1
|
Turčin V, Nemirovich T, Jungwirth P. From unbound to bound states: Ab initio molecular dynamics of ammonia clusters with an excess electron. J Chem Phys 2024; 161:144302. [PMID: 39378163 DOI: 10.1063/5.0224249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ab initio molecular dynamics simulations of negatively charged clusters of 2-48 ammonia molecules were performed to elucidate the electronic stability of the excess electron as a function of cluster size. We show that while the electronic stability of finite temperature clusters increases with cluster size, as few as 5-7 ammonia molecules can bind an excess electron, reaching a vertical binding energy slightly less than half of the bulk value for the largest system studied. These results, which are in agreement with previous studies wherever available, allowed us to analyze the excess electron binding patterns in terms of its radius of gyration and shape anisotropy and provide a qualitative interpretation based on a particle-in-a-spherical-well model.
Collapse
Affiliation(s)
- Vít Turčin
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Tatiana Nemirovich
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
2
|
Mei KJ, Borrelli WR, Guardado Sandoval JL, Schwartz BJ. How to Probe Hydrated Dielectrons Experimentally: Ab Initio Simulations of the Absorption Spectra of Aqueous Dielectrons, Electron Pairs, and Hydride. J Phys Chem Lett 2024; 15:9557-9565. [PMID: 39265158 PMCID: PMC11440606 DOI: 10.1021/acs.jpclett.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
In the radiation chemistry of water, two hydrated electrons (ehyd-) can react to form H2 and OH-. Experiments and simulations suggest that this reaction occurs through a mechanism involving colocalization of two ehyd-'s into the same solvent cavity, forming a hydrated dielectron ( ( e h y d ) 2 2 - ) intermediate, with aqueous hydride (H-) as a subintermediate. However, there has been no direct experimental observation of either ( e h y d ) 2 2 - or H-. Here, we present TD-DFT-based predictions for the absorption spectrum of open-shell-singlet and triplet ehyd- pairs, ( e h y d ) 2 2 - , and H-. We find that relative to ehyd-, triplet and open-shell singlet electron pairs show spectral shifts to the blue and red, respectively. Additionally, we find that ( e h y d ) 2 2 - absorbs even further to the red, and that H- has a charge-transfer-to-solvent-like transition at wavelengths several eV to the blue, providing a direct experimental handle with which to probe these species. We propose a three-pulse transient absorption experiment that should allow detection of ( e h y d ) 2 2 - and H-.
Collapse
Affiliation(s)
- Kenneth J Mei
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - William R Borrelli
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - José L Guardado Sandoval
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
3
|
Khan S, Aw ESY, Nagle-Cocco LAV, Sud A, Ghosh S, Subhan MKB, Xue Z, Freeman C, Sagkovits D, Gutiérrez-Llorente A, Verzhbitskiy I, Arroo DM, Zollitsch CW, Eda G, Santos EJG, Dutton SE, Bramwell ST, Howard CA, Kurebayashi H. Spin-Glass States Generated in a van der Waals Magnet by Alkali-Ion Intercalation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400270. [PMID: 39036829 DOI: 10.1002/adma.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Tuning magnetic properties in layered van der Waals (vdW) materials has captured significant attention due to the efficient control of ground states by heterostructuring and external stimuli. Electron doping by electrostatic gating, interfacial charge transfer, and intercalation is particularly effective in manipulating the exchange and spin-orbit properties, resulting in a control of Curie temperature (TC) and magnetic anisotropy. Here, an uncharted role of intercalation is discovered to generate magnetic frustration. As a model study, Na atoms are intercalated into the vdW gaps of pristine Cr2Ge2Te6 (CGT) where generated magnetic frustration leads to emerging spin-glass states coexisting with a ferromagnetic order. A series of dynamic magnetic susceptibility measurements/analysis confirms the formation of magnetic clusters representing slow dynamics with a distribution of relaxation times. The intercalation also modifies other macroscopic physical parameters including the significant enhancement of TC from 66 to 240 K and the switching of magnetic easy-hard axis direction. This study identifies intercalation as a unique route to generate emerging frustrated spin states in simple vdW crystals.
Collapse
Affiliation(s)
- Safe Khan
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Eva S Y Aw
- Department of Physics & Astronomy, University College London, London, WC1H 0AH, UK
| | | | - Aakanksha Sud
- RIEC, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-0812, Japan
- FRIS, Tohoku University, 6-3, Aramaki, Aoba-Ku, Sendai, 980-0845, Japan
| | - Sukanya Ghosh
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Mohammed K B Subhan
- Department of Physics & Astronomy, University College London, London, WC1H 0AH, UK
| | - Zekun Xue
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Charlie Freeman
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Dimitrios Sagkovits
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Araceli Gutiérrez-Llorente
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, 28933, Spain
| | - Ivan Verzhbitskiy
- Physics Department, National University of Singapore, Singapore 117551, Singapore
| | - Daan M Arroo
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | - Goki Eda
- Physics Department, National University of Singapore, Singapore 117551, Singapore
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117542, Singapore
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Sian E Dutton
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Steven T Bramwell
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Chris A Howard
- Department of Physics & Astronomy, University College London, London, WC1H 0AH, UK
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- WPI-AIMR, Tohoku University, 2-1-1, Katahira, Sendai, 980-8577, Japan
- Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
4
|
Alikhani ME, Madebène B, Silvi B. Microsolvation of cobalt, nickel, and copper atoms with ammonia: a theoretical study of the solvated electron precursors. J Mol Model 2024; 30:220. [PMID: 38902588 DOI: 10.1007/s00894-024-06019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
CONTEXT The s-block metals dissolved in ammonia form metal-ammonia complexes with diffuse electrons which could be used for redox catalysis. In this theoretical paper, we investigated the possibility of the d-bloc transition metals (Mn, Fe, Co, Ni, and Cu) solvated by ammonia. It has been demonstrated that both Mn and Fe atoms undergo into an oxidative reaction with NH3 forming an inserted species, HMNH2. On the contrary, the Co, Ni, and Cu atoms can accommodate four NH3, via the coordination bond, to form the first solvation sphere within C2v, D2d, and Td point groups, respectively. Addition of a fifth NH3 constitute the second solvation shell by forming hydrogen bond with the other NH3s. Interestingly, M(NH3)4 (M = Co, Ni, and Cu) is a so-called solvated electron precursor and should be considered as a monocation M(NH3)4+ kernel in tight contact with one electron distributed over its periphery. This nearly free electron could be used to capture a CO2 molecule and engages in a reduction reaction. METHODS Geometry optimization of the stationary points on the potential energy surface was performed using density functional theory - CAM-B3LYP functional including the GD3BJ dispersion contribution - in combination with the 6-311 + + G(2d, 2p) basis set for all the atoms. All first-principles calculations were performed using the Gaussian 09 quantum chemical packages. The natural electron configuration of transition atom engaged in the compounds has been found using the natural bond orbital (NBO) method. We used the EDR (electron delocalization range) approach to analyze the structure of solvated electrons in real space. We also used the electron localization function (ELF) to measure the degree of electronic localization within a chemical compound. The EDR and ELF analyses are done using the TopMod and Multiwfn packages, respectively.
