainable Hydrogen-Based Energy. Catalysts 2022. [DOI: 10.3390/catal12030324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for sustainable energy sources is now more urgent than ever, and hydrogen is significant in the future of energy. However, several obstacles remain in the way of widespread hydrogen use, most of which are related to transport and storage. Dilute formic acid (FA) is recognized asa a safe fuel for low-temperature fuel cells. This review examines FA as a potential hydrogen storage molecule that can be dehydrogenated to yield highly pure hydrogen (H2) and carbon dioxide (CO2) with very little carbon monoxide (CO) gas produced via nanoheterogeneous catalysts. It also present the use of Au and Pd as nanoheterogeneous catalysts for formic acid liquid phase decomposition, focusing on the influence of noble metals in monometallic, bimetallic, and trimetallic compositions on the catalytic dehydrogenation of FA under mild temperatures (20–50 °C). The review shows that FA production from CO2 without a base by direct catalytic carbon dioxide hydrogenation is far more sustainable than existing techniques. Finally, using FA as an energy carrier to selectively release hydrogen for fuel cell power generation appears to be a potential technique.
Collapse
|
25
|
Meng Q, Wang X, Xiao M, Jin Z, Ge J, Liu C, Xing W. Revealing the true origin of size-dependent Pd/C catalytic behavior towards formic acid decomposition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Onishi N, Kanega R, Kawanami H, Himeda Y. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Molecules 2022; 27:455. [PMID: 35056770 PMCID: PMC8781907 DOI: 10.3390/molecules27020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, there has been a strong demand for technologies that use hydrogen as an energy carrier, instead of fossil fuels. Hence, new and effective hydrogen storage technologies are attracting increasing attention. Formic acid (FA) is considered an effective liquid chemical for hydrogen storage because it is easier to handle than solid or gaseous materials. This review presents recent advances in research into the development of homogeneous catalysts, primarily focusing on hydrogen generation by FA dehydrogenation. Notably, this review will aid in the development of useful catalysts, thereby accelerating the transition to a hydrogen-based society.
Collapse
Affiliation(s)
- Naoya Onishi
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan;
| | - Ryoichi Kanega
- Research Institute of Energy Conservation, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Ibaraki, Japan;
| | - Hajime Kawanami
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan;
| |
Collapse
|
27
|
Guzman J, Urriolabeitia A, Polo V, Fernández Buenestado M, Iglesias M, Fernandez-Alvarez FJ. Dehydrogenation of Formic Acid Using Iridium-NSi Species as Catalyst Precursors. Dalton Trans 2022; 51:4386-4393. [DOI: 10.1039/d1dt04335h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a low loading of the iridium(III) complexes [Ir(CF3SO3)(κ2-NSiiPr)2] (1) (NSiiPr = (4-methylpyridin-2-iloxy)diisopropylsilyl and [{Ir(κ2-NSiMe)2}2(µ-CF3SO3)2] (2) (NSiMe = (4-methylpyridin-2-iloxy)dimethylsilyl) in presence of Et3N, it has been possible to achieve the...
Collapse
|
28
|
Guo J, Yin C, Li M, Zhong D, Zhang Y, Li X, Wang Y, Yao H, Qi T. Picolinamide‐Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Guo
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| | - Chengkai Yin
- Hangzhou Katal Catalyst & Metal Material Stock Co. Ltd. No. 7 Kang Qiao Road, Gong Shu District Hang Zhou Zhejiang Province 310015 P. R. China
| | - Maoliang Li
- Hangzhou Katal Catalyst & Metal Material Stock Co. Ltd. No. 7 Kang Qiao Road, Gong Shu District Hang Zhou Zhejiang Province 310015 P. R. China
| | - Dulin Zhong
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| | - Yuguan Zhang
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| | - Xiaobin Li
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| | - Yilin Wang
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| | - Hong Yao
- Hangzhou Katal Catalyst & Metal Material Stock Co. Ltd. No. 7 Kang Qiao Road, Gong Shu District Hang Zhou Zhejiang Province 310015 P. R. China
| | - Tiangui Qi
- School of Metallurgy and Environment Central South University No.932, Lushan Road Changsha city Hunan Province 410083 P. R. China
| |
Collapse
|
29
|
Shen Y, Xu Y, Zhang T, Zhan Y, Guo C. Water-induced gaseous formaldehyde decomposition using ruthenium organic crystalline particles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel ruthenium organic crystalline particles are prepared for providing two distinctive approaches for formaldehyde decomposition: catalytic oxidation or water-induced formaldehyde decomposition.
