1
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2025; 64:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Tsvetkov V, Mir B, Alieva R, Arutyunyan A, Oleynikov I, Novikov R, Boravleva E, Kamzeeva P, Zatsepin T, Aralov A, González C, Zavyalova E. Unveiling the unusual i-motif-derived architecture of a DNA aptamer exhibiting high affinity for influenza A virus. Nucleic Acids Res 2025; 53:gkae1282. [PMID: 39777463 PMCID: PMC11704962 DOI: 10.1093/nar/gkae1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Non-canonical nucleic acid structures play significant roles in cellular processes through selective interactions with proteins. While both natural and artificial G-quadruplexes have been extensively studied, the functions of i-motifs remain less understood. This study investigates the artificial aptamer BV42, which binds strongly to influenza A virus hemagglutinin and unexpectedly retains its i-motif structure even at neutral pH. However, BV42 conformational heterogeneity hinders detailed structural analysis. Molecular dynamics simulations and chemical modifications of BV42 helped us to identify a potential binding site, allowing for aptamer redesign to eliminate the conformational diversity while retaining binding affinity. Nuclear magnetic resonance spectroscopy confirmed the i-motif/duplex junction with the three-cytosine loop nearby. This study highlights the unique structural features of the functional i-motif and its role in molecular recognition of the target.
Collapse
Affiliation(s)
- Vladimir Tsvetkov
- Center for Mathematical Modeling in Drug Development, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Bartomeu Mir
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Rugiya Alieva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products (Institute of Poliomyelitis), Russian Academy of Sciences, Moscow 108819, Russia
| | - Polina Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Carlos González
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
3
|
Hsu YW, Ma L, Tang Y, Li M, Zhou C, Geng Y, Zhang C, Wang T, Guo W, Li M, Wang Y. The application of aptamers in the repair of bone, nerve, and vascular tissues. J Mater Chem B 2025. [PMID: 39760465 DOI: 10.1039/d4tb02180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair. In comparison to other bioactive agents, aptamers exhibit superior specificity and affinity, are more readily accessible, and can be chemically modified, thereby presenting a promising avenue for the functionalization of tissue engineering materials in tissue repair applications. This review delineates the properties of aptamers and examines the methodologies and advancements related to aptamer-functionalized hydrogels, nanoparticles, and electrospun materials. It categorizes the four primary functions of aptamers in tissue repair, namely regeneration, delivery systems, anti-inflammatory actions, and pro-coagulation effects. Furthermore, the review explores the utilization of aptamer-functionalized tissue engineering materials in the repair of bone, nerve, and vascular tissues, highlighting the mechanisms by which aptamers facilitate tissue growth and repair through regenerative properties and their role in transporting substances that promote repair. Lastly, the review addresses the future prospects and challenges associated with the application of aptamers in tissue repair, offering novel insights and directions for further research and application in this domain.
Collapse
Affiliation(s)
- Yu-Wei Hsu
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China.
| | - Le Ma
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ye Tang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Mengen Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Chengkai Zhou
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yan Geng
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Chenxi Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China.
| | - Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
4
|
Nourry J, Chevalier P, Laurenceau E, Cattoen X, Bertrand X, Peres B, Oukacine F, Peyrin E, Choisnard L. Whole-cell aptamer-based techniques for rapid bacterial detection: Alternatives to traditional methods. J Pharm Biomed Anal 2025; 255:116661. [PMID: 39793371 DOI: 10.1016/j.jpba.2025.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.
Collapse
Affiliation(s)
- Juliette Nourry
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Pauline Chevalier
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Emmanuelle Laurenceau
- University Lyon, University Claude Bernard Lyon 1, INL UMR5270, Ecole Centrale Lyon, CNRS, INSA Lyon, CPE Lyon, Ecully F-69130, France
| | - Xavier Cattoen
- University Grenoble Alpes, Grenoble INP, Institut Néel, CNRS, Grenoble F-38000, France
| | - Xavier Bertrand
- University Bourgogne Franche-Comté, Chrono-environnement, UMR 6249, CNRS, France
| | - Basile Peres
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Farid Oukacine
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| | - Luc Choisnard
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| |
Collapse
|
5
|
Jiang Q, Yao F, An Y, Lai X, Li X, Yu Z, Yang XD. Novel nanotherapeutics for cancer immunotherapy by albumin nanoparticles functionalized with PD-1 and PD-L1 aptamers. Cancer Nanotechnol 2024; 15:3. [DOI: 10.1186/s12645-023-00239-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
PD-1/PD-L1 blockade plays a crucial role in cancer immunotherapy. Exploration of new technologies to further enhance the efficacy of PD-1/PD-L1 blockade is therefore of potential medical importance. Nanotherapeutics can accumulate in tumor tissues due to enhanced permeability and retention (EPR) effects. In this study, a novel nanotherapeutic for cancer immunotherapy was implemented with albumin nanoparticles functionalized by both PD-1 and PD-L1 aptamers.
Results
Albumin nanoparticles (NP) were functionalized with either PD-1 aptamers (PD1-NP), PD-L1 aptamers (PDL1-NP), or both types of aptamers (PD1-NP-PDL1). Average sizes of PD1-NP, PDL1-NP, and PD1-NP-PDL1 were 141.8 nm, 141.8 nm, and 164.2 nm, respectively. PD1-NP had good affinity for activated T cells that expresses PD-1. Similarly, PDL1-NP could bind with MDA-MB-231 or CT26 tumor cells that express PD-L1. Moreover, the bispecific PD1-NP-PDL1 could bind with both the activated T cells and the PD-L1-expressing tumor cells, and tether the two type of cells together. Functionally, aptamer-modified nanoparticles exhibited stronger immune-stimulating effects vs. free aptamers. Specifically, PD1-NP or PDL1-NP induced stronger lymphocyte-mediated cytotoxicity against PD-L1-expressing tumor cells in vitro vs. free PD-1 or PD-L1 aptamers. Animal studies also showed that PD1-NP or PDL1-NP significantly improved antitumor efficacy against CT26 colon cancer in vivo vs. free PD-1 or PD-L1 aptamers. Importantly, the bispecific PD1-NP-PDL1 further boosted the in vivo antitumor efficacy compared with PD1-NP or PDL1-NP, without raising systemic toxicity.
Conclusion
The results suggest that the bispecific PD1-NP-PDL1 is a promising nanotherapeutic to improve the efficacy of PD-1/PD-L1 blockade, and may have application potential in colon cancer treatment.
