1
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
2
|
Odrobińska-Baliś J, Gumieniczek-Chłopek E, Uchacz T, Banachowicz P, Medaj A, Zapotoczny S. Spontaneous Fusion of Core-Shell Nanocapsules with Oil Cores and Oppositely Charged Polysaccharide Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311909. [PMID: 39031680 DOI: 10.1002/smll.202311909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Indexed: 07/22/2024]
Abstract
Polymer nanocapsules with hydrophobic cores are promising candidates for nanoreactors to carry out (bio)chemical reactions mimicking the performance of natural cellular systems. Their architecture allows reagents to be encapsulated in the cores enabling reactions to proceed in confined environments in a controlled, and efficient manner. Polysaccharide-shell oil-core nanocapsules are proposed here as facile mergeable nanoreactors. Spontaneous fusion of oppositely charged polysaccharide capsules is demonstrated for the first time. Such capsules are formed and easily loaded with reagents by nanoemulsification of an aqueous solution of hydrophobically modified polysaccharides (chitosan, hyaluronate) and oleic acid with dissolved desired hydrophobic compounds. Efficient fusion of the formed nanocapsules dispersed in an aqueous medium at optimized conditions (pH, ionic strength) is followed using fluorescence microscopy by labeling both their cores and shells with fluorescent dyes. As a proof of concept, a model fluorogenic synthesis is also realized by fusing the capsules containing separated reagents and the catalyst. The nanocapsules and fusion process developed here establish a platform for realization of versatile reactions in a confined environment including model studies on biologically relevant processes taking place in natural systems.
Collapse
Affiliation(s)
- Joanna Odrobińska-Baliś
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow, 30-239, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Elżbieta Gumieniczek-Chłopek
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, A. Mickiewicza Avenue 30, Krakow, 30-059, Poland
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Piotr Banachowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Aneta Medaj
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Lojasiewicza 11, Krakow, 30-348, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| |
Collapse
|
3
|
Schvartzman C, Ibarboure E, Martin A, Garanger E, Mutschler A, Lecommandoux S. Protocells Featuring Membrane-Bound and Dynamic Membraneless Organelles. Biomacromolecules 2024; 25:4087-4094. [PMID: 38828905 DOI: 10.1021/acs.biomac.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)-block-poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Emmanuel Ibarboure
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Anouk Martin
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Angela Mutschler
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
4
|
Chao X, Johnson TG, Temian MC, Docker A, Wallabregue ALD, Scott A, Conway SJ, Langton MJ. Coupling Photoresponsive Transmembrane Ion Transport with Transition Metal Catalysis. J Am Chem Soc 2024; 146:4351-4356. [PMID: 38334376 PMCID: PMC10885138 DOI: 10.1021/jacs.3c13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.
Collapse
Affiliation(s)
- Xiangyu Chao
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Toby G. Johnson
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Maria-Carmen Temian
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Andrew Docker
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Aaron Scott
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Stuart J. Conway
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| | - Matthew J. Langton
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
5
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
9
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
10
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022; 61:e202117500. [PMID: 35090078 DOI: 10.1002/anie.202117500] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/26/2023]
Abstract
Spatiotemporal organization of distinct biological processes in cytomimetic compartments is a crucial step towards engineering functional artificial cells. Mimicking controlled bi-directional molecular communication inside artificial cells remains a considerable challenge. Here we present photoswitchable molecular transport between programmable membraneless organelle-like DNA coacervates in a synthetic microcompartment. We use droplet microfluidics to fabricate membraneless non-fusing DNA coacervates by liquid-liquid phase separation in a water-in-oil droplet, and employ the interior DNA coacervates as artificial organelles to imitate intracellular communication via photo-regulated uni- and bi-directional transfer of biomolecules. Our results highlight a promising new route to assembly of multicompartment artificial cells with functional networks.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang-Hao Cao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
11
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA‐based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Fang-Hao Cao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wilhelm T. S. Huck