Collapse
Affiliation(s)
- Yangbin Shen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Xu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 20024, China
| | - Yulu Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
30
|
Kipshagen A, Baums J, Hartmann H, Besmehn A, Hausoul P, Palkovits R. Formic Acid as H2 Storage System: Hydrogenation of CO2 and Decomposition of Formic Acid by Solid Molecular Phosphine Catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and decomposition of formic acid (FA) in aqueous triethylamine (NEt3) with solid molecular phosphine catalysts is demonstrated. Ru-catalyst based on the polymeric analog of 1,2-bis(diphenylphosphino)ethane presented the highest...
Collapse
|
31
|
Sun X, Li F, Wang Z, An H, Xue W, Wang Y. AgPd Nanoparticles Anchored on TiO
2
Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xue Sun
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Fang Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Zhimiao Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Hualiang An
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
- Hebei Industrial Technology Research Institute of Green Chemical Industry Huanghua 061100, Hebei P. R. China
| |
Collapse
|
32
|
Buss JA, Shida N, He T, Agapie T. Carbon Dioxide Reduction with Dihydrogen and Silanes at Low-Valent Molybdenum Terphenyl Diphosphine Complexes: Reductant Identity Dictates Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Naoki Shida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Tianyi He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
33
|
Luque-Gómez A, García-Abellán S, Munarriz J, Polo V, Passarelli V, Iglesias M. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorg Chem 2021; 60:15497-15508. [PMID: 34558914 PMCID: PMC8527458 DOI: 10.1021/acs.inorgchem.1c02132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalysts [Ir(COD)(κ3-P,C,P'-PCNHCP)]BF4 and [Ir(COD)(κ2-P,C-PCNHCO)]BF4 proved to be active in the solventless dehydrogenation of formic acid. The impact of various cosolvents on the activity was evaluated, showing an outstanding improvement of the catalytic performance of [Ir(COD)(κ2-P,C-PCNHCO)]BF4] in "green" organic carbonates: namely, dimethyl carbonate (DMC) and propylene carbonate (PC). The TOF1h value for [Ir(COD)(κ2-P,C-PCNHCO)]BF4 increases from 61 to 988 h-1 upon changing from solventless conditions to a 1/1 (v/v) DMC/HCOOH mixture. However, in the case of [Ir(COD)(PCNHCP)]BF4, only a marginal improvement from 156 to 172 h-1 was observed under analogous conditions. Stoichiometric experiments allowed the identification of various key reaction intermediates, providing valuable information on their reactivity. Experimental data and DFT calculations point to the formation of dinuclear species as the catalyst deactivation pathway, which is prevented in the presence of DMC and PC.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Departamento Química Inorgánica-Instituto Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Susana García-Abellán
- Departamento Química Inorgánica-Instituto Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Julen Munarriz
- Departamento Química Física y Analítica, Universidad de Oviedo, Avda. Julian Clavería 8, 33006 Oviedo, Spain
| | - Victor Polo
- Departamento Química Física-Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento Química Inorgánica-Instituto Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Manuel Iglesias
- Departamento Química Inorgánica-Instituto Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
34
|
Affiliation(s)
- Aditi Vatsa
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 INDIA
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 INDIA
| |
Collapse
|
35
|
Patra S, Deka H, Singh SK. Bis-Imidazole Methane Ligated Ruthenium(II) Complexes: Synthesis, Characterization, and Catalytic Activity for Hydrogen Production from Formic Acid in Water. Inorg Chem 2021; 60:14275-14285. [PMID: 34461719 DOI: 10.1021/acs.inorgchem.1c01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of half sandwich arene-ruthenium complexes [(η6-arene)RuCl(κ2-L)]+ ([Ru]-1-[Ru]-10) containing bis-imidazole methane-based ligands {4,4'-(phenylmethylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L1), {4,4'-((4-methoxyphenyl)methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L2), {4,4'-((2-methoxyphenyl)methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L3), {4,4'-((4-chlorophenyl)methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L4), and {4,4'-((2-chlorophenyl)methylene)bis(2-ethyl-5-methyl-1H-imidazole)} (L5) are synthesized. The synthesized and purified complexes ([Ru]-1-[Ru]-10) are further employed for hydrogen production from formic acid in aqueous medium. Among the investigated complexes, [(η6-p-cymene)RuCl(κ2-L2)]+ [Ru]-2, having Ru(II) coordinated 4-methoxy phenyl substituted bis-imidazole methane ligand (L2), outperformed over others, displaying a higher catalytic turnover of 8830 and high efficiency (TOF = 1545 h-1) with appreciably high long-term stability for formic acid dehydrogenation in water.