Collapse
|
6
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
7
|
Tani H. Recent Advances and Prospects in RNA Drug Development. Int J Mol Sci 2024; 25:12284. [PMID: 39596348 PMCID: PMC11594839 DOI: 10.3390/ijms252212284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
RNA therapeutics have undergone remarkable evolution since their inception in the late 1970s, revolutionizing medicine by offering new possibilities for treating previously intractable diseases. The field encompasses various modalities, including antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), each with unique mechanisms and applications. The foundation was laid in 1978 with the discovery that synthetic oligonucleotides could inhibit viral replication, followed by pivotal developments such as RNA interference's discovery in 1998. The COVID-19 pandemic marked a crucial turning point, demonstrating the potential of mRNA vaccines and accelerating interest in RNA-based approaches. However, significant challenges remain, including stability issues, delivery to target tissues, potential off-target effects, and immunogenicity concerns. Recent advancements in chemical modifications, delivery systems, and the integration of AI technologies are addressing these challenges. The field has seen notable successes, such as approved treatments for spinal muscular atrophy and hereditary transthyretin-mediated amyloidosis. Looking ahead, RNA therapeutics show promise for personalized medicine approaches, particularly in treating genetic disorders and cancer. The continued evolution of this field, driven by technological innovations and deeper understanding of RNA biology, suggests a transformative impact on future medical treatments. The purpose of this review is to provide a comprehensive overview of the evolution, current state, and prospects of RNA therapeutics.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| |
Collapse
|
8
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2024. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
9
|
Ji D, Wang B, Lo KW, Tsang CM, Kwok CK. Pre-Defined Stem-Loop Structure Library for the Discovery of L-RNA Aptamers that Target RNA G-Quadruplexes. Angew Chem Int Ed Engl 2024:e202417247. [PMID: 39462761 DOI: 10.1002/anie.202417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during the SELEX process. Using G4-SLSELEX-Seq, we identified an L-RNA aptamer, L-Apt1-12, for the Epstein-Barr nuclear antigen 1 (EBNA1) RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards Epstein-Barr virus (EBV)-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrated the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for the amyloid precursor protein (APP) rG4 and the hepatitis C virus subtype 1a (HCV-1a) rG4, obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq as a robust and efficient platform for the selection of rG4-targeting L-RNA aptamers.
Collapse
Grants
- 32471343, 32222089 the National Natural Science Foundation of China (NSFC) Projects
- RFS2425-1S02, CityU 11100123, CityU 11100222, CityU 11100421 Research Grants Council (RGC) of the Hong Kong Special Administra-tive Region
- 9509003 Croucher Foundation
- SCRF/0037, SCRF/0040, SCRF/0070 State Key Laboratory in Marine Pollution
- 7030001, 6000827, 9678302 City University of Hong Kong projects
- MRP/036/21X The Innovation and Technology Fund (Midstream Research Programme for Universities
- AoE/M-401/20, 14101721, 08191046 Research Grant Council, Hong Kong
- 14116124, 14113620, 14114523 Research Grants Council-General Research Fund (GRF)
- 24114922 Early Career Scheme (ECS)
- 09203176 Health and Medical Research Fund
- FIA2020/A/01 Faculty Innovation Award
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong, Hong Kong SAR, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bo Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
10
|
Feng RM, Liu Y, Liu ZQ, Wang L, Chen N, Zhao Y, Yi HW. Advances in nucleic acid aptamer-based detection of respiratory virus and bacteria: a mini review. Virol J 2024; 21:237. [PMID: 39350296 PMCID: PMC11443872 DOI: 10.1186/s12985-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Respiratory pathogens infecting the human respiratory system are characterized by their diversity, high infectivity, rapid transmission, and acute onset. Traditional detection methods are time-consuming, have low sensitivity, and lack specificity, failing to meet the needs of rapid clinical diagnosis. Nucleic acid aptamers, as an emerging and innovative detection technology, offer novel solutions with high specificity, affinity, and broad target applicability, making them particularly promising for respiratory pathogen detection. This review highlights the progress in the research and application of nucleic acid aptamers for detecting respiratory pathogens, discussing their selection, application, potential in clinical diagnosis, and future development. Notably, these aptamers can significantly enhance the sensitivity and specificity of detection when combined with detection techniques such as fluorescence, colorimetry and electrochemistry. This review offers new insights into how aptamers can address the limitations of traditional diagnostic methods and advance clinical diagnostics. It also highlights key challenges and future research directions for the clinical application of nucleic acid aptamers.
Collapse
Affiliation(s)
- Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
- Laboratory Department, the People's Hospital of Yanhu District, Yuncheng, Shanxi, People's Republic of China
| | - Ye Liu
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Zhi-Qiang Liu
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Li Wang
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Nan Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Yu Zhao
- Oncology Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
- Central Laboratory, the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
12
|
Dong X, Zhang Z, Zhao T, Chen Z, Wang J, Xu L, Zhang A. A responsive disulfide bond switch aptamer prodrug exhibiting enhanced stability and anticancer efficacy. Bioorg Med Chem Lett 2024; 104:129729. [PMID: 38583786 DOI: 10.1016/j.bmcl.2024.129729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Aptamers have shown significant potential in treating diverse diseases. However, challenges such as stability and drug delivery limited their clinical application. In this paper, the development of AS1411 prodrug-type aptamers for tumor treatment was introduced. A Short oligonucleotide was introduced at the end of the AS1411 sequence with a disulfide bond as responsive switch. The results indicated that the aptamer prodrugs not only enhanced the stability of the aptamer against nuclease activity but also facilitated binding to serum albumin. Furthermore, in the reducing microenvironment of tumor cells, disulfide bonds triggered drug release, resulting in superior therapeutic effects in vitro and in vivo compared to original drugs. This paper proposes a novel approach for optimizing the structure of nucleic acid drugs, that promises to protect other oligonucleotides or secondary structures, thus opening up new possibilities for nucleic acid drug design.
Collapse
Affiliation(s)
- Xiao Dong
- College of Pharmacy, Shanxi Medical University, Taiyuan 030000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China
| | - Zhe Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China
| | - Tangna Zhao
- College of Pharmacy, Shanxi Medical University, Taiyuan 030000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China
| | - Zuyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China
| | - Jia Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100080, China.
| | - Aiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030000, China.
| |
Collapse
|
13
|
Borg KN, Jaffiol R, Ho YP, Zeng S. Enhanced biosensing of tumor necrosis factor-alpha based on aptamer-functionalized surface plasmon resonance substrate and Goos-Hänchen shift. Analyst 2024; 149:3017-3025. [PMID: 38606503 DOI: 10.1039/d4an00194j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Tumor necrosis factor-alpha (TNF-α) serves as a crucial biomarker in various diseases, necessitating sensitive detection methodologies. This study introduces an innovative approach utilizing an aptamer-functionalized surface plasmon resonance (SPR) substrate together with an ultrasensitive measure, the Goos-Hänchen (GH) shift, to achieve sensitive detection of TNF-α. The developed GH-aptasensing platform has shown a commendable figure-of-merit of 1.5 × 104 μm per RIU, showcasing a maximum detectable lateral position shift of 184.7 ± 1.2 μm, as characterized by the glycerol measurement. Employing aptamers as the recognition unit, the system exhibits remarkable biomolecule detection capabilities, including the experimentally obtained detection limit of 1 aM for the model protein bovine serum albumin (BSA), spanning wide dynamic ranges. Furthermore, the system successfully detects TNF-α, a small cytokine, with an experimental detection limit of 1 fM, comparable to conventional SPR immunoassays. This achievement represents one of the lowest experimentally derived detection limits for cytokines in aptamer-based SPR sensing. Additionally, the application of the GH shift marks a ground breaking advancement in aptamer-based biosensing, holding significant promise for pushing detection limits further, especially for small cytokine targets.