Collapse
Affiliation(s)
| | - Bruno Madebène
- Sorbonne Université CNRS, MONARIS, UMR8233, F-75005, Paris, France
| | - Bernard Silvi
- Sorbonne Université CNRS, LCT, UMR7616, F-75005, Paris, France
| |
Collapse
|
5
|
Ariyarathna IR. Electronic structure analysis and DFT benchmarking of Rydberg-type alkali-metal-crown ether, -cryptand, and -adamanzane complexes. Phys Chem Chem Phys 2024; 26:16989-16997. [PMID: 38666396 DOI: 10.1039/d4cp00723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Density functional theory (DFT) and electron propagator theory (EPT) calculations were performed to study ground and excited electronic structures of alkali-metal (M) coordinated 9-crown-3, 24-crown-8, [2.1.1]cryptand, o-Me2-1.1.1, and 36Adamanzane complexes. Each complex bears an expanded electron in the periphery and occupies diffuse 1p-, 1d-, 1f-type molecular orbitals (or superatomic 1P, 1D, 1F orbitals) in excited electronic states. The calculated superatomic shell model of the M(9-crown-3)2 is 1S, 1P, 1D, 1F, 2S, 2P, 2D, 1G and it is held by all other complexes up to the studied 1F level. Due to the highly diffuse nature of the electron, the ionization energies of these complexes are significantly lower (1.6-2.0 eV) and hence these complexes belong to the superalkali category. The ab initio EPT ionization energy and the excitation energies of the Li(9-crown-3)2 were used to evaluate DFT errors associated with a series of exchange correlation functionals that span multiple rungs of Jacob's ladder (i.e., GGA, meta-GGA, global GGA hybrid, meta-GGA hybrid, range-separated hybrid, double-hybrid). Among these, the best performing functional is the range-separated hybrid CAM-B3LYP and the errors are within 6% of high-level ab initio EPT results. The accuracy of CAM-B3LYP is indeed transferable to similar complexes and hence the findings are expected to accelerate the progression of studies of Rydberg-type systems.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
6
|
Wang X, Geng N, de Villa K, Militzer B, Zurek E. Superconductivity in Dilute Hydrides of Ammonia under Pressure. J Phys Chem Lett 2024; 15:5947-5953. [PMID: 38810233 DOI: 10.1021/acs.jpclett.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The past decade has witnessed great progress in predicting and synthesizing polyhydrides that exhibit superconductivity under pressure. Dopants allow these compounds to become metals at pressures lower than those required to metallize elemental hydrogen. Here, we show that by combining the fundamental planetary building blocks of molecular hydrogen and ammonia, conventional superconducting compounds can be formed at high pressure. Through extensive theoretical calculations, we predict metallic metastable structures with NHn (n = 10, 11, 24) stoichiometries that are based on NH4+ superalkali cations and complex hydrogenic lattices. The hydrogen atoms in the molecular cation contribute to the superconducting mechanism, and the estimated superconducting critical temperatures, Tc's, are comparable to the highest values computed for the alkali metal polyhydrides. The largest calculated (isotropic Eliashberg) Tc is ∼180 K for Pnma-NH10 at 300 GPa. Our results suggest that other molecular cations can be mixed with hydrogen under pressure, yielding superconducting compounds.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Nisha Geng
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Kyla de Villa
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, United States
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, United States
- Department of Astronomy, University of California, Berkeley, California 94720, United States
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Ding C, Lu Q, Guo Z, Huang T, Wang J, Han Y, Xing D, Sun J. Quasi-2D spin-Peierls transition through interstitial anionic electrons in K(NH 3) 2. Sci Bull (Beijing) 2024; 69:1027-1036. [PMID: 38423875 DOI: 10.1016/j.scib.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Electron-phonon interactions and electron-electron correlations represent two crucial facets of condensed matter physics. For instance, in a half-filled spin-1/2 anti-ferromagnetic chain, the lattice dimerization induced by electron-nucleus interaction can be intensified by onsite Coulomb repulsion, resulting in a spin-Peierls state. Through first-principles calculations and crystal structure prediction methods, we have identified that under mild pressures, potassium and ammonia can form stable compounds: R3¯m K(NH3)2, Pm3¯m K(NH3)2, and Cm K2(NH3)3. Our predictions suggest that the R3¯m K(NH3)2 exhibits electride characteristics, marked by the formation of interstitial anionic electrons (IAEs) in the interlayer space. These IAEs are arranged in quasi-two-dimensional triangular arrays. With increasing pressure, the electronic van-Hove singularity shifts toward the Fermi level, resulting in an augmented density of states and the onset of both Peierls and magnetic instabilities. Analyzing these instabilities, we determine that the ground state of the R3¯m K(NH3)2 is the dimerized P21/m phase with zigzag-type anti-ferromagnetic IAEs. This state can be described by the triangular-lattice antiferromagnetic Heisenberg model with modulated magnetic interactions. Furthermore, we unveil the coexistence and positive interplay between magnetic and Peierls instability, constituting a scenario of spin-Peierls instability unprecedented in realistic 2D materials, particularly involving IAEs. This work provides valuable insights into the coupling of IAEs with the adjacent lattice and their spin correlations in quantum materials.
Collapse
Affiliation(s)
- Chi Ding
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qing Lu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhaopeng Guo
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tianheng Huang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu Han
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dingyu Xing
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
8
|
Alikhani ME, Janesko BG. A two-electron reducing reaction of CO 2 to an oxalate anion: a theoretical study of delocalized (presolvated) electrons in Al(CH 3) n(NH 3) m, n = 0-2 and m = 1-6, clusters. Phys Chem Chem Phys 2024; 26:7149-7156. [PMID: 38349025 DOI: 10.1039/d3cp06096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Presolvated electron possibility in three oxidation states of aluminum - Al(0), Al(I), and Al(II) - has been theoretically investigated for the Al + 6NH3, Al(CH3) + 5NH3, and Al(CH3)2 + 4NH3 reactions. It has been shown that the metal center adopts a tetrahedral shape for its most stable geometric structure, irrespective of the degree of Al oxidation states. Using different analysis techniques (highest occupied molecular orbital shapes, spin density distributions, and electron delocalization ranges), we showed that presolvated (delocalized) electrons are only formed in the Al(CH3)2(NH3)p coordination complexes when 2 ≤ p ≤ 4. It has also been evidenced that these delocalized electrons being powerful reducing agents allowed two CO2 molecules to be captured and form an oxalate ion in close contact with the [Al2(CH3)2(CH2)2(NH3)4]2+ dication core.