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Institue for Molecules and Materials NETHERLANDS
| | - Nan-Nan Deng
- Shanghai Jiao Tong University Chemistry and Chemical Engineering 800 Dongchuan RD. Minhang District 200240 Shanghai CHINA
| |
Collapse
|
12
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
13
|
Wen P, Wang X, Chen H, Appelhans D, Liu X, Wang L, Huang X. A
pH Self‐Monitoring
Heterogeneous Multicompartmental Proteinosome with Spatiotemporal Regulation of Insulin Transportation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ping Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin Heilongjiang 150001 China
| | - Xueyi Wang
- Dongguan Hospital of Southern Medical University, Southern Medical University Dongguan Guangdong 523059 China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin Heilongjiang 150001 China
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V., Hohe Straße 6 Dresden 01069 Germany
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin Heilongjiang 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin Heilongjiang 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin Heilongjiang 150001 China
| |
Collapse
|
14
|
Shetty S, Yandrapalli N, Pinkwart K, Krafft D, Vidakovic-Koch T, Ivanov I, Robinson T. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells. ACS NANO 2021; 15:15656-15666. [PMID: 34570489 PMCID: PMC8552445 DOI: 10.1021/acsnano.1c04219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 05/28/2023]
Abstract
The bottom-up assembly of multicompartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform that is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments, each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase. We demonstrate the ability of these MVVs to carry out directed chemical communication between the compartments via the reconstitution of size-selective membrane pores. Therefore, the signal transduction, which is triggered externally, follows a specific spatial pathway between the compartments. We use this platform to study the effects of enzyme cascade compartmentalization by direct analytical comparison between bulk, one-, two-, and three-compartment systems. This microfluidic strategy to construct complex hierarchical structures is not only suitable to study compartmentalization effects on biochemical reactions but is also applicable for developing advanced drug delivery systems as well as minimal cells in the field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Sunidhi
C. Shetty
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Naresh Yandrapalli
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerstin Pinkwart
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Dorothee Krafft
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tanja Vidakovic-Koch
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Ivan Ivanov
- Max
Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tom Robinson
- Theory
and Bio-Systems, Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Kocsis I, Ding Y, Williams NH, Hunter CA. Transmembrane signal transduction by cofactor transport. Chem Sci 2021; 12:12377-12382. [PMID: 34603667 PMCID: PMC8480319 DOI: 10.1039/d1sc03910e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components. Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.![]()
Collapse
Affiliation(s)
- Istvan Kocsis
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yudi Ding
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
16
|
Van de Cauter L, Fanalista F, van Buren L, De Franceschi N, Godino E, Bouw S, Danelon C, Dekker C, Koenderink GH, Ganzinger KA. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles. ACS Synth Biol 2021. [PMID: 34185516 DOI: 10.1101/2021.02.24.432456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Giant unilamellar vesicles (GUVs) are often used to mimic biological membranes in reconstitution experiments. They are also widely used in research on synthetic cells, as they provide a mechanically responsive reaction compartment that allows for controlled exchange of reactants with the environment. However, while many methods exist to encapsulate functional biomolecules in GUVs, there is no one-size-fits-all solution and reliable GUV fabrication still remains a major experimental hurdle in the field. Here, we show that defect-free GUVs containing complex biochemical systems can be generated by optimizing a double-emulsion method for GUV formation called continuous droplet interface crossing encapsulation (cDICE). By tightly controlling environmental conditions and tuning the lipid-in-oil dispersion, we show that it is possible to significantly improve the reproducibility of high-quality GUV formation as well as the encapsulation efficiency. We demonstrate efficient encapsulation for a range of biological systems including a minimal actin cytoskeleton, membrane-anchored DNA nanostructures, and a functional PURE (protein synthesis using recombinant elements) system. Our optimized cDICE method displays promising potential to become a standard method in biophysics and bottom-up synthetic biology.