Collapse
Affiliation(s)
- Kathrine Nygaard Borg
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| | - Rodolphe Jaffiol
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Centre for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-UMR 7076, University of Technology of Troyes, 10000, Troyes, France.
| |
Collapse
|
14
|
Zhong J, Liu D, Yang Q, Ding J, Chen X. A Novel DNA Aptamer Probe Recognizing Castration Resistant Prostate Cancer in vitro and in vivo Based on Cell-SELEX. Drug Des Devel Ther 2024; 18:859-870. [PMID: 38524880 PMCID: PMC10959323 DOI: 10.2147/dddt.s444988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Background Early recognition of castration-resistant state is of significance for timely adjustment of treatment regimens and improvement of prognosis. Purpose This study aims to screen new aptamers CRda8 and CRda21 which recognize castration resistant prostate cancer (CRPC) cells with high affinity and specificity by SELEX technology. Methods The enrichment of specific aptamer candidates was monitored by flow cytometric analysis. The affinity and specificity of aptamer candidates were evaluated by flow cytometry and immunofluorescence assay. MR imaging of CRda21-conjugated polyethylene glycol (PEG)-Fe3O4 nanoparticles to CRPC was further explored in vivo. Results Both aptamers showed high specificity to target cells with dissociation constants in the nanomolar range, and did not recognize other tested cells. The staining of clinical tissue sections with fluorescent dye labeled aptamers showed that sections from CRPC exhibited stronger fluorescence while sections from benign prostatic hyperplasia and androgen dependent prostate cancer did not exhibit notable fluorescence. In vivo MRI demonstrated that CRda21-conjugated PEG-Fe3O4 had good affinity to CRPC and produced strong T2WI signal intensity reduction distinguished from peritumoral tissue. Conclusion The high affinity and specificity of CRda8 and CRda21 make the aptamer hold potential for early recognition of castration-resistant state and diagnosis of CRPC at the cellular level.
Collapse
Affiliation(s)
- Jinman Zhong
- Department of Radiology, The Second Affiliated Hospital, Xi’ an Jiaotong University, Xi’an, Shaanxi Province, 710004, People’s Republic of China
| | - Duoduo Liu
- Department of Radiology, The Second Affiliated Hospital, Xi’ an Jiaotong University, Xi’an, Shaanxi Province, 710004, People’s Republic of China
| | - Quanxin Yang
- Department of Radiology, The Second Affiliated Hospital, Xi’ an Jiaotong University, Xi’an, Shaanxi Province, 710004, People’s Republic of China
| | - Jianke Ding
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, 710032, People’s Republic of China
| | - Xin Chen
- Department of Radiology, The Second Affiliated Hospital, Xi’ an Jiaotong University, Xi’an, Shaanxi Province, 710004, People’s Republic of China
| |
Collapse
|
15
|
Zamzami M, Altayb H, Ahmad A, Choudhry H, Hosawi S, Alamoudi S, Al-Malki M, Rabbani G, Arkook B. Virtual screening and site-directed mutagenesis-derived aptamers for precise Salmonella typhimurium prediction: emphasizing OmpD targeting and G-quadruplex stability. J Biomol Struct Dyn 2024:1-14. [PMID: 38385500 DOI: 10.1080/07391102.2024.2320250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The efficient detection of the foodborne pathogen Salmonella typhimurium has historically been hampered by the constraints of traditional methods, characterized by protracted culture periods and intricate DNA extraction processes for PCR. To address this, our research innovatively focuses on the crucial and relatively uncharted virulence factor, the Outer Membrane Protein D (OmpD) in Salmonella typhimurium. By harmoniously integrating the power of virtual screening and site-directed mutagenesis, we unveiled aptamers exhibiting marked specificity for OmpD. Among these, aptamer 7ZQS stands out with its heightened binding affinity. Capitalizing on this foundation, we further engineered a repertoire of mutant aptamers, wherein APT6 distinguished itself, reflecting unmatched stability and specificity. Our rigorous validation, underpinned by cutting-edge bioinformatics tools, amplifies the prowess of APT6 in discerning and binding OmpD across an array of Salmonella typhimurium strains. This study illuminates a transformative approach to the prompt and accurate detection of Salmonella typhimurium, potentially redefining boundaries in applied analytical chemistry and bolstering diagnostic precision across diverse research and clinical domains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazin Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samer Alamoudi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mishal Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT-Medical Fusion Center, Gumi-si, Gyeongbuk, Republic of Korea
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| |
Collapse
|
16
|
Chen L, Yu Z, Wu Z, Zhou M, Wang Y, Yu X, Li W, Liu G, Tang Y. AptaDB: a comprehensive database integrating aptamer-target interactions. RNA (NEW YORK, N.Y.) 2024; 30:189-199. [PMID: 38164624 PMCID: PMC10870366 DOI: 10.1261/rna.079784.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Aptamers have emerged as research hotspots of the next generation due to excellent performance benefits and application potentials in pharmacology, medicine, and analytical chemistry. Despite the numerous aptamer investigations, the lack of comprehensive data integration has hindered the development of computational methods for aptamers and the reuse of aptamers. A public access database named AptaDB, derived from experimentally validated data manually collected from the literature, was hence developed, integrating comprehensive aptamer-related data, which include six key components: (i) experimentally validated aptamer-target interaction information, (ii) aptamer property information, (iii) structure information of aptamer, (iv) target information, (v) experimental activity information, and (vi) algorithmically calculated similar aptamers. AptaDB currently contains 1350 experimentally validated aptamer-target interactions, 1230 binding affinity constants, 1293 aptamer sequences, and more. Compared to other aptamer databases, it contains twice the number of entries found in available databases. The collection and integration of the above information categories is unique among available aptamer databases and provides a user-friendly interface. AptaDB will also be continuously updated as aptamer research evolves. We expect that AptaDB will become a powerful source for aptamer rational design and a valuable tool for aptamer screening in the future. For access to AptaDB, please visit http://lmmd.ecust.edu.cn/aptadb/.
Collapse
Affiliation(s)
- Long Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinxin Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Di Mauro V, Lauta FC, Modica J, Appleton SL, De Franciscis V, Catalucci D. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC Basic Transl Sci 2024; 9:260-277. [PMID: 38510714 PMCID: PMC10950404 DOI: 10.1016/j.jacbts.2023.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 03/22/2024]
Abstract
Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3-dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- Veneto Institute of Molecular Medicine, Padua, Italy
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Jessica Modica
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Lucia Appleton
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Daniele Catalucci
- Institute of Genetic and Biomedical Research, Milan, Milan Italy
- Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
18
|
Mengistu Asmare M, Krishnaraj C, Radhakrishnan S, Kim BS, Yun SI. Computer aided aptamer selection for fabrication of electrochemical sensor to detect Aflatoxin B 1. J Biomol Struct Dyn 2024:1-14. [PMID: 38287497 DOI: 10.1080/07391102.2024.2308760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024]
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring toxin produced by Aspergillus flavus and Aspergillus parasiticus. The AFB1 is classified as a potent carcinogen and poses significant health risks both to humans and animals. Early detection of the toxin in post-harvest agricultural products will save lives and promote healthy food production. In this study, stratified docking approach was utilized to screen and identify potential aptamers that can bind to AFB1. ssDNA sequences were acquired from the Mendeley dataset, secondary and tertiary structures were predicted through a series of bioinformatics pipelines. Further, the final DNA tertiary structures were minimized and SiteMap algorithm was used to probe and locate binding cavities. According to the final XP docking result, a 34 nt sequence (5'-ATCCTGTGAGGAATGCTCATGCATAGCAAGGGCT-3') aptamer with a docking score of -5.959 kcal/mol was considered for 200 ns MD Simulation. Finally, the screened DNA-aptamer was immobilized over the gold surface based on Au-S chemistry and utilized for the detection of AFB1. The fabricated DNA-aptamer electrode demonstrated a good analytical performance including wide linear range (1.0 to 1000 ng L-1), detection limit (1.0 ng L-1), high stability, and reproducibility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sivaprakasam Radhakrishnan
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Byoung-Sukh Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
19
|
Wei Y, Long S, Zhao M, Zhao J, Zhang Y, He W, Xiang L, Tan J, Ye M, Tan W, Yang Y, Yuan Q. Regulation of Cellular Signaling with an Aptamer Inhibitor to Impede Cancer Metastasis. J Am Chem Soc 2024; 146:319-329. [PMID: 38129955 DOI: 10.1021/jacs.3c09091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Tumor invasion and metastasis are the main causes of tumor progression and are the leading causes of death among cancer patients. In the present study, we propose a strategy to regulate cellular signaling with a tumor metastasis-relevant cytoskeleton-associated protein 4 (CKAP4) specific aptamer for the achievement of tumor metastasis inhibition. The designed aptamer could specifically bind to CKAP4 in the cell membranes and cytoplasm to block the internalization and recycling of α5β1 integrin, resulting in the disruption of the fibronectin-dependent cell adhesion and the weakening of the cell traction force. Moreover, the aptamer is able to impede the interaction between CKAP4 and Dickkopf1 (DKK1) to further block the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which subsequently reduces AKT phosphorylation and inhibits the reorganization of the actin cytoskeleton in cell migration. The synergetic function of the designed aptamer in inhibiting cancer cell adhesion and blocking the PI3K signaling pathway enables efficient tumor cell metastasis suppression. The aptamer with specific targeting ability in regulating cellular signaling paves the way for cancer treatment and further provides a guiding ideology for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yurong Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Shiyi Long
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Min Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jingfang Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
20
|
Mozumdar D, Roy RN. Origin of ribonucleotide recognition motifs through ligand mimicry at early earth. RNA Biol 2024; 21:107-121. [PMID: 39526332 PMCID: PMC11556283 DOI: 10.1080/15476286.2024.2423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In an RNA world, the emergence of template-specific self-replication and catalysis necessitated the presence of motifs facilitating reliable recognition between RNA molecules. What did these motifs entail, and how did they evolve into the proteinaceous RNA recognition entities observed today? Direct observation of these primordial entities is hindered by rapid degradation over geological time scales. To overcome this challenge, researchers employ diverse approaches, including scrutiny of conserved sequences and structural motifs across extant organisms and employing directed evolution experiments to generate RNA molecules with specific catalytic abilities. In this review, we delve into the theme of ribonucleotide recognition across key periods of early Earth's evolution. We explore scenarios of RNA interacting with small molecules and examine hypotheses regarding the role of minerals and metal ions in enabling structured ribonucleotide recognition and catalysis. Additionally, we highlight instances of RNA-protein mimicry in interactions with other RNA molecules. We propose a hypothesis where RNA initially recognizes small molecules and metal ions/minerals, with subsequent mimicry by proteins leading to the emergence of proteinaceous RNA binding domains.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology & Microbiology, University of California San Francisco, San Francisco, CA, USA
| | - Raktim N. Roy
- Department of pathology & laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Liu J, Ren Z, Sun Y, Xu L, Wei D, Tan W, Ding D. Investigation of the Relationship between Aptamers' Targeting Functions and Human Plasma Proteins. ACS NANO 2023; 17:24329-24342. [PMID: 38044589 DOI: 10.1021/acsnano.3c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of recognizing targets via specific three-dimensional structures. Taking advantage of this unique targeting function, aptamers have been extensively applied to bioanalysis and disease theranostics. However, the targeting functionality of aptamers in the physiological milieu is greatly impeded compared with their in vitro applications. To investigate the physiological factors that adversely affect the in vivo targeting ability of aptamers, we herein systematically studied the interactions between human plasma proteins and aptamers and the specific effects of plasma proteins on aptamer targeting. Microscale thermophoresis and flow cytometry analysis showed that plasma interacted with aptamers, restricting their affinity toward targeted tumor cells. Further pull-down assay and proteomic identification verified that the interactions between aptamers and plasma proteins were mainly involved in complement activation and immune response as well as showed structure-selective and sequence-specific features. Particularly, the fibronectin 1 (FN1) protein showed dramatically specific interactions with nucleolin (NCL) targeting aptamer AS1411. The competitive binding between FN1 and NCL almost deprived the AS1411 aptamer's targeting ability in vivo. In order to maintain the targeting function in the physiological milieu, a series of optimizations were performed via the chemical modifications of AS1411 aptamer, and 3'-terminal pegylation was demonstrated to be resistant to the interaction with FN1, leading to improved tumor-targeting effects. This work emphasizes the physiological environment influences on aptamers targeting functionality and suggests that rational design and modification of aptamers to minimize the nonspecific interaction with plasma proteins might be effective to maintain aptamer functionality in future clinical uses.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhiqiang Ren