Collapse
Affiliation(s)
- Soumyadip Patra
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hemanta Deka
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sanjay K Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
36
|
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021; 14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen can be used as an energy carrier for renewable energy to overcome the deficiency of its intrinsically intermittent supply. One of the most promising application of hydrogen energy is on-board hydrogen fuel cells. However, the lack of a safe, efficient, convenient, and low-cost storage and transportation method for hydrogen limits their application. The feasibility of mainstream hydrogen storage techniques for application in vehicles is briefly discussed in this Review. Formic acid (FA), which can reversibly be converted into hydrogen and carbon dioxide through catalysis, has significant potential for practical application. Historic developments and recent examples of homogeneous noble metal catalysts for FA dehydrogenation are covered, and the catalysts are classified based on their ligand types. The Review primarily focuses on the structure-function relationship between the ligands and their reactivity and aims to provide suggestions for designing new and efficient catalysts for H2 generation from FA.
Collapse
Affiliation(s)
- Jian Guo
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Chengkai K Yin
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, 310015, P. R. China
| | - Dulin L Zhong
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Yilin L Wang
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Guihua H Liu
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Leiting T Shen
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Qiusheng S Zhou
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Zhihong H Peng
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| | - Hong Yao
- Hangzhou Katal Catalyst & Metal Material Stock Co., Ltd., 7 Kang Qiao Road, Gong Shu District, Hang Zhou, Zhejiang Province, 310015, P. R. China
| | - Xiaobin B Li
- School of Metallurgy and Environment, Central South University, 932 Lushan Road, Changsha city, Hunan Province, 410083, P. R. China
| |
Collapse
|
37
|
Wang Q, Xia Y, Cheng F, Chen Z, Wang Y, Zhu X, Qin L, Zheng Z. Formic Acid Dehydrogenation for Hydrogen Production Promoted by Grubbs and
Hoveyda‐Grubbs
Catalysts
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yihao Xia
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Fanrui Cheng
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhijian Chen
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- School of Chemistry and Life Science Changchun University of Technology, Changchun Jilin 130012 China
| | - Yifan Wang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaofei Zhu
- School of Chemistry and Life Science Changchun University of Technology, Changchun Jilin 130012 China
| | - Lei Qin
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhiping Zheng
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
38
|
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles. MATERIALS 2021; 14:ma14123258. [PMID: 34204765 PMCID: PMC8231493 DOI: 10.3390/ma14123258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The present study investigates a process for the selective production of hydrogen from the catalytic decomposition of formic acid in the presence of iridium and iridium-palladium nanoparticles under various conditions. It was found that a loading of 1 wt.% of 2% palladium in the presence of 1% iridium over activated charcoal led to a 43% conversion of formic acid to hydrogen at room temperature after 4 h. Increasing the temperature to 60 °C led to further decomposition and an improvement in conversion yield to 63%. Dilution of formic acid from 0.5 to 0.2 M improved the decomposition, reaching conversion to 81%. The reported process could potentially be used in commercial applications.