Collapse
Affiliation(s)
| | - Federico Fanalista
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Elisa Godino
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Sharon Bouw
- Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | | |
Collapse
|
17
|
Van de Cauter L, Fanalista F, van Buren L, De Franceschi N, Godino E, Bouw S, Danelon C, Dekker C, Koenderink GH, Ganzinger KA. Optimized cDICE for Efficient Reconstitution of Biological Systems in Giant Unilamellar Vesicles. ACS Synth Biol 2021; 10:1690-1702. [PMID: 34185516 PMCID: PMC8291763 DOI: 10.1021/acssynbio.1c00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/17/2022]
Abstract
Giant unilamellar vesicles (GUVs) are often used to mimic biological membranes in reconstitution experiments. They are also widely used in research on synthetic cells, as they provide a mechanically responsive reaction compartment that allows for controlled exchange of reactants with the environment. However, while many methods exist to encapsulate functional biomolecules in GUVs, there is no one-size-fits-all solution and reliable GUV fabrication still remains a major experimental hurdle in the field. Here, we show that defect-free GUVs containing complex biochemical systems can be generated by optimizing a double-emulsion method for GUV formation called continuous droplet interface crossing encapsulation (cDICE). By tightly controlling environmental conditions and tuning the lipid-in-oil dispersion, we show that it is possible to significantly improve the reproducibility of high-quality GUV formation as well as the encapsulation efficiency. We demonstrate efficient encapsulation for a range of biological systems including a minimal actin cytoskeleton, membrane-anchored DNA nanostructures, and a functional PURE (protein synthesis using recombinant elements) system. Our optimized cDICE method displays promising potential to become a standard method in biophysics and bottom-up synthetic biology.
Collapse
Affiliation(s)
| | - Federico Fanalista
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nicola De Franceschi
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Elisa Godino
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Sharon Bouw
- Department
of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Christophe Danelon
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | | |
Collapse
|
18
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5662-5671. [PMID: 38505493 PMCID: PMC10946473 DOI: 10.1002/ange.202006941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/15/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
19
|
Elani Y. Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. Angew Chem Int Ed Engl 2021; 60:5602-5611. [PMID: 32909663 PMCID: PMC7983915 DOI: 10.1002/anie.202006941] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/11/2022]
Abstract
The construction of artificial cells from inanimate molecular building blocks is one of the grand challenges of our time. In addition to being used as simplified cell models to decipher the rules of life, artificial cells have the potential to be designed as micromachines deployed in a host of clinical and industrial applications. The attractions of engineering artificial cells from scratch, as opposed to re-engineering living biological cells, are varied. However, it is clear that artificial cells cannot currently match the power and behavioural sophistication of their biological counterparts. Given this, many in the synthetic biology community have started to ask: is it possible to interface biological and artificial cells together to create hybrid living/synthetic systems that leverage the advantages of both? This article will discuss the motivation behind this cellular bionics approach, in which the boundaries between living and non-living matter are blurred by bridging top-down and bottom-up synthetic biology. It details the state of play of this nascent field and introduces three generalised hybridisation modes that have emerged.
Collapse
Affiliation(s)
- Yuval Elani
- Department of Chemical EngineeringImperial College LondonExhibition RoadLondonUK
| |
Collapse
|
20
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
21
|
Wen P, Wang X, Moreno S, Boye S, Voigt D, Voit B, Huang X, Appelhans D. Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005749. [PMID: 33373089 DOI: 10.1002/smll.202005749] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
Collapse
Affiliation(s)
- Ping Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xueyi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| |
Collapse
|
22
|
From protocells to prototissues: a materials chemistry approach. Biochem Soc Trans 2020; 48:2579-2589. [DOI: 10.1042/bst20200310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.
Collapse
|
23
|
Shen H, Zheng X, Zhou Z, He W, Li M, Su P, Song J, Yang Y. Oriented immobilization of enzyme-DNA conjugates on magnetic Janus particles for constructing a multicompartment multienzyme system with high activity and stability. J Mater Chem B 2020; 8:8467-8475. [PMID: 32812630 DOI: 10.1039/d0tb01439g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various organelles (e.g., mitochondria and chloroplasts) have a multicompartment structure, providing superior function of material transformation, selective segregation and energy conversion. Enlightened by the elegant evolution of nature, intended isolation of the biochemical process by cooperative multicompartments in cells has become an appealing blueprint to construct bioreactors. In this study, we develop a "soft separation" way to establish a delicate multicompartment multienzyme system (MMS) with polyphenol-encapsulated enzyme-DNA conjugates, which are anchored on magnetic Janus particles, providing a biomimetic catalysis network with the model cascade reactions in confinement. The well-designed MMS exhibits preferable bioactivity benefitting from the dependable DNA bridges and the oriented immobilization of enzymes, while the polyphenol shell further protects the anchored enzymes from exterior attacks, such as heat and enzymatic degradation. Moreover, by applying the MMS as nanomotors, the asymmetrical distribution of enzymes on Janus particles is found to improve mutual elevation between the self-driven locomotion and enzyme-mediated reactions, delivering enhanced dispersal ability and bioactivity. Owing to the excellent enzymatic activity, promoted stability and satisfying biocompatibility, the assembled MMS is proved to be promising for the in vitro and intracellular sensing of glucose, showing significant potential for biochemical analysis applications.