Collapse
Affiliation(s)
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S University Dr, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Racioppi S, Storm CV, McMahon MI, Zurek E. On the Electride Nature of Na-hP4. Angew Chem Int Ed Engl 2023; 62:e202310802. [PMID: 37796438 DOI: 10.1002/anie.202310802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Early quantum mechanical models suggested that pressure drives solids towards free-electron metal behavior where the ions are locked into simple close-packed structures. The prediction and subsequent discovery of high-pressure electrides (HPEs), compounds assuming open structures where the valence electrons are localized in interstitial voids, required a paradigm shift. Our quantum chemical calculations on the iconic insulating Na-hP4 HPE show that increasing density causes a 3s→3pd electronic transition due to Pauli repulsion between the 1s2s and 3s states, and orthogonality of the 3pd states to the core. The large lobes of the resulting Na-pd hybrid orbitals point towards the center of an 11-membered penta-capped trigonal prism and overlap constructively, forming multicentered bonds, which are responsible for the emergence of the interstitial charge localization in Na-hP4. These multicentered bonds facilitate the increased density of this phase, which is key for its stabilization under pressure.
Collapse
Affiliation(s)
- Stefano Racioppi
- Department of Chemistry, State University of New York at Buffalo (USA), 777 Natural Science Complex, 14260-3000, Buffalo, NY, USA
| | - Christian V Storm
- SUPA, School of Physics and Astronomy, and Center for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Malcolm I McMahon
- SUPA, School of Physics and Astronomy, and Center for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo (USA), 777 Natural Science Complex, 14260-3000, Buffalo, NY, USA
| |
Collapse
|
10
|
Li X, Pan Z, Xia Y, Rui J, Zhu M, Ren H, Huang J. Controlled Radical Polymerization Initiated by Solvated Electrons. Macromol Rapid Commun 2023; 44:e2300416. [PMID: 37712327 DOI: 10.1002/marc.202300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Solvated electron (esol - ) is highly reducing species and apt to initiate monomers via one-electron transfer reaction. Herein, utilizing the esol - solution of Na/hexamethylphosphoramide, radical and anionic initiations are observed respectively, which heavily depend on Na concentrations. Interestingly, this initiation system, in states of lower Na concentrations, higher molar conductivities and less paired esol - , give rise to a controlled radical polymerization (CRP) to yield polymers with predictable molecular weights and narrow molecular weight distributions (the lowest Ð = 1.25). This CRP presents unique behaviors, like solvent effect, electric field effect, and unusual copolymerization phenomenon. A semi-conjugated radical carrying a negative charge is proposed to be responsible for the CRP. This system gives a distinct way to regulate CRP from current CRPs, and offers new insights into the monomer initiation by esol - .
Collapse
Affiliation(s)
- Xun Li
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - Zhaoyan Pan
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - Yichen Xia
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - Jiayu Rui
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - Meng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - He Ren
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| | - Jian Huang
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing, Jiangsu Province, 211816, P.R. China
| |
Collapse
|
11
|
Jackson BA, Khan SN, Miliordos E. A fresh perspective on metal ammonia molecular complexes and expanded metals: opportunities in catalysis and quantum information. Chem Commun (Camb) 2023; 59:10572-10587. [PMID: 37555315 DOI: 10.1039/d3cc02956e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recent advances in our comprehension of the electronic structure of metal ammonia complexes have opened avenues for novel materials with diffuse electrons. These complexes in their ground state can host peripheral "Rydberg" electrons which populate a hydrogenic-type shell model imitating atoms. Aggregates of such complexes form the so-called expanded or liquid metals. Expanded metals composed of d- and f-block metal ammonia complexes offer properties, such as magnetic moments and larger numbers of diffuse electrons, not present for alkali and alkaline earth (s-block) metals. In addition, tethering metal ammonia complexes via hydrocarbon chains (replacement of ammonia ligands with diamines) yields materials that can be used for redox catalysis and quantum computing, sensing, and optics. This perspective summarizes the recent findings for gas-phase isolated metal ammonia complexes and projects the obtained knowledge to the condensed phase regime. Possible applications for the newly introduced expanded metals and linked solvated electrons precursors are discussed and future directions are proposed.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
12
|
Hartweg S, Barnes J, Yoder BL, Garcia GA, Nahon L, Miliordos E, Signorell R. Solvated dielectrons from optical excitation: An effective source of low-energy electrons. Science 2023:eadh0184. [PMID: 37228229 DOI: 10.1126/science.adh0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Low-energy electrons dissolved in liquid ammonia or aqueous media are powerful reducing agents that promote challenging reduction reactions, but can also cause radiation damage to biological tissue. Knowledge of the underlying mechanistic processes remains incomplete, in particular with respect to the details and energetics of the electron transfer steps. Here, we show how ultraviolet (UV) photoexcitation of metal-ammonia clusters could be used to generate tunable low-energy electrons in situ. Specifically, we identified UV light-induced generation of spin-paired solvated dielectrons and their subsequent relaxation by an unconventional electron-transfer-mediated decay as an efficient low-energy electron source. The process is robust and straightforward to induce, with the prospect of improving our understanding of radiation damage and fostering mechanistic studies of solvated electron reduction reactions.
Collapse
Affiliation(s)
- Sebastian Hartweg
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3a, 79104 Freiburg, Germany
| | - Jonathan Barnes
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| | - Evangelos Miliordos
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, AL, USA
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Dong H, Feng Y, Bu Y. Electron Presolvation in Tetrahydrofuran-Incorporated Supramolecular Sodium Entities. J Phys Chem A 2023; 127:1402-1412. [PMID: 36748233 DOI: 10.1021/acs.jpca.2c06944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alkali metal atoms can repopulate their valence electrons toward solvation due to impact from solvents or microsurroundings and provide the remaining alkali metal cations for coordinating with a variety of specific solvents, forming various electron-expanded complexes or solvated ionic pairs with special interactions. Such special solute-solvent interactions not only affect their electronic structures but also enable the formation of entirely new species. Taking Na(THF)n (n = 1-6, THF = tetrahydrofuran) and Na2@THF complexes as typical representatives, density functional theory calculations are carried out to explore the solvation of a sodium atom and its dimer in THF and characterize their complexes as solvent-incorporated supramolecular entities and particularly valence electron presolvation due to their interaction with solvent THF. Electron presolvation is caused by the Pauli repulsion between THF containing a coordinating O atom with a lone pair of electrons and the alkali metal Na or Na2 containing valence electrons, and THF coordination to them forces their valence electrons to redistribute, which can be easily realized in such solvents. Compared with strongly bound valance electrons of alkali metal atoms, THF coordination enables Na or Na2 electrons to exhibit much more active states (i.e., the presolvated states) featuring small vertical detachment energies of electrons and distorted diffuse distributions in the frames of the generally structured metal cation complexes, acting as the electron-expanded chemical entities. Furthermore, the degree of electron diffusion and the polarity of the Na-Na bond are proportional to the coordination number (n) and the coordination number difference (Δn) between two Na centers in Na2@THF. The unique properties of such entities are also discussed. This work offers a theoretical support to the supramolecular entities formed by alkali-metal atoms or their dimers with ligands containing O or N and uncovers the unique electron presolvation phenomena and also enriches our understanding of the novel metal atom complexes.
Collapse
Affiliation(s)
- Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, P. R. China
| | - Yiwei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, P. R. China
| |
Collapse
|
14
|
Nemirovich T, Kostal V, Copko J, Schewe HC, Boháčová S, Martinek T, Slanina T, Jungwirth P. Bridging Electrochemistry and Photoelectron Spectroscopy in the Context of Birch Reduction: Detachment Energies and Redox Potentials of Electron, Dielectron, and Benzene Radical Anion in Liquid Ammonia. J Am Chem Soc 2022; 144:22093-22100. [DOI: 10.1021/jacs.2c09478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatiana Nemirovich
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Jakub Copko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - H. Christian Schewe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Tomas Martinek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Tomas Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10Prague 6, Czech Republic
| |
Collapse
|
15
|
Moreno N, Hadad CZ, Restrepo A. Microsolvation of electrons by a handful of ammonia molecules. J Chem Phys 2022; 157:134301. [PMID: 36209021 DOI: 10.1063/5.0107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microsolvation of electrons in ammonia is studied here via anionic NH3 n - clusters with n = 2-6. Intensive samplings of the corresponding configurational spaces using second-order perturbation theory with extended basis sets uncover rich and complex energy landscapes, heavily populated by many local minima in tight energy windows as calculated from highly correlated coupled cluster methods. There is a marked energetical preference for structures that place the excess electron external to the molecular frame, effectively coordinating it with the three protons from a single ammonia molecule. Overall, as the clusters grow in size, the lowest energy dimer serves as the basic motif over which additional ammonia molecules are attached via unusually strong charge-assisted hydrogen bonds. This is a priori quite unexpected because, on electrostatic grounds, the excess electron would be expected to be in contact with as many protons as possible. Accordingly, a full quantum mechanical treatment of the bonding interactions under the tools provided by the quantum theory of atoms in molecules is carried out in order to dissect and understand the nature of intermolecular contacts. Vertical detachment energies reveal bound electrons even for n = 2.
Collapse
Affiliation(s)
- Norberto Moreno
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Cacier Z Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
16
|
Crockett MP, Aguirre LS, Jimenez LB, Hsu HH, Thomas AA. Preparation of Highly Reactive Lithium Metal Dendrites for the Synthesis of Organolithium Reagents. J Am Chem Soc 2022; 144:16631-16637. [PMID: 36037085 DOI: 10.1021/jacs.2c07207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A long-standing problem in the area of organolithium chemistry has been the need for a highly reactive Li-metal source that mimics Li-powders but has the advantage of being freshly prepared from inexpensive and readily available Li-sources. Here, we report a simple and convenient activation method using liquid ammonia that furnishes a new Li-metal source in the form of crystalline Li-dendrites. The Li-dendrites were shown to have ca. 100 times greater surface area than conventional Li-sources created by prototypical mechanical activation methods. Concomitant with the surface area increase, the Li-dendrites were shown to exhibit significant rate enhancements over Li-powders, which are currently the industry standard for the preparation of organolithium compounds. These features were leveraged for the reproducible synthesis of organolithium reagents over a range of common laboratory scales.
Collapse
Affiliation(s)
- Michael P Crockett
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Lupita S Aguirre
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Leonel B Jimenez
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Han-Hsiang Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Andy A Thomas
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
17
|
Saha R, Das P, Chattaraj PK. Molecular Electrides: An In Silico Perspective. Chemphyschem 2022; 23:e202200329. [PMID: 35894262 DOI: 10.1002/cphc.202200329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Indexed: 11/10/2022]
Abstract
Electrides are defined as the ionic compounds where the electron(s) serves as an anion. These electron(s) is (are) not bound to any atoms, bonds, or molecules rather than they are localized into the space, crystal voids, or interlayer between two molecular slabs. There are three major categories of electrides, known as organic electriades, inorganic electrides, and molecular electrides. The computational techniques have proven as a great tool to provide emphasis on the electride materials. In this review, we have focused on the computational methodologies and criteria that help to characterize molecular electrides. A detailed account of the computational methods and basis sets applicable for molecular electrides have been discussed along with their limitation(s) in this field. The main criterion for the identification of the electrides has also been discussed thoroughly with proper examples. The molecular electrides presented here have been justified with all the required criteria that support and proved their electride characteristics. We have also presented a few systems which have similar properties but are not considered as molecular electrides. Moreover, the applicability of the electrides in catalytic processes has also been presented.
Collapse
Affiliation(s)
- Ranajit Saha
- Hokkaido University, Sapporo, Japan, Institute for Chemical Reaction Design & Discovery (ICReDD), JAPAN
| | - Prasenjit Das
- Indian Institute of Technology Kharagpur, Chemistry, INDIA
| | - Pratim Kumar Chattaraj
- Indian Institute of Technology, Kharagpur, Chemistry, Indian Institute of Technology Kharagpur 721302, 721302, Kharagpur, INDIA
| |
Collapse
|
18
|
Jackson BA, Miliordos E. The nature of supermolecular bonds: Investigating hydrocarbon linked beryllium solvated electron precursors. J Chem Phys 2022; 156:194302. [PMID: 35597656 DOI: 10.1063/5.0089815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Beryllium ammonia complexes Be(NH3)4 are known to bear two diffuse electrons in the periphery of a Be(NH3)4 2+ skeleton. The replacement of one ammonia with a methyl group forms CH3Be(NH3)3 with one peripheral electron, which is shown to maintain the hydrogenic-type shell model observed for Li(NH3)4. Two CH3Be(NH3)3 monomers are together linked by aliphatic chains to form strongly bound beryllium ammonia complexes, (NH3)3Be(CH2)nBe(NH3)3, n = 1-6, with one electron around each beryllium ammonia center. In the case of a linear carbon chain, this system can be seen as the analog of two hydrogen atoms approaching each other at specific distances (determined by n). We show that the two electrons occupy diffuse s-type orbitals and can couple exactly as in H2 in either a triplet or singlet state. For long hydrocarbon chains, the singlet is an open-shell singlet nearly degenerate with the triplet spin state, which transforms to a closed-shell singlet for n = 1 imitating the σ-covalent bond of H2. The biradical character of the system is analyzed, and the singlet-triplet splitting is estimated as a function of n based on multi-reference calculations. Finally, we consider the case of bent hydrocarbon chains, which allows the closer proximity of the two diffuse electrons for larger chains and the formation of a direct covalent bond between the two diffuse electrons, which happens for two Li(NH3)4 complexes converting the open-shell to closed-shell singlets. The energy cost for bending the hydrocarbon chain is nearly compensated by the formation of the weak covalent bond rendering bent and linear structures nearly isoenergetic.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
19
|
Jackson BA, Miliordos E. Simultaneous CO 2 capture and functionalization: solvated electron precursors as novel catalysts. Chem Commun (Camb) 2022; 58:1310-1313. [PMID: 34981795 DOI: 10.1039/d1cc04748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal complexes with diffuse solvated electrons (solvated electron precursors) are proposed as alternative catalysts for the simultaneous CO2 capture and utilization. Quantum chemical calculations were used to study the reaction of CO2 with H2 and C2H4 to produce formic acid, methyldiol and δ-lactone. Mechanisms of a complete reaction pathway are found and activation barriers are reasonably low. The metal ligand complex readily reduces CO2 and significantly stabilizes CO2˙-. Ligand identity minimally influences the reaction. Additional reactions and future strategies are proposed with the goal of inducing experimental interest.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
20
|
Das P, Chattaraj PK. Stabilisation of Li(0)-Li(0) bond by normal and mesoionic carbenes and electride characteristics of the complexes. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
21
|
Brezina K, Kostal V, Jungwirth P, Marsalek O. Electronic structure of the solvated benzene radical anion. J Chem Phys 2022; 156:014501. [PMID: 34998349 DOI: 10.1063/5.0076115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The benzene radical anion is a molecular ion pertinent to several organic reactions, including the Birch reduction of benzene in liquid ammonia. The species exhibits a dynamic Jahn-Teller effect due to its open-shell nature and undergoes pseudorotation of its geometry. Here, we characterize the complex electronic structure of this condensed-phase system based on ab initio molecular dynamics simulations and GW calculations of the benzene radical anion solvated in liquid ammonia. Using detailed analysis of the molecular and electronic structure, we find that the spatial character of the excess electron of the solvated radical anion follows the underlying Jahn-Teller distortions of the molecular geometry. We decompose the electronic density of states to isolate the contribution of the solute and to examine the response of the solvent to its presence. Our findings show the correspondence between instantaneous molecular structure and spin density; provide important insights into the electronic stability of the species, revealing that it is, indeed, a bound state in the condensed phase; and offer electronic densities of states that aid in the interpretation of experimental photoelectron spectra.