Collapse
|
39
|
Schwarz CH, Kraus D, Alberico E, Junge H, Haumann M. Immobilized Ru‐Pincer Complexes for Continuous Gas‐Phase Low‐Temperature Methanol Reforming‐Improving the Activity by a Second Ru‐Complex and Variation of Hydroxide Additives. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian H. Schwarz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Dominik Kraus
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Elisabetta Alberico
- Leibniz-Institut für Katalyse, e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
- Istituto di Chimica Biomolecolare Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Henrik Junge
- Leibniz-Institut für Katalyse, e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
40
|
Peng CJ, Wu XT, Zeng G, Zhu QL. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO 2 Reduction to Formate. Chem Asian J 2021; 16:1539-1544. [PMID: 33929102 DOI: 10.1002/asia.202100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Indexed: 11/10/2022]
Abstract
The reduction of carbon dioxide (CO2 ) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO2 reduction reaction (CO2 RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO2 RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO)2 CO3 nanostructures. The as-prepared material exhibits high activity and selectivity for CO2 RR to formate, with nearly 94% faradaic efficiency at -1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from -0.83 to -1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO2 RR/methanol oxidation reaction (CO2 RR/MOR) electrolytic system for overall CO2 splitting was constructed, evidencing the feasibility of its practical implementation.
Collapse
Affiliation(s)
- Chan-Juan Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guang Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
41
|
Nijamudheen A, Kanega R, Onishi N, Himeda Y, Fujita E, Ertem MZ. Distinct Mechanisms and Hydricities of Cp*Ir-Based CO 2 Hydrogenation Catalysts in Basic Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- A. Nijamudheen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Ryoichi Kanega
- Research Institute of Energy Conservation, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Onishi
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuichiro Himeda
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8569, Japan
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
42
|
Bahuguna A, Sasson Y. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. CHEMSUSCHEM 2021; 14:1258-1283. [PMID: 33231357 DOI: 10.1002/cssc.202002433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 05/19/2023]
Abstract
In recent years, hydrogen has been considered a promising energy carrier for a sustainable energy economy in the future. An easy solution for the safer storage of hydrogen is challenging and efficient methods are still being explored in this direction. Despite having some progress in this area, no cost-effective and easily applicable solutions that fulfill the requirements of industry are yet to be claimed. Currently, the storage of hydrogen is largely limited to high-pressure compression and liquefaction or in the form of metal hydrides. Formic acid is a good source of hydrogen that also generates CO2 along with hydrogen on decomposition. Moreover, the hydrogenation of CO2 is thermodynamically unfavorable and requires high energy input. Alkali metal formates are alternative mild and noncorrosive sources of hydrogen. On decomposition, these metal formates release hydrogen and generate bicarbonates. The generated bicarbonates can be catalytically charged back to alkali formates under optimized hydrogen pressure. Hence, the formate-bicarbonate-based systems being carbon neutral at ambient condition has certain advantages over formic acid. The formate-bicarbonate cycle can be considered as a vehicle for hydrogen and energy storage. The whole process is carbon-neutral, reversible, and sustainable. This Review emphasizes the various catalytic systems employed for reversible formate-bicarbonate conversion. Moreover, a mechanistic investigation, the effect of temperature, pH, kinetics of reversible formate-bicarbonate conversion, and new insights in the field are also discussed in detail.
