• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643627)   Today's Articles (133)   Subscriber (50576)
For: Loges B, Boddien A, Junge H, Beller M. Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells. Angew Chem Int Ed Engl 2008;47:3962-5. [DOI: 10.1002/anie.200705972] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Number Cited by Other Article(s)
1
Bienenmann RLM, Loyo AO, Lutz M, Broere DLJ. Mechanistic Investigation into Copper(I) Hydride Catalyzed Formic Acid Dehydrogenation. ACS Catal 2024;14:15599-15608. [PMID: 39444528 PMCID: PMC11494502 DOI: 10.1021/acscatal.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
2
Shen Y, Yang Z, Tang X, Zhang J, Lv G. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature. CHEMSUSCHEM 2024;17:e202301532. [PMID: 38321849 DOI: 10.1002/cssc.202301532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
3
Ruta V, Di Liberto G, Moriggi F, Ivanov YP, Divitini G, Bussetti G, Barbera V, Bajada MA, Galimberti M, Pacchioni G, Vilé G. Copper Single Atoms Chelated on Ligand-Modified Carbon for Ullmann-type C-O Coupling. CHEMSUSCHEM 2024;17:e202301529. [PMID: 38050778 DOI: 10.1002/cssc.202301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
4
Tsai CP, Chen CY, Lin YL, Lan JC, Tsai ML. Catalytic Dehydrogenation of Formic Acid Promoted by Triphos-Co Complexes: Two Competing Pathways for H2 Production. Inorg Chem 2024;63:1759-1773. [PMID: 38217506 DOI: 10.1021/acs.inorgchem.3c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
5
Sawahara K, Tanaka S, Kodaira T, Kanega R, Kawanami H. Iridium Catalyst Immobilized on Crosslinked Polyethyleneimine for Continuous Hydrogen Production Using Formic Acid. CHEMSUSCHEM 2024;17:e202301282. [PMID: 37837416 DOI: 10.1002/cssc.202301282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
6
Guo J, Li M, Yin C, Zhong D, Zhang Y, Li X, Wang Y, Yuan J, Xie H, Qi T. Formic Acid Dehydrogenation through Ligand Design Strategy of Amidation in Half-Sandwich Ir Complexes. Inorg Chem 2023;62:18982-18989. [PMID: 37939313 DOI: 10.1021/acs.inorgchem.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
7
Guo L, Zhuge K, Yan S, Wang S, Zhao J, Wang S, Qiao P, Liu J, Mou X, Zhu H, Zhao Z, Yan L, Lin R, Ding Y. Defect-driven nanostructuring of low-nuclearity Pt-Mo ensembles for continuous gas-phase formic acid dehydrogenation. Nat Commun 2023;14:7518. [PMID: 37980409 PMCID: PMC10657381 DOI: 10.1038/s41467-023-42759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/20/2023]  Open
8
Tuo Y, Chen W, Mishra N, Wang B, Zhang J. Editorial: Advanced catalytic materials and processes in hydrogen technology. Front Chem 2023;11:1314796. [PMID: 38025050 PMCID: PMC10644756 DOI: 10.3389/fchem.2023.1314796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]  Open
9
Cha J, Lee J, Jeon BW, Kim YH, Kwon I. Real flue gas CO2 hydrogenation to formate by an enzymatic reactor using O2- and CO-tolerant hydrogenase and formate dehydrogenase. Front Bioeng Biotechnol 2023;11:1265272. [PMID: 37854886 PMCID: PMC10579561 DOI: 10.3389/fbioe.2023.1265272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]  Open
10
Knörr P, Lentz N, Albrecht M. Efficient additive-free formic acid dehydrogenation with a NNN-ruthenium complex. Catal Sci Technol 2023;13:5625-5631. [PMID: 38013841 PMCID: PMC10544809 DOI: 10.1039/d3cy00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023]
11
Kushwaha S, Awasthi MK, Das A, Pathak B, Singh SK. Diruthenium Catalyst for Hydrogen Production from Aqueous Formic Acid. Inorg Chem 2023;62:8080-8092. [PMID: 37196200 DOI: 10.1021/acs.inorgchem.2c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
12
Gomez-España A, Lopez-Morales JL, Español-Sanchez B, García-Orduña P, Lahoz FJ, Iglesias M, Fernández-Alvarez FJ. Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance. Dalton Trans 2023;52:6722-6729. [PMID: 37129044 DOI: 10.1039/d3dt00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
13
Ye F, Zhang S, Cheng Q, Long Y, Liu D, Paul R, Fang Y, Su Y, Qu L, Dai L, Hu C. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion. Nat Commun 2023;14:2040. [PMID: 37041142 PMCID: PMC10090200 DOI: 10.1038/s41467-023-37679-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]  Open
14