Collapse
Affiliation(s)
- Krystof Brezina
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
22
|
Yue H, Zhang S, Feng T, Chen C, Zhou H, Xu Z, Wu M. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53996-54004. [PMID: 34732046 DOI: 10.1021/acsami.1c16842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By compensating the irreversible loss of lithium ions during the first cycle, prelithiations can solve the issue of insufficient initial Coulombic efficiency for various anodes. Recently, the chemical prelithiation using organolithium compounds has attracted increasing attention because of its uniform and fast reaction, safety, and easily adjustable degree of prelithiation. However, the nature and activity of organolithium involved in chemical prelithiations have not been deeply explored yet. Here, by monitoring the electrical conductivity change in the lithiation solution in the duration of its formation, we have demonstrated the essential role of lithium radical anions for chemical prelithiation and compared the prelithiation activity of dissociated species and aggregates of lithium radical anions. The mechanistic understanding of the nature of the lithiation solution leads to controllable chemical prelithiation, as demonstrated in full cells of prelithiated hard carbon and LiFePO4.
Collapse
Affiliation(s)
- Huancheng Yue
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
| | - Shu Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Tingting Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Cheng Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
| | - Haiping Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Ziqiang Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Mengqiang Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu 611731, China
- The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
23
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
24
|
Ariyarathna IR, Miliordos E. Ground and excited states analysis of alkali metal ethylenediamine and crown ether complexes. Phys Chem Chem Phys 2021; 23:20298-20306. [PMID: 34486608 DOI: 10.1039/d1cp02552j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-level electronic structure calculations are carried out to obtain optimized geometries and excitation energies of neutral lithium, sodium, and potassium complexes with two ethylenediamine and one or two crown ether molecules. Three different sizes of crowns are employed (12-crown-4, 15-crown-5, 18-crown-6). The ground state of all complexes contains an electron in an s-type orbital. For the mono-crown ether complexes, this orbital is the polarized valence s-orbital of the metal, but for the other systems this orbital is a peripheral diffuse orbital. The nature of the low-lying electronic states is found to be different for each of these species. Specifically, the metal ethylenediamine complexes follow the previously discovered shell model of metal ammonia complexes (1s, 1p, 1d, 2s, 1f), but both mono- and sandwich di-crown ether complexes bear a different shell model partially due to their lower (cylindrical) symmetry and the stabilization of the 2s-type orbital. Li(15-crown-5) is the only complex with the metal in the middle of the crown ether and adopts closely the shell model of metal ammonia complexes. Our findings suggest that the electronic band structure of electrides (metal crown ether sandwich aggregates) and expanded metals (metal ammonia aggregates) should be different despite the similar nature of these systems (bearing diffuse electrons around a metal complex).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
25
|
Das P, Chattaraj PK. Substituent Effects on Electride Characteristics of Mg 2(η 5-C 5H 5) 2: A Theoretical Study. J Phys Chem A 2021; 125:6207-6220. [PMID: 34254514 DOI: 10.1021/acs.jpca.1c04605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An ab initio study has been carried out on the substituted binuclear sandwich complexes of Mg2(η5-C5H5)2. We have checked whether the substitution destroys the electride properties of a complex, as it needs to satisfy several stringent criteria to obtain the status of an electride. The thermochemical results show that the complexes are stable at room temperature and 1 atm pressure. From the analysis of the various electron density descriptors and the natural bond orbital (NBO) for all the complexes, it is confirmed that the Mg-Mg bonds are covalent and the metal-ligand bonds are ionic in nature. The charges on each Mg atom in the studied complexes are +1. Analysis of the electron density descriptors shows the presence of a non-nuclear attractor (NNA) at the middle of the bond formed by the two Mg atoms when attached to the ligands. The electride characteristics are exhibited by all of the designed complexes. We also report the aromaticity behavior and reactivity descriptors of these complexes. The electride characteristics of Mg2(η5-C5H5)2 complex get affected on substitution, as both the NNA population and the nonlinear optical properties (NLO) of the complexes are changed.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Nicholas TC, Headen TF, Wasse JC, Howard CA, Skipper NT, Seel AG. Intermediate Range Order in Metal-Ammonia Solutions: Pure and Na-Doped Ca-NH 3. J Phys Chem B 2021; 125:7456-7461. [PMID: 34212732 PMCID: PMC8389892 DOI: 10.1021/acs.jpcb.1c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The local and intermediate range ordering in Ca-NH3 solutions in their metallic phase is determined through H/D isotopically differenced neutron diffraction in combination with empirical potential structure refinements. For both low and high relative Ca concentrations, the Ca ions are found to be octahedrally coordinated by the NH3 solvent, and these hexammine units are spatially correlated out to lengthscales of ∼7.4-10.3 Å depending on the concentration, leading to pronounced ordering in the bulk liquid. We further demonstrate that this liquid order can be progressively disrupted by the substitution of Ca for Na, whereby a distortion of the average ion primary solvation occurs and the intermediate range ion-ion correlations are disrupted.