Collapse
Affiliation(s)
- Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuelian Zheng
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Mengqi Li
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
24
|
Hindley JW, Law RV, Ces O. Membrane functionalization in artificial cell engineering. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2357-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractBottom-up synthetic biology aims to construct mimics of cellular structure and behaviour known as artificial cells from a small number of molecular components. The development of this nascent field has coupled new insights in molecular biology with large translational potential for application in fields such as drug delivery and biosensing. Multiple approaches have been applied to create cell mimics, with many efforts focusing on phospholipid-based systems. This mini-review focuses on different approaches to incorporating molecular motifs as tools for lipid membrane functionalization in artificial cell construction. Such motifs range from synthetic chemical functional groups to components from extant biology that can be arranged in a ‘plug-and-play’ approach which is hard to replicate in living systems. Rationally designed artificial cells possess the promise of complex biomimetic behaviour from minimal, highly engineered chemical networks.
Collapse
|
25
|
Löffler PMG, Ries O, Vogel S. DNA-Mediated Liposome Fusion Observed by Fluorescence Spectrometry. Methods Mol Biol 2019; 2063:101-118. [PMID: 31667766 DOI: 10.1007/978-1-0716-0138-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
DNA-programmed and controlled fusion of lipid membranes have recently been optimized to reliably mix the contents between two populations of liposomes, each functionalized with complementary lipidated DNA (LiNA) oligomer. In this chapter we describe a procedure for DNA-controlled fusion of liposomes mediated by LiNAs that are designed to force bilayers into close proximity. Using a self-quenching fluorescent dye (Sulforhodamine B) to monitor both the mixing of the internal volumes and leakage of the dye into the outer volume we measure the efficiency of content mixing in the bulk population, allowing for direct comparison between different LiNA designs. By generating samples for calibration corresponding to different amounts of content mixing, the average number of fusion events per labeled liposome can be estimated.
Collapse
Affiliation(s)
- Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Oliver Ries
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
26
|
Liu X, Wang X, Voit B, Appelhans D. Control of Nanoparticle Release by Membrane Composition for Dual‐Responsive Nanocapsules. Chemistry 2019; 25:13694-13700. [DOI: 10.1002/chem.201903459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoling Liu
- College of Polymer Science and EngineeringSichuan University 610065 Chengdu P. R. China
| | - Xueyi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of PolymersTechnische Universität Dresden 01062 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of PolymersTechnische Universität Dresden 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
27
|
Kamiya K, Osaki T, Takeuchi S. Formation of vesicles-in-a-vesicle with asymmetric lipid components using a pulsed-jet flow method. RSC Adv 2019; 9:30071-30075. [PMID: 35530244 PMCID: PMC9072116 DOI: 10.1039/c9ra04622d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lipid distribution in intracellular vesicles is different from that in the plasma membrane of eukaryotic cells. The lipid components in the intracellular vesicles are composed of phosphatidylserine and phosphatidylethanolamine in the outer leaflet and phosphatidylcholine and sphingomyelin in the inner leaflet. The lipid asymmetricities both in the intracellular vesicle membrane and the plasma membrane contribute to synaptic transmission functions. In this study, we developed a cell-sized asymmetric lipid vesicle system containing small-sized asymmetric lipid vesicles (of diameter 200–1000 nm) (asymmetric vesicles-in-a-vesicle), emulating lipid components in the plasma membrane and intracellular vesicle membrane of eukaryotic cells, using microfluidic technology. We successfully constructed an artificial exocytosis system using the asymmetric vesicles-in-a-vesicle system. This asymmetric vesicles-in-a-vesicle system will be helpful in understanding the mechanisms of vesicle transport, such as neurotransmission and exocytosis. We develop a cell-sized asymmetric lipid vesicle system containing small-sized asymmetric lipid vesicles using microfluidic technology.![]()
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakado, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
28
|
Synthetic organelles. Emerg Top Life Sci 2019; 3:587-595. [DOI: 10.1042/etls20190056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
One approach towards the creation of bottom-up synthetic biological systems of higher complexity relies on the subcompartmentalization of synthetic cell structures using artificially generated organelles — roughly mimicking the architecture of eukaryotic cells. Organelles create dedicated chemical environments for specific synthesis tasks — they separate incompatible processes from each other and help to create or maintain chemical gradients that drive other chemical processes. Artificial organelles have been used to compartmentalize enzyme reactions, to generate chemical fuels via photosynthesis and oxidative phosphorylation, and they have been utilized to spatially organize cell-free gene expression reactions. In this short review article, we provide an overview of recent developments in this field, which involve a wide variety of compartmentalization strategies ranging from lipid and polymer membrane systems to membraneless compartmentalization via coacervation.
Collapse
|
29
|
Park S, Jackman JA, Xu X, Weiss PS, Cho NJ. Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13984-13990. [PMID: 30855935 DOI: 10.1021/acsami.9b01724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The function of biological nanoparticles, such as membrane-enveloped viral particles, is often enhanced when the particles form higher-order supramolecular assemblies. While there is intense interest in developing biomimetic platforms that recapitulate these collective properties, existing platforms are limited to mimicking individual virus particles. Here, we present a micropatterning strategy to print linker molecules selectively onto bioinert surfaces, thereby enabling controlled tethering of biomimetic viral particle clusters across defined geometric patterns. By controlling the linker concentration, it is possible to tune the density of tethered particles within clusters while enhancing the signal intensity of encapsulated fluorescent markers. Time-resolved tracking of pore formation and membrane lysis revealed that an antiviral peptide can disturb clusters of the membrane-enclosed particles akin to the targeting of individual viral particles. This platform is broadly useful for evaluating the performance of membrane-active antiviral drug candidates, whereas the micropatterning strategy can be applied to a wide range of biological nanoparticles and other macromolecular entities.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
| | | | - Xiaobin Xu
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
- School of Materials Science and Engineering , Tongji University , 1239 Siping Road , Shanghai 200092 , China
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, and Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095-7227 , United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
30
|
Gumz H, Boye S, Iyisan B, Krönert V, Formanek P, Voit B, Lederer A, Appelhans D. Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801299. [PMID: 30989019 PMCID: PMC6446602 DOI: 10.1002/advs.201801299] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Indexed: 05/19/2023]
Abstract
Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin-gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase-with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
Collapse
Affiliation(s)
- Hannes Gumz
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Susanne Boye
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Banu Iyisan
- Max‐Planck‐Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Vera Krönert
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Petr Formanek
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Albena Lederer
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| |
Collapse
|
31
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
32
|
Liu X, Appelhans D, Voit B. Hollow Capsules with Multiresponsive Valves for Controlled Enzymatic Reactions. J Am Chem Soc 2018; 140:16106-16114. [DOI: 10.1021/jacs.8b07980] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoling Liu
- College of Polymer Science and Engineering, Sichuan University, 610065 Chengdu, PR China
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
33
|
Jo SM, Wurm FR, Landfester K. Biomimetic Cascade Network between Interactive Multicompartments Organized by Enzyme-Loaded Silica Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34230-34237. [PMID: 30212628 DOI: 10.1021/acsami.8b11198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Physical separation of reactions by interactive multicompartments in biological cells is an attractive motif to design efficient microreactors that create biomimetic cascade reactions. We present an aqueous compartment with three different subcompartments that comprise of silica nanoreactors with encapsulated enzymes, namely, β-glucosidase, glucose oxidase, and peroxidase, providing a model cascade reaction in confinement. The encapsulated enzymes retain their activity as the substrate can reach the active site and the silica shell further protects the enzymes from external stresses, such as heat and proteolytic degradation. We demonstrate the biomimetic cascade reaction in between the compartments ("organelles") inside of an additional microconfinement (water-in-oil emulsion). This strategy will allow us to design efficient multicompartmentalized reactors for further biological and organic reactions.