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liujun Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Dali Wei
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
22
|
Kundu N, McCloskey CM, Hajjar M, Chaput JC. Parameterizing the Binding Properties of XNA Aptamers Isolated from a Low Stringency Selection. Biochemistry 2023; 62:3245-3254. [PMID: 37932217 DOI: 10.1021/acs.biochem.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Machine learning offers a guided approach to aptamer discovery, but more information is needed to develop algorithms that can intelligently identify high-performing aptamers to a broad array of targets. Critical to this effort is the need to experimentally parameterize the difference between low and high affinity binders to a given target. Although classical selection experiments help define the upper limit by converging on a small number of tight binding sequences, very little is known about the lower limit of binding that defines the boundary between binders and nonbinders. Here, we apply a quantitative approach to explore the diversity of aptamers isolated from two identical in vitro selections performed under low stringency conditions. Starting from a library of 1 trillion unique threose nucleic acid (TNA) sequences, 7 rounds of selection were performed to enrich binders to a known aptagenic target. High density sequencing of each round of selection followed by a detailed kinetic analysis of 136 TNA aptamers yielded a narrow range of equilibrium dissociation constants (KD = ∼ 1-15 nM) that were consistent between two experimental replicates. These findings offer insights into the lower limit of binding that may be expected for aptamers generated against aptagenic targets and could provide useful constraints for evaluating the results of experimental and computational approaches.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Cailen M McCloskey
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - Mohammad Hajjar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
23
|
Lin Y, Chen CY, Ku YC, Wang LC, Hung CC, Lin ZQ, Chen BH, Hung JT, Sun YC, Hung KF. A modified SELEX approach to identify DNA aptamers with binding specificity to the major histocompatibility complex presenting ovalbumin model antigen. RSC Adv 2023; 13:32681-32693. [PMID: 37936644 PMCID: PMC10626974 DOI: 10.1039/d3ra04686a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Aptamers have sparked significant interest in cell recognition because of their superior binding specificity and biocompatibility. Cell recognition can be mediated by targeting the major histocompatibility complex (MHC) that presents short peptides derived from intracellular antigens. Although numerous antibodies have demonstrated a specific affinity for the peptide-MHC complex, the number of aptamers that exhibit comparable characteristics is limited. Aptamers are usually selected from large libraries via the Systemic Evolution of Ligands by Exponential Enrichment (SELEX), an iterative process of selection and PCR amplification to enrich a pool of aptamers with high affinity. However, the success rate of aptamer identification is low, possibly due to the presence of complementary sequences or sequences rich in guanine and cytosine that are less accessible for primers. Here, we modified SELEX by employing systemic consecutive selections with minimal PCR amplification. We also modified the analysis by selecting aptamers that were identified in multiple selection rounds rather than those that are highly enriched. Using this approach, we were able to identify two aptamers with binding specificity to cells expressing the ovalbumin alloantigen as a proof of concept. These two aptamers were also discovered among the top 150 abundant candidates, despite not being highly enriched, by performing conventional SELEX. Additionally, we found that highly enriched aptamers tend to contain fractions of the primer sequence and have minimal target affinity. Candidate aptamers are easily missed in the conventional SELEX process. Therefore, our modification for SELEX may facilitate the identification of aptamers for more application in diverse biomedical fields. Significance: we modify the conventional method to improve the efficiency in the identification of the aptamer, a single strand of nucleic acid with binding specificity to the target molecule, showing as a proof of concept that this approach is particularly useful to select aptamers that can selectively bind to cells presenting a particular peptide by the major histocompatibility complex (MHC) on the cell surface. Given that cancer cells may express mutant peptide-MHC complexes that are distinct from those expressed by normal cells, this study sheds light on the potential application of aptamers to cancer cell targeting.
Collapse
Affiliation(s)
- Yang Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yu-Chia Ku
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Li-Chin Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chia-Chien Hung
- School of Computer Science, Georgia Institute of Technology Atlanta GA USA
| | - Zhi-Qian Lin
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | - Bing-Hong Chen
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
| | | | - Yi-Chen Sun
- School of Medicine, Tzu-Chi University Hualien Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation New Taipei City Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital 201, Section 2, Shi-Pai Road Taipei 112 Taiwan +886-2-28712121-7382
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University Taipei Taiwan
| |
Collapse
|
24
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
25
|
Meng Y, Huang Y, Huang G, Song Y. TPN-COF@Fe-MIL-100 composite used as an electrochemical aptasensor for detection of trace tetracycline residues. RSC Adv 2023; 13:28148-28157. [PMID: 37753396 PMCID: PMC10518659 DOI: 10.1039/d3ra05452g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
In this work, a metal-organic framework@covalent organic framework composite (TPN-COF@Fe-MIL-100) was prepared and used as a sensing material to construct an aptasensor for trace detection of tetracycline (TET). The TPN-COF@Fe-MIL-100 integrates a large surface area, porous structure, excellent electrochemical activity, rich chemical functionality, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the TPN-COF@Fe-MIL-100-based aptasensor shows high sensitivity for detecting TET via specific recognition between aptamer and TET to form G-quadruplex. An ultralow detection limit of 1.227 fg mL-1 is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.01-10000 pg mL-1 for TET. The TPN-COF@Fe-MIL-100-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and applicability for a real milk sample. Therefore, the TPN-COF@Fe-MIL-100-based aptasensor will be promising for detecting trace harmful antibiotics residues for food safety.