Chen Z, Stein CAM, Qu R, Rockstroh N, Bartling S, Weiß J, Kubis C, Junge K, Junge H, Beller M. Designing a Robust Palladium Catalyst for Formic Acid Dehydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
15
Guo J, Li M, Yin C, Li X, Wang Y, Yuan J, Qi T. A ligand design strategy to enhance catalyst stability for efficient formic acid dehydrogenation. Dalton Trans 2023;52:4856-4861. [PMID: 36939828 DOI: 10.1039/d2dt04079d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
16
Cha J, Bak H, Kwon I. Hydrogen-fueled CO2 reduction using oxygen-tolerant oxidoreductases. Front Bioeng Biotechnol 2023;10:1078164. [PMID: 36686231 PMCID: PMC9849572 DOI: 10.3389/fbioe.2022.1078164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]  Open
17
Additive-free photocatalyzed Hydrogen production from formic acid aqueous solution on molybdenum carbides. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
18
Maji B, Kumar A, Bhattacherya A, Bera JK, Choudhury J. Cyclic Amide-Anchored NHC-Based Cp*Ir Catalysts for Bidirectional Hydrogenation–Dehydrogenation with CO2/HCO2H Couple. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
19
Guillamón E, Sorribes I, Safont VS, Algarra AG, Fernández-Trujillo MJ, Pedrajas E, Llusar R, Basallote MG. Base-Free Catalytic Hydrogen Production from Formic Acid Mediated by a Cubane-Type Mo3S4 Cluster Hydride. Inorg Chem 2022;61:16730-16739. [PMID: 36239439 PMCID: PMC9690164 DOI: 10.1021/acs.inorgchem.2c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/29/2022]
20
Lentz N, Albrecht M. A Low-Coordinate Iridium Complex with a Donor-Flexible O,N-Ligand for Highly Efficient Formic Acid Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
21
Cheng S, Lang Z, Du J, Du Z, Li Y, Tan H, Li Y. Engineering of iridium complexes for the efficient hydrogen evolution of formic acid without additives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
22
Guo X, Xu SM, Zhou H, Ren Y, Ge R, Xu M, Zheng L, Kong X, Shao M, Li Z, Duan H. Engineering Hydrogen Generation Sites to Promote Electrocatalytic CO2 Reduction to Formate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Wang Q, Xia Y, Chen Z, Wang Y, Cheng F, Qin L, Zheng Z. Hydrogen Production via Aqueous-Phase Reforming of Ethanol Catalyzed by Ruthenium Alkylidene Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
24
Formic Acid Dehydrogenation Using Noble-Metal Nanoheterogeneous Catalysts: Towards Sustainable Hydrogen-Based Energy. Catalysts 2022. [DOI: 10.3390/catal12030324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
25
Meng Q, Wang X, Xiao M, Jin Z, Ge J, Liu C, Xing W. Revealing the true origin of size-dependent Pd/C catalytic behavior towards formic acid decomposition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
26
Onishi N, Kanega R, Kawanami H, Himeda Y. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Molecules 2022;27:455. [PMID: 35056770 PMCID: PMC8781907 DOI: 10.3390/molecules27020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]  Open
27
Guzman J, Urriolabeitia A, Polo V, Fernández Buenestado M, Iglesias M, Fernandez-Alvarez FJ. Dehydrogenation of Formic Acid Using Iridium-NSi Species as Catalyst Precursors. Dalton Trans 2022;51:4386-4393. [DOI: 10.1039/d1dt04335h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Guo J, Yin C, Li M, Zhong D, Zhang Y, Li X, Wang Y, Yao H, Qi T. Picolinamide‐Based Iridium Catalysts for Aqueous Formic Acid Dehydrogenation: Increase in Electron Density of Amide N through Substituents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
Shen Y, Xu Y, Zhang T, Zhan Y, Guo C. Water-induced gaseous formaldehyde decomposition using ruthenium organic crystalline particles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01636b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Kipshagen A, Baums J, Hartmann H, Besmehn A, Hausoul P, Palkovits R. Formic Acid as H2 Storage System: Hydrogenation of CO2 and Decomposition of Formic Acid by Solid Molecular Phosphine Catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Sun X, Li F, Wang Z, An H, Xue W, Wang Y. AgPd Nanoparticles Anchored on TiO 2 Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
32