Collapse
Affiliation(s)
- Thomas C Nicholas
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Thomas F Headen
- ISIS Spallation Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, U.K
| | - Jonathan C Wasse
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Christopher A Howard
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Neal T Skipper
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Andrew G Seel
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
27
|
Kostal V, Brezina K, Marsalek O, Jungwirth P. Benzene Radical Anion Microsolvated in Ammonia Clusters: Modeling the Transition from an Unbound Resonance to a Bound Species. J Phys Chem A 2021; 125:5811-5818. [PMID: 34165987 DOI: 10.1021/acs.jpca.1c04594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The benzene radical anion, well-known in organic chemistry as the first intermediate in the Birch reduction of benzene in liquid ammonia, exhibits intriguing properties from the point of view of quantum chemistry. Notably, it has the character of a metastable shape resonance in the gas phase, while measurements in solution find it to be experimentally detectable and stable. In this light, our previous calculations performed in bulk liquid ammonia explicitly reveal that solvation leads to stabilization. Here, we focus on the transition of the benzene radical anion from an unstable gas-phase ion to a fully solvated bound species by explicit ionization calculations of the radical anion solvated in molecular clusters of increasing size. The computational cost of the largest systems is mitigated by combining density functional theory with auxiliary methods including effective fragment potentials or approximating the bulk by polarizable continuum models. Using this methodology, we obtain the cluster size dependence of the vertical binding energy of the benzene radical anion converging to the value of -2.3 eV at a modest computational cost.
Collapse
Affiliation(s)
- Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Krystof Brezina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
28
|
Jackson BA, Miliordos E. Electronic and geometric structure of cationic and neutral chromium and molybdenum ammonia complexes. J Chem Phys 2021; 155:014303. [PMID: 34241410 DOI: 10.1063/5.0054648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High level quantum chemical approaches are used to study the geometric and electronic structures of M(NH3)n and M(NH3)n + (M = Cr, Mo for n = 1-6). These complexes possess a dual shell electronic structure of the inner metal (3d or 4d) orbitals and the outer diffuse orbitals surrounding the periphery of the complex. Electronic excitations reveal these two shells to be virtually independent of the other. Molybdenum and chromium ammonia complexes are found to differ significantly in geometry with the former adopting an octahedral geometry and the latter a Jahn-Teller distorted octahedral structure where only the axial distortion is stable. The hexa-coordinated complexes and the tetra-coordinated complexes with two ammonia molecules in the second solvation shell are found to be energetically competitive. Electronic excitation energies and computed IR spectra are provided to allow the two isomers to be experimentally distinguished. This work is a component of an ongoing effort to study the periodic trends of transition metal solvated electron precursors.
Collapse
Affiliation(s)
- Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| |
Collapse
|
29
|
Mason PE, Schewe HC, Buttersack T, Kostal V, Vitek M, McMullen RS, Ali H, Trinter F, Lee C, Neumark DM, Thürmer S, Seidel R, Winter B, Bradforth SE, Jungwirth P. Spectroscopic evidence for a gold-coloured metallic water solution. Nature 2021; 595:673-676. [PMID: 34321671 DOI: 10.1038/s41586-021-03646-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/14/2021] [Indexed: 02/04/2023]
Abstract
Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2-4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6-9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12-14. We found that the explosive behaviour of the water-alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10-4 millibar onto liquid sodium-potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.
Collapse
Affiliation(s)
- Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - H Christian Schewe
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Tillmann Buttersack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Vojtech Kostal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marco Vitek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ryan S McMullen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Hebatallah Ali
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.,Department of Physics, Faculty of Women for Art, Science and Education, Ain Shams University, Cairo, Egypt
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.,Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institut für Kernphysik, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Chin Lee
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.,Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
30
|
Krzton-Maziopa A. Intercalated Iron Chalcogenides: Phase Separation Phenomena and Superconducting Properties. Front Chem 2021; 9:640361. [PMID: 34239856 PMCID: PMC8259132 DOI: 10.3389/fchem.2021.640361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Organic molecule-intercalated layered iron-based monochalcogenides are presently the subject of intense research studies due to the linkage of their fascinating magnetic and superconducting properties to the chemical nature of guests present in the structure. Iron chalcogenides have the ability to host various organic species (i.e., solvates of alkali metals and the selected Lewis bases or long-chain alkylammonium cations) between the weakly bound inorganic layers, which opens up the possibility for fine tuning the magnetic and electrical properties of the intercalated phases by controlling both the doping level and the type/shape and orientation of the organic molecules. In recent years, significant progress has been made in the field of intercalation chemistry, expanding the gallery of intercalated superconductors with new hybrid inorganic–organic phases characterized by transition temperatures to a superconducting state as high as 46 K. A typical synthetic approach involves the low-temperature intercalation of layered precursors in the presence of liquid amines, and other methods, such as electrochemical intercalation, intercalant or ion exchange, and direct solvothermal growths from anhydrous amine-based media, are also being developed. Large organic guests, while entering a layered structure on intercalation, push off the inorganic slabs and modify the geometry of their internal building blocks (edge-sharing iron chalcogenide tetrahedrons) through chemical pressure. The chemical nature and orientation of organic molecules between the inorganic layers play an important role in structural modification and may serve as a tool for the alteration of the superconducting properties. A variety of donor species well-matched with the selected alkali metals enables the adjustment of electron doping in a host structure offering a broad range of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed, involving the influence of the chemical and electrochemical nature of intercalating species on the crystal structure and critical issues related to the superconducting properties of the hybrid inorganic–organic phases. Mutual relations between the host and organic guests lead to a specific ordering of molecular species between the host layers, and their effect on the electronic structure of the host will be also argued. A brief description of a critical assessment of the association of the most effective chemical and electrochemical methods, which lead to the preparation of nanosized/microsized powders and single crystals of molecularly intercalated phases, with the ease of preparation of phase pure materials, crystal sizes, and the morphology of final products is given together with a discussion of the stability of the intercalated materials connected with the volatility of organic solvents and a possible degradation of host materials.
Collapse
|
31
|
|
32
|
Riedel R, Seel AG, Malko D, Miller DP, Sperling BT, Choi H, Headen TF, Zurek E, Porch A, Kucernak A, Pyper NC, Edwards PP, Barrett AGM. Superalkali-Alkalide Interactions and Ion Pairing in Low-Polarity Solvents. J Am Chem Soc 2021; 143:3934-3943. [PMID: 33660507 PMCID: PMC8028040 DOI: 10.1021/jacs.1c00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 11/30/2022]
Abstract
The nature of anionic alkali metals in solution is traditionally thought to be "gaslike" and unperturbed. In contrast to this noninteracting picture, we present experimental and computational data herein that support ion pairing in alkalide solutions. Concentration dependent ionic conductivity, dielectric spectroscopy, and neutron scattering results are consistent with the presence of superalkali-alkalide ion pairs in solution, whose stability and properties have been further investigated by DFT calculations. Our temperature dependent alkali metal NMR measurements reveal that the dynamics of the alkalide species is both reversible and thermally activated suggesting a complicated exchange process for the ion paired species. The results of this study go beyond a picture of alkalides being a "gaslike" anion in solution and highlight the significance of the interaction of the alkalide with its complex countercation (superalkali).
Collapse
Affiliation(s)
- René Riedel
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Andrew G. Seel
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, U.K.