Collapse
Affiliation(s)
- Yubo Meng
- School of Mechanical Engineering, Henan University of Engineering Zhengzhou 451191 PR China
| | - Yuchun Huang
- School of Mechanical Engineering, Henan University of Engineering Zhengzhou 451191 PR China
| | - Gailing Huang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| | - Yingpan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry Zhengzhou 450002 PR China
| |
Collapse
|
26
|
Zhu Z, Yang Z, Zhu C, Hu Z, Jiang Z, Gong J, Yuan Y, Chen X, Jin Y, Yin Y. Development of a DNA aptamer targeting IDO1 with anti-tumor effects. iScience 2023; 26:107367. [PMID: 37520707 PMCID: PMC10374466 DOI: 10.1016/j.isci.2023.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Immune checkpoint blockade has become an effective approach to reverse the immune tolerance of tumor cells. Indoleamine 2,3-dioxygenase 1 (IDO1) is frequently upregulated in many types of cancers and contributes to the establishment of an immunosuppressive cancer microenvironment, which has been thought to be a potential target for cancer therapy. However, the development of IDO1 inhibitors for clinical application is still limited. Here, we isolated a DNA aptamer with a strong affinity and inhibitory activity against IDO1, designated as IDO-APT. By conjugating with nanoparticles, in situ injection of IDO-APT to CT26 tumor-bearing mice significantly suppresses the activity of regulatory T cells and promotes the function of CD8+ T cells, leading to tumor suppression and prolonged survival. Therefore, this functional IDO1-specific aptamer with potent anti-tumor effects may serve as a potential therapeutic strategy in cancer immunotherapy. Our data provide an alternative way to target IDO1 in addition to small molecule inhibitors.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zeliang Yang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zixi Hu
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhongyu Jiang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuyao Yuan
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
27
|
Liang G, Song L, Gao Y, Wu K, Guo R, Chen R, Zhen J, Pan L. Aptamer Sensors for the Detection of Antibiotic Residues- A Mini-Review. TOXICS 2023; 11:513. [PMID: 37368613 DOI: 10.3390/toxics11060513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Food security is a global issue, since it is closely related to human health. Antibiotics play a significant role in animal husbandry owing to their desirable broad-spectrum antibacterial activity. However, irrational use of antibiotics has caused serious environmental pollution and food safety problems; thus, the on-site detection of antibiotics is in high demand in environmental analysis and food safety assessment. Aptamer-based sensors are simple to use, accurate, inexpensive, selective, and are suitable for detecting antibiotics for environmental and food safety analysis. This review summarizes the recent advances in aptamer-based electrochemical, fluorescent, and colorimetric sensors for antibiotics detection. The review focuses on the detection principles of different aptamer sensors and recent achievements in developing electrochemical, fluorescent, and colorimetric aptamer sensors. The advantages and disadvantages of different sensors, current challenges, and future trends of aptamer-based sensors are also discussed.
Collapse
Affiliation(s)
- Gang Liang
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Le Song
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Yufei Gao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050024, China
| | - Kailong Wu
- Ulanqab Agricultural and Livestock Product Quality Safety Center, Ulanqab 012406, China
| | - Rui Guo
- Datong Comprehensive Inspection and Testing Center, Datong 037000, China
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Jianhui Zhen
- Shijiazhuang Customs Technology Center, Shijiazhuang 050051, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
28
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
29
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
30
|
Liu J, Duan Q, Shao Z, Chen K, Zhu Y, Li J, Tan W. Formaldehyde Cross-Linking-Assisted Phase Separation for Protein Aptamer Selection. Anal Chem 2023; 95:6700-6708. [PMID: 37052573 DOI: 10.1021/acs.analchem.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
With the merits of easy synthesis, strong modifiability, and high affinity, aptamers have been broadly applied for protein targeting in bioanalysis, diagnosis, and therapeutics. The selection of protein-targeted aptamers is currently largely dependent on solid-liquid separation by using different types of nano- or micro-beads. However, the use of beads inescapably introduces unwanted nonspecific binding and thus affects selection efficiency. In order to sidestep this obstacle, we herein report an integrated technique to facilitate the discovery and development of protein-targeting aptamers by incorporating formaldehyde cross-linking with phase separation (FCPS). The feasibility and universality of FCPS were confirmed by the successful selection of two aptamers that could target various antibodies. Unlike traditional approaches, the proposed technique avoids the use of beads and enables the rapid generation of aptamers after only one to three rounds of selection. The as-selected aptamers were further used to regulate and control antibody activity, showing potential applications in biomedicine.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Duan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhentao Shao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kaiming Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
31
|
Chen Y, Kong D, Qiu L, Wu Y, Dai C, Luo S, Huang Z, Lin Q, Chen H, Xie S, Geng L, Zhao J, Tan W, Liu Y, Wei D. Artificial Nucleotide Aptamer-Based Field-Effect Transistor for Ultrasensitive Detection of Hepatoma Exosomes. Anal Chem 2023; 95:1446-1453. [PMID: 36577081 DOI: 10.1021/acs.analchem.2c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Jun Zhao
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
33
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
34
|
Herrera A, Zhou J, Song MS, Rossi JJ. Evolution of Cell-Type-Specific RNA Aptamers via Live Cell-Based SELEX. Methods Mol Biol 2023; 2666:317-346. [PMID: 37166674 DOI: 10.1007/978-1-0716-3191-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Live cell-based SELEX (Systematic Evolution of Ligand EXponential enrichment) is a promising approach for identifying aptamers that can selectively bind to a cell-surface receptor or recognize a particular target cell population. In particular, it offers a facile selection strategy for some special cell-surface proteins that are originally glycosylated or heavily posttranslationally modified and are unavailable in their native/active conformation after in vitro expression and purification. In this chapter, we describe a generalized procedure for evolution of cell type-specific RNA aptamers targeting a cell membrane bound target by combining the live cell-based SELEX strategy with high-throughput sequencing (HTS) and bioinformatics analysis.
Collapse
Affiliation(s)
- Alberto Herrera
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | - Min-Sun Song
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - John J Rossi
- Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
35
|
Klett-Mingo JI, Pinto-Díez C, Cambronero-Plaza J, Carrión-Marchante R, Barragán-Usero M, Pérez-Morgado MI, Rodríguez-Martín E, del Val Toledo-Lobo M, González VM, Martín ME. Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer. Cancers (Basel) 2022; 15:cancers15010227. [PMID: 36612223 PMCID: PMC9818519 DOI: 10.3390/cancers15010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide and the most common of all cancer types. Histone acetyltransferase 1 (HAT1) has attracted increasing interest as a potential therapeutic target due to its involvement in multiple pathologies, including cancer. Aptamers are single-stranded RNA or DNA molecules whose three-dimensional structure allows them to bind to a target molecule with high specificity and affinity, thus making them exceptional candidates for use as diagnostic or therapeutic tools. In this work, aptamers against HAT1 were obtained, subsequently characterized, and optimized, showing high affinity and specificity for HAT1 and the ability to inhibit acetyltransferase activity in vitro. Of those tested, the apHAT610 aptamer reduced cell viability, induced apoptosis and cell cycle arrest, and inhibited colony formation in lung cancer cell lines. All these results indicate that the apHAT610 aptamer is a potential drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- José Ignacio Klett-Mingo
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Celia Pinto-Díez
- Aptus Biotech SL, Av. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Julio Cambronero-Plaza
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Rebeca Carrión-Marchante
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María Isabel Pérez-Morgado
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Departamento de Inmunología, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María del Val Toledo-Lobo
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
- Correspondence: (V.M.G.); (M.E.M.); Tel.: +34-913368173 (V.M.G. & M.E.M.)
| | - Maria Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
- Correspondence: (V.M.G.); (M.E.M.); Tel.: +34-913368173 (V.M.G. & M.E.M.)