Buss JA, Shida N, He T, Agapie T. Carbon Dioxide Reduction with Dihydrogen and Silanes at Low-Valent Molybdenum Terphenyl Diphosphine Complexes: Reductant Identity Dictates Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Luque-Gómez A, García-Abellán S, Munarriz J, Polo V, Passarelli V, Iglesias M. Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorg Chem 2021;60:15497-15508. [PMID: 34558914 PMCID: PMC8527458 DOI: 10.1021/acs.inorgchem.1c02132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Vatsa A, Padhi SK. Dehydrogenation of Formic Acid by a Ru II Half Sandwich Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
35
Patra S, Deka H, Singh SK. Bis-Imidazole Methane Ligated Ruthenium(II) Complexes: Synthesis, Characterization, and Catalytic Activity for Hydrogen Production from Formic Acid in Water. Inorg Chem 2021;60:14275-14285. [PMID: 34461719 DOI: 10.1021/acs.inorgchem.1c01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
37
Wang Q, Xia Y, Cheng F, Chen Z, Wang Y, Zhu X, Qin L, Zheng Z. Formic Acid Dehydrogenation for Hydrogen Production Promoted by Grubbs and Hoveyda‐Grubbs Catalysts †. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
38
A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles. MATERIALS 2021;14:ma14123258. [PMID: 34204765 PMCID: PMC8231493 DOI: 10.3390/ma14123258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
39
Schwarz CH, Kraus D, Alberico E, Junge H, Haumann M. Immobilized Ru‐Pincer Complexes for Continuous Gas‐Phase Low‐Temperature Methanol Reforming‐Improving the Activity by a Second Ru‐Complex and Variation of Hydroxide Additives. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
40
Peng CJ, Wu XT, Zeng G, Zhu QL. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO2 Reduction to Formate. Chem Asian J 2021;16:1539-1544. [PMID: 33929102 DOI: 10.1002/asia.202100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Indexed: 11/10/2022]
41
Nijamudheen A, Kanega R, Onishi N, Himeda Y, Fujita E, Ertem MZ. Distinct Mechanisms and Hydricities of Cp*Ir-Based CO2 Hydrogenation Catalysts in Basic Water. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
42
Bahuguna A, Sasson Y. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. CHEMSUSCHEM 2021;14:1258-1283. [PMID: 33231357 DOI: 10.1002/cssc.202002433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 05/19/2023]
43
Liu H, Wang WH, Xiong H, Nijamudheen A, Ertem MZ, Wang M, Duan L. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps. Inorg Chem 2021;60:3410-3417. [PMID: 33560831 DOI: 10.1021/acs.inorgchem.0c03815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Kar S, Rauch M, Leitus G, Ben-David Y, Milstein D. Highly efficient additive-free dehydrogenation of neat formic acid. Nat Catal 2021;4:193-201. [PMID: 37152186 PMCID: PMC7614505 DOI: 10.1038/s41929-021-00575-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
45
A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O2. ENERGIES 2021. [DOI: 10.3390/en14020481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
46
Weilhard A, Argent SP, Sans V. Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids. Nat Commun 2021;12:231. [PMID: 33431835 PMCID: PMC7801478 DOI: 10.1038/s41467-020-20291-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/19/2020] [Indexed: 11/26/2022]  Open
47
Wu L, Hao Y, Chen S, Chen R, Sun P, Chen T. Effects of rare earth metal doping on Au/ReZrO2 catalysts for efficient hydrogen generation from formic acid. NEW J CHEM 2021. [DOI: 10.1039/d0nj06124g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
48
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020;153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Li X, Surkus A, Rabeah J, Anwar M, Dastigir S, Junge H, Brückner A, Beller M. Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angew Chem Int Ed Engl 2020;59:15849-15854. [PMID: 32458555 PMCID: PMC7540455 DOI: 10.1002/anie.202004125] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Indexed: 01/27/2023]
50
Shen Y, Bai C, Zhan Y, Ning F, Wang H, Lv G, Zhou X. Hydrogen Generation from Catalytic Reforming of Paraformaldehyde and Water by Polymeric Bifunctional Catalysts Comprising Ruthenium and Sulfonic Acid Units. Chempluschem 2020;85:1646-1654. [PMID: 32749755 DOI: 10.1002/cplu.202000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Indexed: 11/07/2022]
PrevPage 1 of 7 1234567Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA