1
|
Shi J, Li K, Yu H, Han N, Yang T, Jiang X, Hao XQ, Chen Z, Wu G, Zhang H, Li B, Wang M. Ultra-High Metal-Ion Selectivity Induced by Intramolecular Cation-π Interactions for the One-Pot Synthesis of Precise Heterometallic Architectures. Angew Chem Int Ed Engl 2024:e202416150. [PMID: 39325549 DOI: 10.1002/anie.202416150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Heterometallic supramolecules, known for their unique synergistic effects, have shown broad applications in photochemistry, host-guest chemistry, and catalysis. However, there are great challenges to precisely construct heterometallic supramolecules rather than a statistical mixture, due to the limited metal-ion selectivity of coordination units. In particular, heterometallic architectures precisely encoded with different metal ions usually fail to form in a one-pot method when only one type of coordinated motif exists due to its poor metal-ion selectivity. Herein, we propose an effective intramolecular cation-π (ICπ) strategy and successfully constructed the heterometallic supramolecule Zn2Cu4L34 by the one-pot self-assembly of tritopic terpyridyl ligand L3 with Zn(II) and Cu(II), following a clear self-assembly mechanism in which only thermodynamic dimers ZnL12 and Cu2L22 were constructed with model ligands L1, L2, Zn(II) and Cu(II) with perfect self-sorting and an ultra-high metal-selectivity feature. The successful construction of the heterometallic supramolecule Zn2Cu4L34, in which the definite sequence of metal ions Zn(II) and Cu(II) is encoded in the one-pot method, will offer a novel approach to precisely construct heterometallic architectures.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Tianyi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 637553, Singapore
| | - Xin-Qi Hao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
2
|
Maitra PK, Bhattacharyya S, Hickey N, Mukherjee PS. Self-Assembly of a Water-Soluble Pd 16 Square Bicupola Architecture and Its Use in Aerobic Oxidation in Aqueous Medium. J Am Chem Soc 2024; 146:15301-15308. [PMID: 38785321 DOI: 10.1021/jacs.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Designing supramolecular architectures with uncommon geometries has always been a key goal in the field of metal-ligand coordination-driven self-assembly. It acquires added significance if functional building units are employed in constructing such architectures for fruitful applications. In this report, we address both these aspects by developing a water-soluble Pd16L8 coordination cage 1 with an unusual square orthobicupola geometry, which was used for selective aerobic oxidation of aryl sulfides. Self-assembly of a benzothiadiazole-based tetra-pyridyl donor L with a ditopic cis-[(tmeda)Pd(NO3)2] acceptor [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine] produced 1, and the geometry was determined by single-crystal X-ray diffraction study. Unlike the typically observed tri- or tetrafacial barrel, the present Pd16L8 coordination assembly features a distinctive structural topology and is a unique example of a water-soluble molecular architecture with a square orthobicupola geometry. Efficient and selective aerobic oxidation of sulfides to sulfoxides is an important challenge as conventional oxidation generally leads to the formation of sulfoxide along with toxic sulfone. Cage 1, designed with a ligand containing a benzothiadiazole moiety, demonstrates an ability to photogenerate reactive oxygen species (ROS) in water, thus enabling it to serve as a potential photocatalyst. The cage showed excellent catalytic efficiency for highly selective conversion of alkyl and aryl sulfides to their corresponding sulfoxides, therefore without the formation of toxic sulfones and other byproducts, under visible light in aqueous medium.
Collapse
Affiliation(s)
- Pranay Kumar Maitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Nabi S, Sofi FA, Jan Q, Bhat AY, Ingole PP, Bayati M, Bhat MA. The enhanced electrocatalytic performance of nanoscopic Cu 6Pd 12Fe 12 heterometallic molecular box encaged cytochrome c. NANOSCALE 2023; 16:411-426. [PMID: 38073595 DOI: 10.1039/d3nr03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 μA μM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4ē pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.
Collapse
Affiliation(s)
- Shazia Nabi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Qounsar Jan
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Aamir Y Bhat
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Maryam Bayati
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| |
Collapse
|
4
|
Chun H, Moon D. Zn(II)-Siloxane Clusters as Versatile Building Blocks for Carboxylate-Based Metal-Organic Frameworks. J Am Chem Soc 2023; 145:18598-18606. [PMID: 37552774 DOI: 10.1021/jacs.3c05950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Siloxanes have long been known for their highly desirable properties suited for a wide range of practical applications; however, their utilization as modular building blocks for crystalline open frameworks has been limited. In this study, a simple solvothermal pathway has been found to synthesize unprecedented Zn(II)-siloxane clusters supported by acetate ligands, [(RSiO2)8Zn8(CH3CO2)8] (R = Me or Ph). The same reaction using a dicarboxylate ligand such as 1,4-benzenedicarboxylate or 2,6-naphthalenedicarboxylate produces a new type of metal-organic framework, named SiMOF here, based on the [Si8Zn8] units. With the maximum connectivity of 8, the building block is shown to form topologically interesting structures such as octahedral supercages or uninodal 8-connected frameworks. All SiMOFs synthesized possess permanent porosity and high thermal stability and are naturally hydrophobic, as demonstrated by adsorptions of toluene, ethanol, methanol, and water vapor as well as water contact angle measurements. These promising characteristics for well-defined porous solids are attributed to metal-bound siloxane groups in the structural building units.