| |
Collapse
|
36
|
Effect of hydrophobic groups on adsorption of arginine-based amino acids to solid surfaces in water. Struct Chem 2022. [DOI: 10.1007/s11224-022-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Fadeev M, O’Hagan MP, Biniuri Y, Willner I. Aptamer-Protein Structures Guide In Silico and Experimental Discovery of Aptamer-Short Peptide Recognition Complexes or Aptamer-Amino Acid Cluster Complexes. J Phys Chem B 2022; 126:8931-8939. [PMID: 36315022 PMCID: PMC9661473 DOI: 10.1021/acs.jpcb.2c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method to computationally and experimentally identify aptamers against short peptides or amino acid clusters is introduced. The method involves the selection of a well-defined protein aptamer complex and the extraction of the peptide sequence participating in the binding of the protein to the aptamer. The subsequent fragmentation of the peptide sequence into short peptides and the in silico docking-guided identification of affinity complexes between the miniaturized peptides and the antiprotein aptamer, followed by experimental validation of the binding features of the short peptides with the antiprotein aptamers, leads to the identification of new short peptide-aptamer complexes. This is exemplified with the identification of the pentapeptide RYERN as the scaffold that binds thrombin to the DNA thrombin aptamer (DNA TA). In silico docking studies followed by microscale thermophoresis (MST) experiments demonstrate that the miniaturized tripeptides RYE, YER, and ERN reveal selective binding affinities toward the DNA TA. In addition, docking and MST experiments show that the ribonucleotide-translated RNA TA shows related binding affinities of YER to the DNA TA. Most importantly, we demonstrate that the separated amino acids Y/E/R assemble as a three amino acid cluster on the DNA TA and RNA TA aptamers in spatial configurations similar to the tripeptide YER on the respective aptamers. The clustering phenomenon is selective for the YER tripeptide system. The method to identify binding affinities of miniaturized peptides to known antiprotein aptamers and the specific clustering of single amino acids on the aptamers is further demonstrated by in silico and experimental identification of the binding of the tripeptide RET and the selective clustering of the separated amino acids R/E/T onto a derivative of the AS1411 aptamer against the nucleolin receptor protein.
Collapse
|
38
|
Ultrasensitive evanescent wave optical fiber aptasensor for online, continuous, type-specific detection of sulfonamides in environmental water. Anal Chim Acta 2022; 1233:340505. [DOI: 10.1016/j.aca.2022.340505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
|
39
|
Target controlled alternative hybridization chain reaction for fluorescent detection of dual mycotoxins. Anal Chim Acta 2022; 1237:340595. [DOI: 10.1016/j.aca.2022.340595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
40
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
41
|
Janani SK, Dhanabal SP, Sureshkumar R, Nikitha Upadhyayula SS. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Curr Pharm Des 2022; 28:3114-3126. [PMID: 36173049 DOI: 10.2174/1381612828666220928105044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Breast cancer is the second leading cause of cancer-related deaths. It is important to target the complex pathways using a suitable targeted delivery system. Targeted delivery systems can effectively act on cancer cells and lead to the annihilation of tumor proliferation. They mainly employ targeting agents like aptamers linked to the formulation. Based on the expression of the receptors on the surface of the cancer cells, suitable aptamers can be developed. AS1411 is one such aptamer that has the ability to bind to the over-expressed nucleolin present in breast cancer cells. Nucleolin is a phosphoprotein that is involved in various aspects, like cell growth, differentiation and survival. Mostly they are found in the nucleolus, nucleus, cytoplasm and cell surface. The shuttling effect of the nucleolin between the nucleus and cytoplasm serves as a bonus for the AS1411 aptamer. Because of the shutting effect, the internalization of the drug compound or chemotherapeutic drug inside the cell can be achieved. In this article, we have discussed nucleolin, anti-nucleolin aptamer, namely, AS1411, and its application in exhibiting various anticancer activities, including apoptosis, anti-angiogenesis, anti-metastasis, stimulation of tumor suppressor (i.e., P53), and inhibition of tumor inducer. Further, the ways of internalization, namely macropinocytosis, are also discussed. Additionally, we have also discussed the superiority of the aptamer compared to the antibodies as well as the limitations of the aptamers. By considering all the above parameters, we hope this aptamer will be effective in the management and eradication of breast cancer cells.
Collapse
Affiliation(s)
- S K Janani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S P Dhanabal
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sai Surya Nikitha Upadhyayula
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
42
|
Zhou F, Wang P, Chen J, Zhu Z, Li Y, Wang S, Wu S, Sima Y, Fu T, Tan W, Zhao Z. A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine. Nucleic Acids Res 2022; 50:9039-9050. [PMID: 35993818 PMCID: PMC9458419 DOI: 10.1093/nar/gkac703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Aptamers' vast conformation ensemble consisting of interconverting substates severely impairs their performance and applications in biomedicine. Therefore, developing new chemistries stabilizing aptamer conformation and exploring the conformation-performance relationship are highly desired. Herein, we developed an 8-methoxypsoralen-based photochemically covalent lock to stabilize aptamer conformation via crosslinking the inter-stranded thymine nucleotides at TpA sites. Systematical studies and molecular dynamics simulations were performed to explore the conformation-performance relationship of aptamers, revealing that conformation-stabilized aptamers displayed better ability to bind targets, adapt to physiological environment, resist macrophage uptake, prolong circulation half-life, accumulate in and penetrate into tumor than their counterparts. As expected, conformation-stabilized aptamers efficiently improved the therapeutic efficacy of aptamer-drug conjugation on tumor-bearing mice. Collectively, our study has developed a general, simple and economic strategy to stabilize aptamer conformation and shed light on the conformation-performance relationship of aptamers, laying a basis for promoting their basic researches and applications in biomedicine.