Collapse
Affiliation(s)
- Seong-Min Jo
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| |
Collapse
|
34
|
Trantidou T, Dekker L, Polizzi K, Ces O, Elani Y. Functionalizing cell-mimetic giant vesicles with encapsulated bacterial biosensors. Interface Focus 2018; 8:20180024. [PMID: 30443325 PMCID: PMC6227772 DOI: 10.1098/rsfs.2018.0024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The design of vesicle microsystems as artificial cells (bottom-up synthetic biology) has traditionally relied on the incorporation of molecular components to impart functionality. These cell mimics have reduced capabilities compared with their engineered biological counterparts (top-down synthetic biology), as they lack the powerful metabolic and regulatory pathways associated with living systems. There is increasing scope for using whole intact cellular components as functional modules within artificial cells, as a route to increase the capabilities of artificial cells. In this feasibility study, we design and embed genetically engineered microbes (Escherichia coli) in a vesicle-based cell mimic and use them as biosensing modules for real-time monitoring of lactate in the external environment. Using this conceptual framework, the functionality of other microbial devices can be conferred into vesicle microsystems in the future, bridging the gap between bottom-up and top-down synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Linda Dekker
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Karen Polizzi
- Department of Life Sciences and Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- fabriCELL, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
35
|
Nakanishi K, Cooper GJT, Points LJ, Bloor LG, Ohba M, Cronin L. Development of a Minimal Photosystem for Hydrogen Production in Inorganic Chemical Cells. Angew Chem Int Ed Engl 2018; 57:13066-13070. [PMID: 30105766 PMCID: PMC6348376 DOI: 10.1002/anie.201805584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/12/2018] [Indexed: 12/27/2022]
Abstract
Inorganic chemical cells (iCHELLs) are compartment structures consisting of polyoxometalates (POMs) and cations, offering structured and confined reaction spaces bounded by membranes. We have constructed a system capable of efficient anisotropic and hierarchical photo-induced electron transfer across the iCHELL membrane. Mimicking photosynthesis, our system uses proton gradients between the compartment and the bulk to drive efficient conversion of light into chemical energy, producing hydrogen upon irradiation. This illustrates the power of the iCHELL approach for catalysis, where the structure, compartmentalisation and variation in possible components could be utilised to approach a wide range of reactions.
Collapse
Affiliation(s)
- Keita Nakanishi
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.,Department of Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Geoffrey J T Cooper
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Laurie J Points
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Leanne G Bloor
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Leroy Cronin
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
36
|
Antagonistic chemical coupling in self-reconfigurable host-guest protocells. Nat Commun 2018; 9:3652. [PMID: 30194369 PMCID: PMC6128866 DOI: 10.1038/s41467-018-06087-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022] Open
Abstract
Fabrication of compartmentalised chemical systems with nested architectures and biomimetic properties has important implications for controlling the positional assembly of functional components, spatiotemporal regulation of enzyme cascades and modelling of proto-organelle behaviour in synthetic protocells. Here, we describe the spontaneous capture of glucose oxidase-containing proteinosomes in pH-sensitive fatty acid micelle coacervate droplets as a facile route to multi-compartmentalised host–guest protocells capable of antagonistic chemical and structural coupling. The nested system functions co-operatively at low-substrate turnover, while high levels of glucose give rise to pH-induced disassembly of the droplets, release of the incarcerated proteinosomes and self-reconfiguration into spatially organised enzymatically active vesicle-in-proteinosome protocells. Co-encapsulation of antagonistic enzymes within the proteinosomes produces a sequence of self-induced capture and host–guest reconfiguration. Taken together, our results highlight opportunities for the fabrication of self-reconfigurable host–guest protocells and provide a step towards the development of protocell populations exhibiting both synergistic and antagonistic modes of interaction. Multi-compartmentalised soft micro-systems are used as models of synthetic protocells. Here, the authors developed nested host–guest protocell constructs capable of self-reconfiguration in response to changes in pH generated by antagonistic modes of enzyme-mediated coupling.
Collapse
|
37
|
Belluati A, Craciun I, Liu J, Palivan CG. Nanoscale Enzymatic Compartments in Tandem Support Cascade Reactions in Vitro. Biomacromolecules 2018; 19:4023-4033. [DOI: 10.1021/acs.biomac.8b01019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Juan Liu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| |
Collapse
|
38
|
Nakanishi K, Cooper GJT, Points LJ, Bloor LG, Ohba M, Cronin L. Development of a Minimal Photosystem for Hydrogen Production in Inorganic Chemical Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keita Nakanishi
- WestCHEM School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
- Department of ChemistryFaculty of SciencesKyushu University 744 Motooka Nishi-ku Fukuoka Japan
| | - Geoffrey J. T. Cooper
- WestCHEM School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Laurie J. Points
- WestCHEM School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Leanne G. Bloor
- WestCHEM School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
| | - Masaaki Ohba
- Department of ChemistryFaculty of SciencesKyushu University 744 Motooka Nishi-ku Fukuoka Japan
| | - Leroy Cronin
- WestCHEM School of ChemistryUniversity of Glasgow University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
39
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
40
|
Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. LAB ON A CHIP 2018; 18:2488-2509. [PMID: 30066008 DOI: 10.1039/c8lc00028j] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.
Collapse
Affiliation(s)
- T Trantidou
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
41
|
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry 2018; 24:15706-15724. [DOI: 10.1002/chem.201801159] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine Institute of Industrial Promotion-Kawasaki 3-25-14 Tonomachi Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research Institute The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|
42
|
Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, Elani Y. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat Commun 2018; 9:1882. [PMID: 29760422 PMCID: PMC5951844 DOI: 10.1038/s41467-018-04282-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/10/2018] [Indexed: 11/16/2022] Open
Abstract
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components. Assembly of higher-order artificial vesicles can unlock new applications. Here, the authors use optical tweezers to construct user-defined 2D and 3D architectures of chemically distinct vesicles and demonstrate inter-vesicle communication and light-enabled compartment merging.
Collapse
Affiliation(s)
- Guido Bolognesi
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Mark S Friddin
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ali Salehi-Reyhani
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Yuval Elani
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Institute of Chemical Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,FABRICELL, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
43
|
Light-triggered enzymatic reactions in nested vesicle reactors. Nat Commun 2018; 9:1093. [PMID: 29545566 PMCID: PMC5854585 DOI: 10.1038/s41467-018-03491-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
Cell-sized vesicles have tremendous potential both as miniaturised pL reaction vessels and in bottom-up synthetic biology as chassis for artificial cells. In both these areas the introduction of light-responsive modules affords increased functionality, for example, to initiate enzymatic reactions in the vesicle interior with spatiotemporal control. Here we report a system composed of nested vesicles where the inner compartments act as phototransducers, responding to ultraviolet irradiation through diacetylene polymerisation-induced pore formation to initiate enzymatic reactions. The controlled release and hydrolysis of a fluorogenic β-galactosidase substrate in the external compartment is demonstrated, where the rate of reaction can be modulated by varying ultraviolet exposure time. Such cell-like nested microreactor structures could be utilised in fields from biocatalysis through to drug delivery.
Collapse
|
44
|
Menezes HM, Islam MJ, Takahashi M, Tamaoki N. Driving and photo-regulation of myosin-actin motors at molecular and macroscopic levels by photo-responsive high energy molecules. Org Biomol Chem 2018; 15:8894-8903. [PMID: 28902195 DOI: 10.1039/c7ob01293d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We employed an azobenzene based non-nucleoside triphosphate, AzoTP, in a myosin-actin motile system and demonstrated its efficiency as an energy molecule to drive and photo-regulate the myosin-actin motile function at the macroscopic level along with an in vitro motility assay. The AzoTP in its trans state induced shortening of a glycerinated muscle fibre whilst a cis isomer had no significant effect. Direct photoirradiation of a cis-AzoTP infused muscle fibre induced shortening triggered by a locally photo-generated trans-AzoTP in the muscle fibre. Furthermore, we designed and synthesized three new derivatives of AzoTPs that served as substrates for myosin by driving and photo-regulating the myosin-actin motile function at the molecular as well as the macroscopic level with varied efficiencies.