Collapse
Affiliation(s)
- Hyungphil Chun
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
6
|
Li M, Shi YQ, Gan X, Su L, Liang J, Wu H, You Y, Che M, Su P, Wu T, Zhang Z, Zhang W, Yao LY, Wang P, Xie TZ. Coordination-Driven Tetragonal Prismatic Cage and the Investigation on Host-Guest Complexation. Inorg Chem 2023; 62:4393-4398. [PMID: 36892430 DOI: 10.1021/acs.inorgchem.2c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties with a long cavity. The prism host can contain bisite or monosite guests through axial coordination binding of porphyrin and aromatic π interactions of terpyridine. The ligands and prismatic complexes were characterized by electrospray ionization mass spectrometry (ESI-MS), TWIM-MS, NMR spectrometry, and single-crystal X-ray diffraction analysis. The guest encapsulation was investigated through ESI-MS, NMR spectrometry, and transient absorption spectroscopy analysis. The binding constant and stability were determined by UV-Vis spectrometry and gradient tandem MS (gMS2) techniques. Based on the prism, a selectively confined condensation reaction was also performed and detected by NMR spectrometry. This study provides a new type of porphyrin- and terpyridine-based host that could be used for the detection of pyridyl- and amine-contained molecules and confined catalysis.
Collapse
Affiliation(s)
- Miao Li
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu-Qi Shi
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinye Gan
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Longbin Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jialin Liang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huiqi Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiting You
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Meizi Che
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Mohan B, Shanmugaraju S. Synthesis, characterization, and heparin-binding study of a self-assembled p-cymene-Ru(II) metallocycle based on a 4-amino-1,8-naphthalimide Tröger's base supramolecular scaffold. Dalton Trans 2023; 52:2566-2570. [PMID: 36330868 DOI: 10.1039/d2dt03079a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the very first example of a self-assembled p-cymene-Ru(II) metallocycle based on a green emitting 4-amino-1,8-naphthalimide Tröger's base (TBNap) supramolecular scaffold. A new cleft-shaped TBNap-derived di-4-picolyl donor was synthesized and reacted in a 2 : 2 stoichiometry ratio with a dinuclear Ru(II) acceptor (Ru-A) to generate a [2 + 2] self-assembled metallocycle (TBNap-Ru-MC) in good yield. Both TBNap and TBNap-Ru-MC showed positive solvatochromism in different solvents with varying polarities. In addition, the binding propensity of cationic TBNap-Ru-MC toward the heparin polyanion was determined using fluorescence titration studies. The initial fluorescence emission of TBNap-Ru-MC was quenched upon the gradual addition of the heparin polyanion, and the Stern-Volmer quenching constant (KSV) was calculated to be 3.97 × 105 M-1.
Collapse
Affiliation(s)
- Binduja Mohan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad-678557, Kerala, India.
| | | |
Collapse
|
8
|
Zhang D, Crawley MR, Oldacre AN, Kyle LJ, MacMillan SN, Cook TR. Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorg Chem 2023; 62:1766-1775. [PMID: 35699516 DOI: 10.1021/acs.inorgchem.2c01109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cofacial porphyrin catalysts for the Oxygen Reduction Reaction (ORR) formed via coordination-driven self-assembly have so far been limited to designs with fourfold symmetry, where four molecular clips bridge two porphyrin sites. We have synthesized six PynPhm (Py = pyridyl, Ph = phenyl) metalloporphyrin prisms (Co2+, Zn2+) bridged by molecular clips containing two Rh3+ centers. Four of these structures are lower symmetry, with the Py3Ph and Py2Ph2 prisms containing three and two molecular clips, respectively. The Co2+ species were evaluated for their ORR activity. Cyclic and hydrodynamic voltammetry studies of heterogeneous catalyst inks in aqueous media revealed marked differences in selectivity from ∼5% (Py3Ph) to ∼37% (Py2Ph2) for the formation of H2O2. The single-crystal X-ray structure of the Zn2 Py2Ph2 prism shows an offset between the porphyrin faces. This structural feature may be responsible for the change in selectivity, consistent with previous studies of covalently tethered cofacial porphyrins that have shown that geometry is a critical determinant of two-electron/two-proton versus four-electron/four-proton pathways. Extraction of standard rate constants ks for the ORR revealed a cofacial enhancement of ∼2 orders of magnitude over mononuclear Co2+ tetrapyridyl porphyrin. Even though all the prisms described here use the same molecular clip, the resultant structures, and thus the reactivity for the ORR, differ significantly based on the number and orientation of pyridyl donor groups on the porphyrins, highlighting how coordination-driven self-assembly can be used to rapidly tune dinuclear catalysts.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Amanda N Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lea J Kyle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
10
|
Blackburn PT, Lipke MC. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co II and Zn II porphyrins. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2128786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- P. Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
11
|
Wang G, Yang Y, Liu H, Chen M, Jiang Z, Bai Q, Yuan J, Jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO
2
Reduction Activity. Angew Chem Int Ed Engl 2022; 61:e202205851. [DOI: 10.1002/anie.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Yunna Yang
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
| | - Hui Liu
- School of Metallurgy and Environment Central South University Changsha Hunan 410083 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry Hunan Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution Changsha Hunan 410083 China
| |
Collapse
|
12
|
Wang G, Yang Y, liu H, Chen M, Jiang Z, Bai Q, Yuan J, jiang Z, Li Y, Wang P. Modular Construction of a Tessellated Octahedron and its Hierarchical Spherical Aggregate Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guotao Wang
- Central South University School of Metallurgy and Environment CHINA
| | - Yunna Yang
- Central South University School of Metallurgy and Environment CHINA
| | - Hui liu
- Central South University School of Metallurgy and Environment CHINA
| | - Mingzhao Chen
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Zhiyuan Jiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Qixia Bai
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhilong jiang
- Guangzhou University Institute of Environmental Research at Greater Bay Area CHINA
| | - Yiming Li
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Pingshan Wang
- Central South University College of Chemistry and Chemical Engineering 932 S. Lushan Rd. 410083 Changsha CHINA
| |
Collapse
|
13
|
Zhang Z, Ma L, Fang F, Hou Y, Lu C, Mu C, Zhang Y, Liu H, Gao K, Wang M, Zhang Z, Li X, Zhang M. Porphyrin-Based Multicomponent Metallacage: Host-Guest Complexation toward Photooxidation-Triggered Reversible Encapsulation and Release. JACS AU 2022; 2:1479-1487. [PMID: 35783178 PMCID: PMC9241011 DOI: 10.1021/jacsau.2c00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of supramolecular hosts with effective host-guest properties is crucial for their applications. Herein, we report the preparation of a porphyrin-based metallacage, which serves as a host for a series of polycyclic aromatic hydrocarbons (PAHs). The association constant between the metallacage and coronene reaches 2.37 × 107 M-1 in acetonitrile/chloroform (ν/ν = 9/1), which is among the highest values in metallacage-based host-guest complexes. Moreover, the metallacage exhibits good singlet oxygen generation capacity, which can be further used to oxidize encapsulated anthracene derivatives into anthracene endoperoxides, leading to the release of guests. By employing 10-phenyl-9-(2-phenylethynyl)anthracene whose endoperoxide can be converted back by heating as the guest, a reversible controlled release system is constructed. This study not only gives a type of porphyrin-based metallacage that shows desired host-guest interactions with PAHs but also offers a photooxidation-responsive host-guest recognition motif, which will guide future design and applications of metallacages for stimuli-responsive materials.
Collapse
Affiliation(s)
- Zeyuan Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Lingzhi Ma
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Fang Fang
- Instrumental
Analysis Center of Shenzhen University, Shenzhen 518055, P. R. China
| | - Yali Hou
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chenjie Lu
- Key
Laboratory of Adsorption and Separation Materials and Technologies
of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chaoqun Mu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yafei Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haifei Liu
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ke Gao
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zixi Zhang
- Department
of Dermatology, The First Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P.
R. China
| | - Xiaopeng Li
- College of
Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Mingming Zhang
- State
Key Laboratory for Mechanical Behavior of Materials, Shaanxi International
Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
14
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Zhang X, Takahashi S, Aratsu K, Kikuchi I, Sato H, Hiraoka S. Cyclization or bridging: which occurs faster is the key to the self-assembly mechanism of Pd 6L 3 coordination prisms. Phys Chem Chem Phys 2022; 24:2997-3006. [PMID: 35037923 DOI: 10.1039/d1cp04448f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly processes of Pd6L3 coordination prisms consisting of cis-protected Pd(II) complexes and porphyrin-based tetratopic ligands with four 3-pyridyl or 4-pyridyl groups (L) were investigated by experimental and numerical methods, QASAP (quantitative analysis of self-assembly process) and NASAP (numerical analysis of self-assembly process), respectively. It was found that contrary to common intuition macrocyclization takes place faster than the bridging reaction in the prism assembly and that the bridging reaction occurring before the macrocyclization tends to produce kinetically trapped species. A numerical simulation demonstrates that the relative magnitude of the rate constants between the macrocyclization and the bridging reaction is the key factor that determines whether the self-assembly leads to the thermodynamically most stable prism or to kinetically trapped species. Finding the key elementary reactions that largely affect the selection of the major assembly pathway is helpful to rationally control the products under kinetic control via modulation of the energy landscape.
Collapse
Affiliation(s)
- Xinman Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Keisuke Aratsu
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Isamu Kikuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
16
|
Gupta G, Sun Y, Das A, Stang PJ, Lee CY. BODIPY based Metal-Organic Macrocycles and Frameworks: Recent Therapeutic Developments. Coord Chem Rev 2022; 452:214308. [PMID: 35001940 PMCID: PMC8730361 DOI: 10.1016/j.ccr.2021.214308] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Boron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research. In the end, we also emphasized the possible practical challenges involved during the synthetic process, based on our experience on dealing with BODIPY molecules and steps to overcome them along with their future potentials. This review will significantly help our fellow research groups, especially the budding researchers, to quickly and comprehensively get the near to wholesome picture of BODIPY based MOCs and MOFs and their present status in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yan Sun
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
17
|
Kumar A, Banerjee R, Zangrando E, Mukherjee PS. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages. Inorg Chem 2022; 61:2368-2377. [PMID: 35029966 DOI: 10.1021/acs.inorgchem.1c03797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Pal M, Wadawale A, Chauhan N, Majumdar A, Subramanian M, Bhuvanesh N, Dey S. Anticancer potential of Pd and Pt metallo-macrocycles of phosphines and 4,4΄-dipyridyldiselenide. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Vidal A, Battistin F, Balducci G, Iengo E, Alessio E. A Flexible Synthetic Strategy for the Preparation of Heteroleptic Metallacycles of Porphyrins. Inorg Chem 2021; 60:11503-11513. [PMID: 34264053 PMCID: PMC8389808 DOI: 10.1021/acs.inorgchem.1c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a stepwise synthetic strategy for the preparation of the unprecedented heteroleptic 2+2 neutral metallacycle [{t,c,c-RuCl2(CO)2}2(4'cisDPyP)(3'cisDPyP)] (5), in which two different 5,10-meso-dipyridylporphyrins, 4'cisDPyP [i.e., 5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin] and 3'cisDPyP [i.e., 5,10-bis(3'-pyridyl)-15,20-diphenylporphyrin], are joined through equal 90°-angular Ru(II) connectors. The synthesis of 5 was accomplished through the preparation of a reactive ditopic intermediate in which one of the two pyridylporphyrins is linked to two neutral ruthenium fragments, each having one residual readily available coordination site (a dmso-O). Thus, compound 5 was obtained under mild conditions through two complementary routes: either by treatment of [{t,c,c-RuCl2(CO)2(dmso-O)}2(4'cisDPyP)] (3) with 1 equiv of 3'cisDPyP or, alternatively, by treatment of [{t,c,c-RuCl2(CO)2(dmso-O)}2(3'cisDPyP)] (4) with 1 equiv of 4'cisDPyP. Heteroleptic metallacycle 5 was isolated in pure form in acceptable yield and fully characterized. Spectroscopic data and a molecular model show that 5 has an L-shaped geometry, with the two porphyrins almost orthogonal to one another. The modular approach that we established is highly flexible and opens the way to several possible exciting developments.