Collapse
Affiliation(s)
- Ashish Bahuguna
- Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yoel Sasson
- Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
43
|
Liu H, Wang WH, Xiong H, Nijamudheen A, Ertem MZ, Wang M, Duan L. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps. Inorg Chem 2021; 60:3410-3417. [PMID: 33560831 DOI: 10.1021/acs.inorgchem.0c03815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a series of Cp*Ir complexes containing a rigid 8-aminoquinolinesulfonamide moiety as highly efficient catalysts for the dehydrogenation of formic acid (FA). The complex [Cp*Ir(L)Cl] (HL = N-(quinolin-8-yl)benzenesulfonamide) displayed a high turnover frequency (TOF) of 2.97 × 104 h-1 and a good stability (>100 h) at 60 °C. Comparative studies of [Cp*Ir(L)Cl] with the rigid ligand and [Cp*Ir(L')Cl] (HL' = N-propylpypridine-2-sulfonamide) without the rigid aminoquinoline moiety demonstrated that the 8-aminoquinoline moiety could dramatically enhance the stability of the catalyst. The electron-donating ability of the N,N'-chelating ligand was tuned by functionalizing the phenyl group of the L ligand with OMe, Cl, and CF3 to have a systematical perturbation of the electronic structure of [Cp*Ir(L)Cl]. Experimental kinetic studies and density functional theory (DFT) calculations on this series of Cp*Ir complexes revealed that (i) the electron-donating groups enhance the hydrogen formation step while slowing down the β-hydride elimination and (ii) the electron-withdrawing groups display the opposite effect on these reaction steps, which in turn leads to lower optimum pH for catalytic activity compared to the electron-donating groups.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wan-Hui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Huatian Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - A Nijamudheen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lele Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
44
|
Kar S, Rauch M, Leitus G, Ben-David Y, Milstein D. Highly efficient additive-free dehydrogenation of neat formic acid. Nat Catal 2021; 4:193-201. [PMID: 37152186 PMCID: PMC7614505 DOI: 10.1038/s41929-021-00575-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formic acid (FA) is a promising hydrogen carrier which can play an instrumental role in the overall implementation of a hydrogen economy. In this regard, it is important to generate H2 gas from neat FA without any solvent/additive, for which existing systems are scarce. Here we report the remarkable catalytic activity of a ruthenium 9H-acridine pincer complex for this process. The catalyst is unusually stable and robust in FA even at high temperatures and can catalyse neat FA dehydrogenation for over a month, with a total turnover number of 1,701,150, while also generating high H2/CO2 gas pressures (tested up to 100 bars). Mechanistic investigations and DFT studies are conducted to fully understand the molecular mechanism to the process. Overall, the high activity, stability, selectivity, simplicity and versatility of the system to generate a CO-free H2/CO2 gas stream and high pressure from neat FA makes it promising for large-scale implementation.
Collapse
|
45
|
A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O2. ENERGIES 2021. [DOI: 10.3390/en14020481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Commercial use of H2 production catalysts requires a repeated use/stop/store and reuse of the catalyst. Ideally, this cycle should be possible under ambient O2. Herein we exemplify the concept of Use-Store-Reuse (USR) of a (Ru-phosphine) catalyst in a biphasic catalytic system, for H2 production via dehydrogenation of HCOOH. The catalytic system can operate uninterrupted for at least four weeks, including storage and reuse cycles, with negligible loss of its catalytic efficiency. The catalytic system consisted of a RuP(CH2CH2PPh2)3 (i.e. RuPP3) in (tri-glyme/water) system, using KOH as a cocatalyst, to promote HCOOH deprotonation. In a USR cycle of 1 week, followed by storage for three weeks under ambient air and reuse, the system achieved in total TONs > 90,000 and TOFs > 4000 h−1. Thus, for the first time, a USR concept with a readily available stable ruthenium catalyst is presented, operating without any protection from O2 or light, and able to retain its catalytic performance.
Collapse
|
46
|
Weilhard A, Argent SP, Sans V. Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids. Nat Commun 2021; 12:231. [PMID: 33431835 PMCID: PMC7801478 DOI: 10.1038/s41467-020-20291-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/19/2020] [Indexed: 11/26/2022] Open
Abstract
The efficient transformation of CO2 into chemicals and fuels is a key challenge for the decarbonisation of the synthetic production chain. Formic acid (FA) represents the first product of CO2 hydrogenation and can be a precursor of higher added value products or employed as a hydrogen storage vector. Bases are typically required to overcome thermodynamic barriers in the synthesis of FA, generating waste and requiring post-processing of the formate salts. The employment of buffers can overcome these limitations, but their catalytic performance has so far been modest. Here, we present a methodology utilising IL as buffers to catalytically transform CO2 into FA with very high efficiency and comparable performance to the base-assisted systems. The combination of multifunctional basic ionic liquids and catalyst design enables the synthesis of FA with very high catalytic efficiency in TONs of >8*105 and TOFs > 2.1*104 h−1. Basic ionic liquids provide a buffering effect that enables the efficient synthesis of free formic acid from CO2 hydrogenation. Here, a highly efficient catalytic system that transforms CO2 to formic acid without the need of strong bases is demonstrated, avoiding the formation of formate salts.