Collapse
Affiliation(s)
- Halley M Menezes
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.
| | | | | | | |
Collapse
|
45
|
Godoy-Gallardo M, York-Duran MJ, Hosta-Rigau L. Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles. Adv Healthc Mater 2018; 7. [PMID: 29205928 DOI: 10.1002/adhm.201700917] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Indexed: 12/25/2022]
Abstract
Artificial organelles created from a bottom up approach are a new type of engineered materials, which are not designed to be living but, instead, to mimic some specific functions inside cells. By doing so, artificial organelles are expected to become a powerful tool in biomedicine. They can act as nanoreactors to convert a prodrug into a drug inside the cells or as carriers encapsulating therapeutic enzymes to replace malfunctioning organelles in pathological conditions. For the design of artificial organelles, several requirements need to be fulfilled: a compartmentalized structure that can encapsulate the synthetic machinery to perform an enzymatic function, as well as a means to allow for communication between the interior of the artificial organelle and the external environment, so that substrates and products can diffuse in and out the carrier allowing for continuous enzymatic reactions. The most recent and exciting advances in architectures that fulfill the aforementioned requirements are featured in this review. Artificial organelles are classified depending on their constituting materials, being lipid and polymer-based systems the most prominent ones. Finally, special emphasis will be put on the intracellular response of these newly emerging systems.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Maria J. York-Duran
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| |
Collapse
|
46
|
Chen K, Bayaguud A, Li H, Chu Y, Zhang H, Jia H, Zhang B, Xiao Z, Wu P, Liu T, Wei Y. Improved peroxidase-mimic property: Sustainable, high-efficiency interfacial catalysis with H2O2 on the surface of vesicles of hexavanadate-organic hybrid surfactants. NANO RESEARCH 2018; 11:1313-1321. [DOI: 10.1007/s12274-017-1746-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/18/2017] [Accepted: 06/23/2017] [Indexed: 09/14/2024]
|
47
|
Peyret A, Ibarboure E, Le Meins J, Lecommandoux S. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700453. [PMID: 29375971 PMCID: PMC5770682 DOI: 10.1002/advs.201700453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/17/2017] [Indexed: 05/29/2023]
Abstract
Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)-b-poly(ethylene oxide) (PBut-b-PEO) and outer monolayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm2 s-1 at 25 °C and D = 2.3 ± 0.7 μm2 s-1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.
Collapse
Affiliation(s)
- Ariane Peyret
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Emmanuel Ibarboure
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Jean‐François Le Meins
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| | - Sebastien Lecommandoux
- Laboratoire de Chimie des Polymères OrganiquesLCPOUniversité de BordeauxCNRSBordeaux INPUMR 562916 Avenue Pey BerlandF‐33600PessacFrance
| |
Collapse
|
48
|
Zhu C, Taipaleenmäki EM, Zhang Y, Han X, Städler B. Interaction of cells with patterned reactors. Biomater Sci 2018; 6:793-802. [DOI: 10.1039/c7bm00838d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The patterning of subcompartmentalized enzyme-loaded reactors is illustrated and the effect of triggered encapsulated catalysis on adhering cells is reported.
Collapse
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | | | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| |
Collapse
|
49
|
Liu X, Formanek P, Voit B, Appelhans D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. Angew Chem Int Ed Engl 2017; 56:16233-16238. [DOI: 10.1002/anie.201708826] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/20/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Petr Formanek
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
50
|
Liu X, Formanek P, Voit B, Appelhans D. Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708826] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Petr Formanek
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers; Technische Universität Dresden; 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz-Institute für Polymerforschung Dresden e.V.; Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|