Collapse
Affiliation(s)
- Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Federica Battistin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
20
|
Rubbiani R, Wu W, Naik A, Larocca M, Schneider L, Padrutt R, Babu V, König C, Hinger D, Maake C, Ferrari S, Gasser G, Spingler B. Studying the cellular distribution of highly phototoxic platinated metalloporphyrins using isotope labelling. Chem Commun (Camb) 2021; 56:14373-14376. [PMID: 33140750 DOI: 10.1039/d0cc05196a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel tetraplatinated metalloporphyrin-based photosensitizers (PSs) are reported, which show excellent phototoxic indexes (PIs) up to 5800 against HeLa cells, which is, to the best of our knowledge, the highest value reported for any porphyrin so far. Furthermore, 67Zn isotope labelling allowed the determination of the ratio of zinc to platinum inside the cells using ICP-MS.
Collapse
Affiliation(s)
- Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Zurich CH 8057, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Han BL, Wang Z, Gupta RK, Feng L, Wang S, Kurmoo M, Gao ZY, Schein S, Tung CH, Sun D. Precise Implantation of an Archimedean Ag@Cu 12 Cuboctahedron into a Platonic Cu 4Bis(diphenylphosphino)hexane 6 Tetrahedron. ACS NANO 2021; 15:8733-8741. [PMID: 33909407 DOI: 10.1021/acsnano.1c00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precision loading of nanoclusters in confined spaces, which has been enthusiastically pursued in the scientific realm, is still associated with some mysteries of "how", "when", and "why". Here, we isolated two similar heterometallic cluster-in-cage compounds, [Ag@Cu12S8@Cu4(dpph)6]X (X = OH, SD/AgCu16a and X = PF6, SD/AgCu16b; SD = SunDi), by use of an antigalvanic reaction between organometallic [PhC≡CCu]n and Ph3CSH with elemental silver. Both compounds are formed by fitting an Archimedean Ag@Cu12 cuboctahedral cluster into a Platonic Cu4(dpph)6 tetrahedral cage [dpph = bis(diphenylphosphino)hexane]. The Ag@Cu12 cluster is a hollow cuboctahedral Cu12 cage filled with a central AgI atom, and all eight triangular faces of the Ag@Cu12 cuboctahedron are triply capped by eight S2- ions, four of which in a tetrahedral array further internally pillar four Cu vertices of the outer Cu4(dpph)6 tetrahedron, fixing the cluster in the cage. Both compounds can be deemed as molecular fragments excised from porous nanomaterials filled with discrete nanoclusters, thus providing more details for understanding the confined growth of atomically precise nanoclusters. Electrospray ionization mass spectrometry (ESI-MS) reveals that the AgCu16 cluster is quite stable in CH2Cl2 and can stepwise lose dpph ligand in the gas phase under increased collision energy. This work not only presents a precise aggregation of metal atoms in a confined cavity to form a cluster-in-cage compound but also provides deep insights into the binding and geometry matching between clusters and cages in one entity.
Collapse
Affiliation(s)
- Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR 7177, 4 rue Blaise Pascal, Strasbourg 67008 Cedex, France
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, People's Republic of China
| | - Stan Schein
- California NanoSystems Institute and Department of Psychology, University of California, Los Angeles, California 90095-1563, United States
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
22
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew Chem Int Ed Engl 2021; 60:14109-14116. [PMID: 33834590 DOI: 10.1002/anie.202103822] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/07/2022]
Abstract
Fullerene extracts obtained from fullerene soot lack their real application due to their poor solubility in common solvents and difficulty in purification. Encapsulation of these extracts in a suitable host is an important approach to address these issues. We present a new Pd6 barrel (1), which is composed of three 1,4-dihydropyrrolo[3,2-b]pyrrole panels, clipped through six cis-PdII acceptors. Large open windows and cavity make it an efficient host for a large guest. Favorable interactions between the ligand and fullerene (C60 and C70 ) allows the barrel to encapsulate fullerene efficiently. Thorough investigation reveals that barrel 1 has a stronger binding affinity towards C70 over C60 , resulting in the predominant extraction of C70 from a mixture of the two. Finally, the fullerene encapsulated barrels C60 ⊂1 and C70 ⊂1 were found to be efficient for visible-light-induced singlet oxygen generation. Such preferential binding of C70 and photosensitizing ability of C60 ⊂1 and C70 ⊂1 are noteworthy.
Collapse
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
23
|
Purba PC, Maity M, Bhattacharyya S, Mukherjee PS. A Self‐Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene‐Encapsulated Barrel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Manoranjan Maity
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
24
|
Wang H, Wang K, Xu Y, Wang W, Chen S, Hart M, Wojtas L, Zhou LP, Gan L, Yan X, Li Y, Lee J, Ke XS, Wang XQ, Zhang CW, Zhou S, Zhai T, Yang HB, Wang M, He J, Sun QF, Xu B, Jiao Y, Stang PJ, Sessler JL, Li X. Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra. J Am Chem Soc 2021; 143:5826-5835. [PMID: 33848163 DOI: 10.1021/jacs.1c00625] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parastichy, the spiral arrangement of plant organs, is an example of the long-range apparent order seen in biological systems. These ordered arrangements provide scientists with both an aesthetic challenge and a mathematical inspiration. Synthetic efforts to replicate the regularity of parastichy may allow for molecular-scale control over particle arrangement processes. Here we report the packing of a supramolecular truncated cuboctahedron (TCO) into double-helical (DH) nanowires on a graphite surface with a non-natural parastichy pattern ascribed to the symmetry of the TCOs and interactions between TCOs. Such a study is expected to advance our understanding of the design inputs needed to create complex, but precisely controlled, hierarchical materials. It is also one of the few reported helical packing structures based on Platonic or Archimedean solids since the discovery of the Boerdijk-Coxeter helix. As such, it may provide experimental support for studies of packing theory at the molecular level.
Collapse
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Kun Wang
- Departments of Physics and Astronomy & Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Yaping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shaohua Chen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthew Hart
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lin Gan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Juhoon Lee
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xian-Sheng Ke
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shasha Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yang Jiao
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Kumar A, Saha R, Mukherjee PS. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Chem Sci 2021; 12:5319-5329. [PMID: 34163765 PMCID: PMC8179592 DOI: 10.1039/d1sc00097g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Designing artificial light harvesting systems with the ability to utilize the output energy for fruitful application in aqueous medium is an intriguing topic for the development of clean and sustainable energy. We report here facile synthesis of three prismatic molecular cages as imminent supramolecular optoelectronic materials via two-component coordination-driven self-assembly of a new tetra-imidazole donor (L) in combination with 180°/120° di-platinum(ii) acceptors. Self-assembly of 180° trans-Pt(ii) acceptors A1 and A2 with L leads to the formation of cages Pt4 L 2(1a) and Pt8 L 2(2a) respectively, while 120°-Pt(ii) acceptor A3 with L gives the Pt8 L 2(3a) metallacage. PF6 - analogues (1b, 2b and 3b) of the metallacages possess a high molar extinction coefficient and large Stokes shift. 1b-3b are weakly emissive in dilute solution but showed aggregation induced emission (AIE) in a water/MeCN mixture as well as in the solid state. AIE active 2b and 3b in aqueous (90% water/MeCN mixture) medium act as donors for fabricating artificial light harvesting systems via Förster resonance energy transfer (FRET) with organic dye rhodamine-B (RhB) with high energy efficiency and good antenna effect. The metallacages 2b and 3b represent an interesting platform to fabricate new generation supramolecular aqueous light harvesting systems with high antenna effect. Finally, the harvested energy of the LHSs (2b + RhB) and (3b + RhB) was utilized successfully for efficient visible light induced photo-oxidative cross coupling cyclization of N,N-dimethylaniline (4) with a series of N-alkyl/aryl maleimides (5) in aqueous acetonitrile with dramatic enhancement in yields compared to the reactions with RhB or cages alone.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
26
|
Chen M, Cao JN, Li S, Liu D, Wang J, Zhao H, Wang G, Wu T, Jiang Z, Wang P. Customized self-assembled molecules: rim adjustable coronal polygons with multiple-folds symmetry. Org Chem Front 2021. [DOI: 10.1039/d1qo01316e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three desired discrete metallomacrocyclic wreaths with four-, five- and six-fold symmetry were successfully realized in a controlled fashion.
Collapse
Affiliation(s)
- Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jia-nan Cao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Suqing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guotao Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
27
|
Jia PP, Xu L, Hu YX, Li WJ, Wang XQ, Ling QH, Shi X, Yin GQ, Li X, Sun H, Jiang Y, Yang HB. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J Am Chem Soc 2020; 143:399-408. [DOI: 10.1021/jacs.0c11370] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
28
|
Hiraoka S, Takahashi S, Sato H. Coordination Self-Assembly Processes Revealed by Collaboration of Experiment and Theory: Toward Kinetic Control of Molecular Self-Assembly. CHEM REC 2020; 21:443-459. [PMID: 33241912 DOI: 10.1002/tcr.202000124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
The importance of the collaboration of experiment and theory has been proven in many examples in science and technology. Here, such a new example is shown in the investigation of molecular self-assembly process, which is a complicated multi-step chemical reaction occurring in the reaction network composed of a huge number of intermediates. An experimental method, QASAP (quantitative analysis of self-assembly process), developed by us and a numerical approach, NASAP (numerical analysis of self-assembly process), that analyzes the experimental data obtained by QASAP to draw detail molecular self-assembly pathways, which was also developed by us, are introduced, and their application to the investigation of Pd(II)-mediated coordination assemblies are presented. Further, the possibility of the prediction of the outcomes of molecular self-assembly by varying the reaction conditions is also demonstrated. Finally, a future direction in the field of artificial molecular self-assembly based on pathway-dependent self-assembly, that is, kinetic control of molecular self-assembly is discussed.
Collapse
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan.,Elements Strategy Initiative for Catalyst and Batteries, Kyoto University, Kyoto, 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
29
|
Wu Y, Zhou J, Li E, Wang M, Jie K, Zhu H, Huang F. Selective Separation of Methylfuran and Dimethylfuran by Nonporous Adaptive Crystals of Pillararenes. J Am Chem Soc 2020; 142:19722-19730. [DOI: 10.1021/jacs.0c09757] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
30
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
31
|
Zheng W, Yang X, Wu G, Cheng L. Controlled Self‐Assembly of Metallacycle‐Bridged Gold Nanoparticles for Surface‐Enhanced Raman Scattering. Chemistry 2020; 26:11695-11700. [DOI: 10.1002/chem.202002248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zheng
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xiao‐Lei Yang
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Gui‐Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lin Cheng
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| |
Collapse
|
32
|
Tian J, Liu L, Zhou K, Hong Z, Chen Q, Jiang F, Yuan D, Sun Q, Hong M. Metal-organic tube or layered assembly: reversible sheet-to-tube transformation and adaptive recognition. Chem Sci 2020; 11:9818-9826. [PMID: 34094242 PMCID: PMC8162108 DOI: 10.1039/d0sc01176b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Rational preparation of an adaptive cavity-like enzyme is a great challenge for chemists. Herein, a new self-assembly strategy for the rational preparation of metal-organic tubes with nano-channels has been developed; both 1D metal-organic tube and corresponding 2D layered assemblies can be selectively synthesized driven by different templates; reversible sheet-to-tube transformation can be realized and the key intermediate has been identified. Furthermore, the newly formed nano-channel displays excellent polarity-selectivity for encapsulation of guest molecules, and can be further expanded or contracted through guest-driven adaptive deformation; even induced by very similar guest molecules, the adaptive deformations can also be obviously distinguished. Finally, the key chemicals benzene/hexane with a similar size can also be effectively separated by such nano-channels in the liquid phase. Our work not only provides a new synthetic strategy for the rational synthesis of metal-organic tubes with a reversible sheet-to-tube transformation character, but also gives a potential method for the construction of adaptive host-like enzymes and an in-depth understanding of the nature of adaptive host and guest molecules.