- Inorganic
Chemistry Laboratories, University of Oxford, Park Royal Road, Oxford OX1 3QR, U.K.
| | - Daniel Malko
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Daniel P. Miller
- Department
of Chemistry, Hofstra University, 106 Berliner Hall, Hempstead, New York 11549, United States
| | - Brendan T. Sperling
- Department
of Chemistry, Hofstra University, 106 Berliner Hall, Hempstead, New York 11549, United States
| | - Heungjae Choi
- School
of Engineering, Cardiff University, Cardiff CF24 3AA, U.K.
| | - Thomas F. Headen
- ISIS Neutron
and Muon Source, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Eva Zurek
- Department
of Chemistry, State University of New York
at Buffalo, 777 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Adrian Porch
- School
of Engineering, Cardiff University, Cardiff CF24 3AA, U.K.
| | - Anthony Kucernak
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Nicholas C. Pyper
- University
Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Peter P. Edwards
- Inorganic
Chemistry Laboratories, University of Oxford, Park Royal Road, Oxford OX1 3QR, U.K.
| | - Anthony G. M. Barrett
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
33
|
Das P, Chattaraj PK. Comparison Between Electride Characteristics of Li 3@B 40 and Li 3@C 60. Front Chem 2021; 9:638581. [PMID: 33791279 PMCID: PMC8005563 DOI: 10.3389/fchem.2021.638581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Density functional theory (DFT) based computation is performed on the endohedrally encapsulated Li3 cluster inside the B40 and C60 cages namely, Li3@B40 and Li3@C60. For both these systems, the Li-Li bond lengths are shorter than that in the free Li3 cluster. Due to confinement, the Li-Li vibrational frequencies increase in both the systems as compared to that in the free Li3 cluster. Thermodynamically, the formation of these two systems is spontaneous in nature as predicted by the negative values of Gibbs' free energy changes (ΔG). For both the systems one non-nuclear attractor (NNA) is present on the middle of the Li3 cluster which is predicted and confirmed by the electron density analysis. The NNA population and the percentage localization of electron density at the NNA of the Li3@C60 system are higher than that in the Li3@B40 system. At the NNA the values of the Laplacian of electron density are negative and an electron localization function basin is present at the center of the Li3 cluster for localized electrons. Both systems show large values of nonlinear optical properties (NLO). Both the Li3 encapsulated endohedral systems behave as electrides. Electrides have low work function and hence have a great potential in catalytic activity toward the activation of small molecules (such as CO2, N2). Even some electrides have greater catalytic activity than some well-studied metal-loaded catalysts. As the systems under study behave as electrides, they have the power to show catalytic activity and can be used in catalyzing the activation of small molecules.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
34
|
Abella L, Philips A, Autschbach J. Ab initio molecular dynamics study of sodium NMR chemical shifts in the methylamine solution of [Na + [2.2.2]cryptand Na -]. Phys Chem Chem Phys 2021; 23:339-346. [PMID: 33349818 DOI: 10.1039/d0cp06012g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sodium anion (Na-) was once thought to behave like a 'genuine' anion, with both the [Ne] core and the 3s valence shell interacting very weakly with their environments. In the present work, following a recent study of the surprisingly small quadrupolar line widths of Na-, NMR shielding calculations were carried out for the Na-/Na+ [2.2.2]cryptand system solvated in methylamine, based on ab initio molecular dynamics simulations, followed by detailed analyses of the shielding constants. The results confirm that Na- does not act like a quasi-free ion that interacts only weakly with its surroundings. Rather, the filled 3s shell of Na- interacts strongly with its chemical environment, but only weakly with the ion's own core and the nucleus, and it isolates the core from the chemical environment. As a consequence, the Na- ion appears in NMR experiments like a free ion.
Collapse
Affiliation(s)
- Laura Abella
- Department of Chemistry University at Buffalo State University of New York Buffalo, NY 14260-3000, USA.
| | | | | |
Collapse
|
35
|
Petrillo C, Sacchetti F. Future applications of the high-flux thermal neutron spectroscopy: the ever-green case of collective excitations in liquid metals. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1871862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Caterina Petrillo
- Department of Physics & Earth Science, University of Perugia, Perugia, Italy
| | - Francesco Sacchetti
- Department of Physics & Earth Science, University of Perugia, Perugia, Italy
- National Research Council, Institute IOM-CNR, Perugia, Italy
| |
Collapse
|
36
|
Ariyarathna IR. Ground and excited electronic structure analysis of XM 4 (X = N, P and M = Li, Na) and their anions. Phys Chem Chem Phys 2021; 23:16206-16212. [PMID: 34304257 DOI: 10.1039/d1cp02273c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-level coupled-cluster, electron propagator, and multi-reference ab initio methods are employed to study the ground and excited electronic states of the XM4 (X = N, P and M = Li, Na) series. All XM4 species bear lower ionization potentials and can be classified as superalkalis. In the ground state each possesses a diffuse electron in the periphery. This expanded electron cloud of tetrahedral NLi4, NNa4, and PNa4 molecules is spherical (similar to an s-orbital) and evenly distributed around the XM4+ core. The outer electron is promoted to higher-angular momentum p-, d-, 2s-type orbitals in excited states. Singly occupied molecular orbitals of excited PLi4 are deformed due to its lower C1 symmetry. The aug-cc-pVQZ basis set was found to describe the excited states of XM4 accurately and efficiently. The bound singlet and triplet electronic states of XM4- that possess two peripheral electrons are also analyzed.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
37
|
Barnes JV, Beck M, Hartweg S, Luski A, Yoder BL, Narevicius J, Narevicius E, Signorell R. Magnetic deflection of neutral sodium-doped ammonia clusters. Phys Chem Chem Phys 2021; 23:846-858. [DOI: 10.1039/d0cp04647g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Stern–Gerlach setup elucidates the spin relaxation dynamics of small weakly-bound Na(NH3)n clusters.