Collapse
Affiliation(s)
| | | | | | - Zhijia Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Youshan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sujuan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240, China
| | - Zilong Zhao
- To whom correspondence should be addressed. Tel: +86 731 88821894; Fax: +86 731 88821894;
| |
Collapse
|
43
|
Guo W, Gao H, Li H, Ge S, Zhang F, Wang L, Shi H, Han A. Self-Assembly of a Multifunction DNA Tetrahedron for Effective Delivery of Aptamer PL1 and Pcsk9 siRNA Potentiate Immune Checkpoint Therapy for Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31634-31644. [PMID: 35817627 PMCID: PMC9305706 DOI: 10.1021/acsami.2c06001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Compared with the traditional single therapy, nanomedicine has promoted a multimodal combination treatment for various carcinomas, especially the development of corresponding intelligent multifunctional biomaterials based on advanced DNA nanotechnology has great potential in cancer combination therapy. Herein, we describe a strategy to "backpack" aptamer PL1, which specifically binds to PD-L1 and Pcsk9 siRNA on well-defined DNA tetrahedral nanoparticles (TDNs) via DNA hybridization, which collectively contributes to the effective therapy for colorectal cancer (CRC). In addition, we designed a targeted TDN upon folic acid (FA) recognition, limiting its release to the sites of tumors where folic acid receptor (FAR) is encountered. Our results demonstrated that the TDN-FA/PL1/Pcsk9-siRNA could free immune cells to target CRC cells and attenuate 83.48% tumor growth in mouse models of CT26 CRC. Mechanically, the cancer-targeting FA guided TDN-FA/PL1/Pcsk9-siRNA into tumor cells, thereby ensuring that the aptamer PL1 could choke the mutual effects between PD-1 and PD-L1, followed by a 1.69-fold increase in T cell number and a 1.9-fold suppression of T cell activity by the PD-1/PD-L1 pathway, while Pcsk9 siRNA decreased Pcsk9 expression averagely to the extent of 65.13% and then facilitated intratumoral infiltration of cytotoxic T cells robustly with IFN-γ and Granzyme B expression. Our results reveal that the multifunctional TND-FA/PL1/Pcsk9-siRNA is effective and safe for CRC therapy, thereby expanding the application of DNA nanotechnology for innovative therapies of various cancers.
Collapse
|
44
|
Choi YJ, Cho YL, Chae JR, Park JY, Cho H, Kang WJ. In vivo positron emission tomography imaging for PD-L1 expression in cancer using aptamer. Biochem Biophys Res Commun 2022; 620:105-112. [DOI: 10.1016/j.bbrc.2022.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
|
45
|
Chen Q, Du M, Xu X. A label-free and selective electrochemical aptasensor for ultrasensitive detection of Di(2-ethylhexyl) phthalate based on self-assembled DNA nanostructure amplification. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Liu D, Tang J, Xu H, Yuan K, Aryee AA, Zhang C, Meng H, Qu L, Li Z. Split-aptamer mediated regenerable temperature-sensitive electrochemical biosensor for the detection of tumour exosomes. Anal Chim Acta 2022; 1219:340027. [DOI: 10.1016/j.aca.2022.340027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
|
47
|
Progress in smartphone-enabled aptasensors. Biosens Bioelectron 2022; 215:114509. [DOI: 10.1016/j.bios.2022.114509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
|
48
|
Ma Y, Guo Z, Fan C, Chen J, Xu S, Liu Z. Rationally Screened and Designed ABCG2-Binding Aptamers for Targeting Cancer Stem Cells and Reversing Multidrug Resistance. Anal Chem 2022; 94:7375-7382. [PMID: 35544739 DOI: 10.1021/acs.analchem.2c00863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ATP-binding cassette, subfamily G, isoform 2 protein (ABCG2), as an important member of ABC transporters, plays a key role in multidrug resistance (MDR) in cancer and has been widely considered as a marker of cancer stem cells (CSC). Reagents capable of simultaneously targeting ABCG2 and reversing MDR have great clinical application values, but their development is highly challenging. Herein, ABCG2 glycosylated extracellular region-binding aptamers were efficiently screened by a cladded molecularly imprinted polymer (cMIP)-based in vitro screening method and further rationally engineered into cyclic bivalent aptamers. Experiments showed that both the monovalent and cyclic bivalent aptamers could specifically bind ABCG2 and thereby specially target CSC of human colorectal carcinomas (CoCSC), while the latter could effectively reverse MDR in drug-resistant liver cancer cells (HepG2/ADR). Different from currently predominant small molecule inhibitors, the reversal of MDR relied on a different mechanism; the cyclic bivalent aptamers bound the two monomers of ABCG2 dimers simultaneously and thereby blocked the ABCG2-mediated drug-pumping channel, resulting in increased intracellular accumulation of substrate drugs. This study opened a new access to the development of affinity reagents for targeting CSC and reversing MDR, holding great prospects in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chuanwen Fan
- Medical Center of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
49
|
Ranganathan V, Boisjoli S, DeRosa MC. Adsorption-desorption nano-aptasensors: fluorescent screening assays for ochratoxin A. RSC Adv 2022; 12:13727-13739. [PMID: 35541430 PMCID: PMC9081825 DOI: 10.1039/d2ra00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a FRET-based fluorescent aptasensor for the detection of ochratoxin A (OTA) was optimized based on the quenching efficiency of single-walled carbon nanotubes (SWCNTs) and the binding affinity of aptamers. OTA aptamers were conjugated with quantum dots and adsorbed to the surface of both acid-modified and unmodified SWCNTs. The maximum fluorescence quenching efficiency of the SWCNTs were compared. Acid-modified SWCNTs (amSWCNTs) have moderate quenching efficiency, providing an optimal sensitivity for qualitative fluorescence-enhancement biosensor assays. The binding parameters of the QD-modified OTA aptamers (1.12.2 and A08min) on the surface of amSWCNTs were compared. Based on our results, the A08min aptamer is a better candidate for OTA detection. Using the A08min aptamer, the SWCNT method had a limit of detection (LOD) of 40 nM. The amSWCNT method had a significantly lower LOD of 14 nM. Turn-on fluorescent nano-aptasensors are emerging as an effective diagnostic tool for simple detection of mycotoxins. Nanocomplexes designed for the detection of mycotoxins in solution and paper-based tests have proven to be useful.
Collapse
Affiliation(s)
- Velu Ranganathan
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| | - Maria C DeRosa
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| |
Collapse
|
50
|
Zhang B, Shi L, Li B, Jin Y. Ratiometric fluorescence resonance energy transfer for reliable and sensitive detection of intracellular telomerase RNA via strand displacement reaction amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120937. [PMID: 35114633 DOI: 10.1016/j.saa.2022.120937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Human telomerase RNA (hTR) is one essential component of telomerase and is overexpressed in tumor cells. Therefore, the reliable and sensitive detection of hTR is essential for the early cancer diagnosis. Herein, to avoid the false positive signals caused by co-existing components in the cell, a ratiometric fluorescence resonance energy transfer (FRET) strategy was developed to achieve reliable detection of intracellular hTR. Manganese dioxide nanosheets (MnO2NS) with good biocompatibility carry two fluorophore-labelled hairpin DNA probes into the cancer cell and then release the probes via decomposition of MnO2NS by intracellular L-glutathione reduced (GSH). Then, hTR triggered the cyclic strand displacement reaction (SDR) between two hairpin DNA probes to continuously form DNA duplexes, which made two fluorophores close to each other and led to an effective FRET. Fluorescence imaging demonstrated a higher expression level of hTR in HeLa cells than that in normal HL-7702 cells. The high specificity of hairpin DNA probes and SDR make it easy to discriminate the single-base mutation. Therefore, it provides a highly sensitive, simple and reliable method for the extracellular and intracellular detection of hTR.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|