Collapse
Affiliation(s)
- Jiayue Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of the Chinese Academy of Sciences Beijing 100049 China
- Zhengzhou University of Light Industry Zhengzhou 450001 P. R. China
| | - Luyao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kang Zhou
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences Xiamen 361021 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qingfu Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
33
|
Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213165] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Li XZ, Zhou LP, Hu SJ, Cai LX, Guo XQ, Wang Z, Sun QF. Metal ion adaptive self-assembly of photoactive lanthanide-based supramolecular hosts. Chem Commun (Camb) 2020; 56:4416-4419. [DOI: 10.1039/d0cc00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metal-adaptive self-assembly and post-assembly transmetallation modification of functional lanthanide-porphyrin hosts were presented.
Collapse
Affiliation(s)
- Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- People's Republic of China
| |
Collapse
|
35
|
Kumar A, Zangrando E, Mukherjee PS. Self-assembled Pd3L2 cages having flexible tri-imidazole donors. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Tang JH, Ni R, He YQ, Vanderlinden RT, Li Y, Shi B, Li ZY, Wang H, Li X, Sun Y, Zhong YW, Stang PJ. Metal-Organic Pt(II) Hexagonal-Prism Macrocycles and Their Photophysical Properties. Inorg Chem 2019; 58:13376-13381. [PMID: 31532649 PMCID: PMC6988834 DOI: 10.1021/acs.inorgchem.9b02267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we present the formation of two open-ended hexagonal-prism tubular macrocycles by the [6 + 12] self-assembly of the symmetric ∼120° organic ligand donor with ∼90° Pt(II) acceptor in a 1:2 ratio. The assembled structures were characterized by multinuclear NMR (1H NMR, 31P{1H} NMR, and 1H-1H COSY NMR), electrospray ionization mass spectrometry (ESI-TOF-MS), traveling wave ion mobility-mass spectrometry (TWIM-MS), and transmission electron microscopy. Molecular modeling was further conducted to get insight into their structured characteristics. We also examined their photophysical properties.
Collapse
Affiliation(s)
- Jian-Hong Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ruidong Ni
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Yan-Qin He
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng, Shandong 252000, China
| | - Ryan T. Vanderlinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yanrong Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Bingbing Shi
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhong-Yu Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Heng Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Yue Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Wang H, Liu CH, Wang K, Wang M, Yu H, Kandapal S, Brzozowski R, Xu B, Wang M, Lu S, Hao XQ, Eswara P, Nieh MP, Cai J, Li X. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. J Am Chem Soc 2019; 141:16108-16116. [PMID: 31509694 DOI: 10.1021/jacs.9b08484] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three dimensional (3D) supramolecules with giant cavities are attractive due to their wide range of applications. Herein, we used pentatopic terpyridine ligands with three types of coordination moieties to assemble two giant supramolecular hexagonal prisms with a molecular weight up to 42 608 and 43 569 Da, respectively. Within the prisms, two double-rimmed Kandinsky Circles serve as the base surfaces as well as the templates for assisting the self-sorting during the self-assembly. Additionally, hierarchical self-assembly of these supramolecular prisms into tubular-like nanostructures was fully studied by scanning tunneling microscopy (STM) and small-angle X-ray scattering (SAXS). Finally, these supramolecular prisms show good antimicrobial activities against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis).
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Chung-Hao Liu
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Kun Wang
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Minghui Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Mu-Ping Nieh
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jianfeng Cai
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
38
|
Zhu JL, Xu L, Ren YY, Zhang Y, Liu X, Yin GQ, Sun B, Cao X, Chen Z, Zhao XL, Tan H, Chen J, Li X, Yang HB. Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nat Commun 2019; 10:4285. [PMID: 31537803 PMCID: PMC6753206 DOI: 10.1038/s41467-019-12204-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
The preparation of fluorescent discrete supramolecular coordination complexes (SCCs) has attracted considerable attention within the fields of supramolecular chemistry, materials science, and biological sciences. However, many challenges remain. For instance, fluorescence quenching often occurs due to the heavy-atom effect arising from the Pt(II)-based building block in Pt-based SCCs. Moreover, relatively few methods exist for tuning of the emission wavelength of discrete SCCs. Thus, it is still challenging to construct discrete SCCs with high fluorescence quantum yields and tunable fluorescence wavelengths. Here we report nine organoplatinum fluorescent metallacycles that exhibit high fluorescence quantum yields and tunable fluorescence wavelengths through simple regulation of their photoinduced electron transfer (PET) and intramolecular charge transfer (ICT) properties. Moreover, 3D fluorescent films and fluorescent inks for inkjet printing were fabricated using these metallacycles. This work provides a strategy to solve the fluorescence quenching problem arising from the heavy-atom effect of Pt(II), and offers an alternative approach to tune the emission wavelengths of discrete SCCs in the same solvent. Fluorescent supramolecular coordination complexes are of interest for chemical sensing and optical devices. Here the authors synthesize nine organoplatinum metallacycles with high quantum yields, whose fluorescence wavelengths are tuned through manipulation of their photoinduced electron transfer and intramolecular charge transfer properties.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.
| | - Yuan-Yuan Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Ying Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100050, China
| | - Xi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.,Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Bin Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Xiaodan Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhuang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100050, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
39
|
Wang H, Li Y, Yu H, Song B, Lu S, Hao XQ, Zhang Y, Wang M, Hla SW, Li X. Combining Synthesis and Self-Assembly in One Pot To Construct Complex 2D Metallo-Supramolecules Using Terpyridine and Pyrylium Salts. J Am Chem Soc 2019; 141:13187-13195. [PMID: 31345024 DOI: 10.1021/jacs.9b05682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot. The high compatibility of this pair of interactions smoothly and efficiently converted three and four types of components into the desired complex structures, which are supramolecular Kandinsky Circles and spiderwebs, respectively.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Yuan Zhang
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Saw-Wai Hla
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
40
|
Cages vs. Prisms: Controlling the Formation of Metallosupramolecular Architectures with Ligand Side-Chains. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Vidal A, Battistin F, Balducci G, Demitri N, Iengo E, Alessio E. Rare Example of Stereoisomeric 2 + 2 Metallacycles of Porphyrins Featuring Chiral-at-Metal Octahedral Ruthenium Corners. Inorg Chem 2019; 58:7357-7367. [PMID: 31090413 DOI: 10.1021/acs.inorgchem.9b00487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this paper, we describe three new stereoisomers of the already known 2 + 2 metallacycle of porphyrins [ trans, cis, cis-RuCl2(CO)2(4' cisDPyP)]2 (2, 4' cisDPyP = 5,10-bis(4'-pyridyl)-15,20-diphenylporphyrin), namely [{ trans,cis,cis-RuCl2(CO)2}(4' cisDPyP)2{ cis,cis,cis-RuCl2(CO)2}] (14) and [ cis,cis,cis-RuCl2(CO)2(4' cisDPyP)]2 (15), in which the chiral { cis,cis,cis-RuCl2(CO)2} fragment has either a C or A handedness. The least abundant 15 exists as a mixture of two stereoisomers defined as alternate (15alt, both porphyrins are trans to a Cl and a CO) and pairwise (15pw, one porphyrin is trans to two chlorides and the other to two carbonyls), each one as a statistical mixture of meso ( AC) and racemic ( AA and CC) diastereomers. Remarkably, both 14 and 15 are-to the best of our knowledge-unprecedented examples of 2D metallacycles with octahedral chiral-at-metal connectors, and 14 is the first example of a 2 + 2 molecular square with stereoisomeric Ru(II) corners. Whereas 2 is selectively obtained by treatment of trans,cis,cis-RuCl2(CO)2(dmso-O)2 (1) with 4' cisDPyP, 14 and 15 were obtained, together with 2 (major product), using stereoisomers of 1, either cis,cis,trans-RuCl2(CO)2(dmso-S)2 (5) or cis,cis,cis-RuCl2(CO)2(dmso)2 (6), as precursors. From a general point of view, this work demonstrates that-even for the smallest 2 + 2 metallacycle and using a symmetric organic linker-several stereoisomers can be generated when using octahedral metal connectors of the type {MA2B2} that are not stereochemically rigid. As a proof-of-concept, it also opens the way to new-even though challenging-opportunities: unprecedented and yet unexplored chiral metallosupramolecular assemblies can be obtained and eventually exploited (e.g., for supramolecular catalysis) by using stereogenic octahedral metal connectors amenable to become chiral centers.
Collapse
Affiliation(s)
- Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Federica Battistin
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Nicola Demitri
- Elettra - Synchrotron Light Source , S.S. 14 Km 163.5, Area Science Park , 34149 Basovizza, Trieste , Italy
| | - Elisabetta Iengo
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| |
Collapse
|
42
|
Sakata Y, Yamamoto R, Saito D, Tamura Y, Maruyama K, Ogoshi T, Akine S. Metallonanobelt: A Kinetically Stable Shape-Persistent Molecular Belt Prepared by Reversible Self-Assembly Processes. Inorg Chem 2018; 57:15500-15506. [DOI: 10.1021/acs.inorgchem.8b02804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Wang Y, Ang PL, Wong CY, Yip JHK. Gold-Clip-Assisted Self-Assembly and Proton-Coupled Expansion-Contraction of a Cofacial Fe III -Porphyrin Cage. Chemistry 2018; 24:18623-18628. [PMID: 30218534 DOI: 10.1002/chem.201803501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/11/2018] [Indexed: 01/10/2023]
Abstract
A molecular cage {Au8 (μ-PAnP)4 [Fe(H2 O)2 (TPyP)]2 (OTf)2 }(OTf)8 (1) composed of two cofacial FeIII -porphyrin can be self-assembled from the gold clip [Au2 (PAnP)Cl2 ] and Fe3+ (H2 O)2 (TPyP)+ (PAnP=9,10-bis(diphenylphosphino)anthracene, TPyP=meso-tetra(4-pyridyl)porphyrinato). The height of the cage is 8.579(3) Å. The addition of a base to a solution of the cage leads to a contracted and twisted cage {[Au8 (μ-PAnP)4 [Fe2 (μ-O)(TPyP)2 ]}(OTf)8 (2), which has a height of ≈4.4 Å and porphyrin-porphyrin torsional angle of ≈20°. The contracted cage can be synthesized independently from the gold clip and Fe2 (μ-O)(TPyP)2 . The spectroscopy and crystal structure of an unclipped analog of the contracted cage, {[AuPPh3 )8 [Fe2 (μ-O)(TPyP)2 ]}(OTf)8 (3), supports the DFT-calculated structure of 2. NMR and UV/Vis titrations show that the expansion-untwisting and contraction-twisting of the cage is reversible.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Pau Lin Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - John H K Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
44
|
Hu Y, Zhang X, Xu L, Yang H. Coordination‐Driven Self‐Assembly of Functionalized Supramolecular Metallacycles: Highlighted Research during 2010–2018. Isr J Chem 2018. [DOI: 10.1002/ijch.201800102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yi‐Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| | - Xiangyi Zhang
- Department of Chemical and Materials EngineeringChinese Culture University Taipei China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Rd. 200062 Shanghai P. R. China
| |
Collapse
|
45
|
Bhat IA, Devaraj A, Zangrando E, Mukherjee PS. A Discrete Self-Assembled Pd12
Triangular Orthobicupola Cage and its Use for Intramolecular Cycloaddition. Chemistry 2018; 24:13938-13946. [DOI: 10.1002/chem.201803039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Anthonisamy Devaraj
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences; via, Giorgieri 1 34127 Trieste Italy
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore Karnataka 560012 India
| |
Collapse
|
46
|
Wu GY, Chen LJ, Xu L, Zhao XL, Yang HB. Construction of supramolecular hexagonal metallacycles via coordination-driven self-assembly: Structure, properties and application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Sanz S, O'Connor HM, Comar P, Baldansuren A, Pitak MB, Coles SJ, Weihe H, Chilton NF, McInnes EJL, Lusby PJ, Piligkos S, Brechin EK. Modular [Fe III8M II6] n+ (M II = Pd, Co, Ni, Cu) Coordination Cages. Inorg Chem 2018; 57:3500-3506. [PMID: 29323893 DOI: 10.1021/acs.inorgchem.7b02674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reaction of the simple metalloligand [FeIIIL3] [HL = 1-(4-pyridyl)butane-1,3-dione] with a variety of different MII salts results in the formation of a family of heterometallic cages of formulae [FeIII8PdII6L24]Cl12 (1), [FeIII8CuII6L24(H2O)4Br4]Br8 (2), [FeIII8CuII6L24(H2O)10](NO3)12 (3), [FeIII8NiII6L24(SCN)11Cl] (4), and [FeIII8CoII6L24(SCN)10(H2O)2]Cl2 (5). The metallic skeleton of each cage describes a cube in which the FeIII ions occupy the eight vertices and the MII ions lie at the center of the six faces. Direct-current magnetic susceptibility and magnetization measurements on 3-5 reveal the presence of weak antiferromagnetic exchange between the metal ions in all three cases. Computational techniques known in theoretical nuclear physics as statistical spectroscopy, which exploit the moments of the Hamiltonian to calculate relevant thermodynamic properties, determine JFe-Cu = 0.10 cm-1 for 3 and JFe-Ni = 0.025 cm-1 for 4. Q-band electron paramagnetic resonance spectra of 1 reveal a significantly wider spectral width in comparison to [FeL3], indicating that the magnitude of the FeIII zero-field splitting is larger in the heterometallic cage than in the monomer.
Collapse
Affiliation(s)
- Sergio Sanz
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Helen M O'Connor
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Priyanka Comar
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Amgalanbaatar Baldansuren
- Engineering and Physical Sciences Research Council (EPSRC) National Electron Paramagnetic Resonance (EPR) Facility, School of Chemistry and Photon Science Institute , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Mateusz B Pitak
- UK National Crystallography Service, Chemistry , University of Southampton , Highfield Campus , Southampton SO17 1BJ , U.K
| | - Simon J Coles
- UK National Crystallography Service, Chemistry , University of Southampton , Highfield Campus , Southampton SO17 1BJ , U.K
| | - Høgni Weihe
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen DK-2100 , Denmark
| | - Nicholas F Chilton
- Engineering and Physical Sciences Research Council (EPSRC) National Electron Paramagnetic Resonance (EPR) Facility, School of Chemistry and Photon Science Institute , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Eric J L McInnes
- Engineering and Physical Sciences Research Council (EPSRC) National Electron Paramagnetic Resonance (EPR) Facility, School of Chemistry and Photon Science Institute , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Paul J Lusby
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| | - Stergios Piligkos
- Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen DK-2100 , Denmark
| | - Euan K Brechin
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , U.K
| |
Collapse
|
48
|
Singh N, Singh J, Kim D, Kim DH, Kim EH, Lah MS, Chi KW. Coordination-Driven Self-Assembly of Heterotrimetallic Barrel and Bimetallic Cages Using a Cobalt Sandwich-Based Tetratopic Donor. Inorg Chem 2018; 57:3521-3528. [DOI: 10.1021/acs.inorgchem.7b02653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Eun-Hee Kim
- Republic of Korea Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
49
|
Morshedi M, Ward JS, Kruger PE, White NG. Supramolecular frameworks based on 5,10,15,20-tetra(4-carboxyphenyl)porphyrins. Dalton Trans 2018; 47:783-790. [DOI: 10.1039/c7dt04162d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding is used to prepare porphyrin-containing supramolecular frameworks.
Collapse
Affiliation(s)
- Mahbod Morshedi
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Jas S. Ward
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - Nicholas G. White
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
50
|
Zhang CW, Ou B, Jiang ST, Yin GQ, Chen LJ, Xu L, Li X, Yang HB. Cross-linked AIE supramolecular polymer gels with multiple stimuli-responsive behaviours constructed by hierarchical self-assembly. Polym Chem 2018. [DOI: 10.1039/c8py00226f] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cross-linked AIE supramolecular polymer gels were successfully constructed by hierarchical self-assembly.
Collapse
Affiliation(s)
- Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Bo Ou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|