Collapse
Affiliation(s)
- Andreas Weilhard
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Victor Sans
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK. .,Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain.
| |
Collapse
|
47
|
Wu L, Hao Y, Chen S, Chen R, Sun P, Chen T. Effects of rare earth metal doping on Au/ReZrO 2 catalysts for efficient hydrogen generation from formic acid. NEW J CHEM 2021. [DOI: 10.1039/d0nj06124g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rare earth metal doped ZrO2 can promote the formation of oxygen vacancies in zirconia, which enhances the metal–support interaction, finally promoting catalytic activity of FA dehydrogenation.
Collapse
Affiliation(s)
- Luming Wu
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Yu Hao
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Shaohua Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Rui Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| | - Pingchuan Sun
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science
- School of Materials Science and Engineering
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- Nankai University
- Tianjin 300350
| |
Collapse
|
48
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Li X, Surkus A, Rabeah J, Anwar M, Dastigir S, Junge H, Brückner A, Beller M. Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angew Chem Int Ed Engl 2020; 59:15849-15854. [PMID: 32458555 PMCID: PMC7540455 DOI: 10.1002/anie.202004125] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Indexed: 01/27/2023]
Abstract
Metal-organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field-scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoII Nx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation.
Collapse
Affiliation(s)
- Xiang Li
- School of Space and EnvironmentBeihang UniversityBeijing100191P. R. China
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | | | - Jabor Rabeah
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Muhammad Anwar
- Qatar Environment & Energy Research InstituteResearchery, Education City34110DohaQatar
| | - Sarim Dastigir
- Qatar Environment & Energy Research InstituteResearchery, Education City34110DohaQatar
| | - Henrik Junge
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Angelika Brückner
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
50
|
Shen Y, Bai C, Zhan Y, Ning F, Wang H, Lv G, Zhou X. Hydrogen Generation from Catalytic Reforming of Paraformaldehyde and Water by Polymeric Bifunctional Catalysts Comprising Ruthenium and Sulfonic Acid Units. Chempluschem 2020; 85:1646-1654. [PMID: 32749755 DOI: 10.1002/cplu.202000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Indexed: 11/07/2022]
Abstract
As a clean and sustainable source of energy, hydrogen shows great potential to be the ultimate energy source in future. In this research, paraformaldehyde is used as hydrogen carrier. Several bifunctional catalysts are prepared for the hydrogen generation from paraformaldehyde. The bifunctional catalysts contain two catalytically active sites. One is a sulfonic acid group for paraformaldehyde hydrolysis, and the other is an organometallic group that catalyzes the hydrogen release from formaldehyde. Bifunctional iridium catalysts and bifunctional rhodium catalysts could only generate traces of hydrogen in the initial phase of paraformaldehyde decomposition. Only the bifunctional ruthenium catalyst shows high activity due to its bifunctional catalytically active sites, thus more than 98.0 % of the initially produced gas contains hydrogen. The initial TOF is 685 h-1 at 363 K when the paraformaldehyde concentration is 20 wt%. A reaction mechanism is proposed for the hydrogen generation from paraformaldehyde in which formaldehyde and formic acid are intermediates Formic acid decomposition is the rate-determining step in the later phase of paraformaldehyde decomposition.
Collapse
Affiliation(s)
- Yangbin Shen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Chuang Bai
- Division of Advanced Nanomaterials Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yulu Zhan
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Fandi Ning
- Division of Advanced Nanomaterials Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Huihui Wang
- Division of Advanced Nanomaterials Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiaochun Zhou
- Division of Advanced Nanomaterials Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|