Collapse
Affiliation(s)
- J. V. Barnes
- Department of Chemistry and Applied Biosciences, ETH Zürich
- Zürich
- Switzerland
| | - M. Beck
- Department of Chemistry and Applied Biosciences, ETH Zürich
- Zürich
- Switzerland
| | - S. Hartweg
- Department of Chemistry and Applied Biosciences, ETH Zürich
- Zürich
- Switzerland
| | - A. Luski
- Department of Chemical Physics, Weizmann Institute of Science
- Rehovot
- Israel
| | - B. L. Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich
- Zürich
- Switzerland
| | - J. Narevicius
- Department of Chemical Physics, Weizmann Institute of Science
- Rehovot
- Israel
| | - E. Narevicius
- Department of Chemical Physics, Weizmann Institute of Science
- Rehovot
- Israel
| | - R. Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich
- Zürich
- Switzerland
| |
Collapse
|
38
|
Das P, Chattaraj PK. Electride Characteristics of Some Binuclear Sandwich Complexes of Alkaline Earth Metals, M 2(η 5-L) 2 (M = Be, Mg; L = C 5H 5-, N 5-, P 5-, As 5-). J Phys Chem A 2020; 124:9801-9810. [PMID: 33190489 DOI: 10.1021/acs.jpca.0c08306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio calculations have been performed for a series of binuclear sandwich complexes, M2(η5-L)2. It has been observed that the eclipsed and staggered conformations have almost equal amount of energies. The M-M bond lengths are comparable with those in the free M2 molecules (M = Be, Mg). The nuclear-independent chemical shift (NICS) values indicate the aromaticity of these complexes. The stability of Be2(η5-L)2 complexes is higher than that of the Mg2(η5-L)2 complexes. The natural bond orbital (NBO) analysis and electron density descriptors proved the existence of a single covalent M-M bond in an M22+ fragment. It has been observed that each M-M bond contains a non-nuclear attractor (NNA) at the center of the respective bond. The Laplacian of electron density [∇2ρ(r)] is negative at the NNAs. The energy decomposition analysis (EDA) showed that M22+ and 2L- represent the bonding interaction in the complexes. All of the designed binuclear sandwich complexes behave as electrides.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
39
|
Ariyarathna IR, Miliordos E. Be–Be Bond in Action: Lessons from the Beryllium–Ammonia Complexes [Be(NH3)0–4]20,2+. J Phys Chem A 2020; 124:9783-9792. [DOI: 10.1021/acs.jpca.0c07939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Isuru R. Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
40
|
Brezina K, Jungwirth P, Marsalek O. Benzene Radical Anion in the Context of the Birch Reduction: When Solvation Is the Key. J Phys Chem Lett 2020; 11:6032-6038. [PMID: 32628025 DOI: 10.1021/acs.jpclett.0c01505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The benzene radical anion is an important intermediate in the Birch reduction of benzene by solvated electrons in liquid ammonia. Beyond organic chemistry, it is an intriguing subject of spectroscopic and theoretical studies due to its rich structural and dynamical behavior. In the gas phase, the species appears as a metastable shape resonance, while in the condensed phase, it remains stable. Here, we approach the system by ab initio molecular dynamics in liquid ammonia and demonstrate that the inclusion of solvent is crucial and indeed leads to stability. Beyond the mere existence of the radical anion species, our simulations explore its condensed-phase behavior at the molecular level and offer new insights into its properties. These include the dynamic Jahn-Teller distortions, vibrational spectra in liquid ammonia, and the structure of the solvent shell, including the motif of a π-hydrogen bond between ammonia molecules and the aromatic ring.
Collapse
Affiliation(s)
- Krystof Brezina
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
41
|
Isborn CM. The link between electrolytes and metals. Science 2020; 368:1056-1057. [PMID: 32499427 DOI: 10.1126/science.abb9717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, CA 95343, USA.
| |
Collapse
|
42
|
Buttersack T, Mason PE, McMullen RS, Schewe HC, Martinek T, Brezina K, Crhan M, Gomez A, Hein D, Wartner G, Seidel R, Ali H, Thürmer S, Marsalek O, Winter B, Bradforth SE, Jungwirth P. Photoelectron spectra of alkali metal–ammonia microjets: From blue electrolyte to bronze metal. Science 2020; 368:1086-1091. [DOI: 10.1126/science.aaz7607] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Tillmann Buttersack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - Philip E. Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ryan S. McMullen
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - H. Christian Schewe
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Tomas Martinek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Krystof Brezina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Martin Crhan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Axel Gomez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Département de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Dennis Hein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Garlef Wartner
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Hebatallah Ali
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
43
|
Khan SN, Miliordos E. Scandium in Neutral and Positively Charged Ammonia Complexes: Balancing between Sc2+ and Sc3+. J Phys Chem A 2020; 124:4400-4412. [DOI: 10.1021/acs.jpca.0c00693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shahriar N. Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
44
|
Vessally E, Majedi S, Hosseinian A, Bekhradnia A. Cavity-trapped electrons: lithium doped tetracyano-2,6-naphthoquinodimethane (TNAP) systems. J Mol Model 2020; 26:118. [PMID: 32383102 DOI: 10.1007/s00894-020-04384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/22/2020] [Indexed: 11/25/2022]
Abstract
The interesting features in the lithium based electride motived us to explore new species with electride properties. To achieve this goal, the tetracyano-2,6-naphthoquinodimethane (TNAP) species has been used as backbone to investigate systematic addition of lithium atoms to the TNAP backbone (Lin@TNAP (n = 1-4) species) through density functional theory (DFT) simulation. After finding the most stable geometries for each Lin@TNAP (n = 1-4) species by full optimization process, we show their electronic-structural features in this work. In the next step, the properties of electron-density-laplacian (∇2ρ(r)), non-linear-optical (NLO), non-nuclear-attractor (NNA), and electron-localization-function (ELF) have been studied to incorporate the reported Lin@TNAP (n = 1-4) species in two different categories, salt or electride. The obtained outcomes present that the Li1@TNAP and the Li2@TNAP molecules are the lithium-salt. In contrast, the Li3@TNAP and the Li4@TNAP molecules are lithium-based electrides along with the isolated electrons in the molecular structure.
Collapse
Affiliation(s)
- Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Serveh Majedi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran, P.O.Box 11365-4563, Tehran, Iran
| | - Ahmadreza Bekhradnia
- Department of Medicinal Chemistry Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Das P, Saha R, Chattaraj PK. Encapsulation of Mg2
inside a C60
cage forms an electride. J Comput Chem 2020; 41:1645-1653. [DOI: 10.1002/jcc.26207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Prasenjit Das
- Department of Chemistry and Center for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur India
| | - Ranajit Saha
- Department of Chemistry and Center for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur India
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur India
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
46
|
Buttersack T, Mason PE, Jungwirth P, Schewe HC, Winter B, Seidel R, McMullen RS, Bradforth SE. Deeply cooled and temperature controlled microjets: Liquid ammonia solutions released into vacuum for analysis by photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:043101. [PMID: 32357686 DOI: 10.1063/1.5141359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile, temperature controlled apparatus is presented, which generates deeply cooled liquid microjets of condensed gases, expelling them via a small aperture into vacuum for use in photoelectron spectroscopy (PES). The functionality of the design is demonstrated by temperature- and concentration-dependent PES measurements of liquid ammonia and solutions of KI and NH4I in liquid ammonia. The experimental setup is not limited to the usage of liquid ammonia solutions solely.
Collapse
Affiliation(s)
- Tillmann Buttersack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - H Christian Schewe
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Molekülphysik, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Molekülphysik, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany and Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ryan S McMullen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
47
|
Ferromagnetic quasi-atomic electrons in two-dimensional electride. Nat Commun 2020; 11:1526. [PMID: 32251273 PMCID: PMC7090050 DOI: 10.1038/s41467-020-15253-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
An electride, a generalized form of cavity-trapped interstitial anionic electrons (IAEs) in a positively charged lattice framework, shows exotic properties according to the size and geometry of the cavities. Here, we report that the IAEs in layer structured [Gd2C]2+·2e− electride behave as ferromagnetic elements in two-dimensional interlayer space and possess their own magnetic moments of ~0.52 μB per quasi-atomic IAE, which facilitate the exchange interactions between interlayer gadolinium atoms across IAEs, inducing the ferromagnetism in [Gd2C]2+·2e− electride. The substitution of paramagnetic chlorine atoms for IAEs proves the magnetic nature of quasi-atomic IAEs through a transition from ferromagnetic [Gd2C]2+·2e− to antiferromagnetic Gd2CCl caused by attenuating interatomic exchange interactions, consistent with theoretical calculations. These results confirm that quasi-atomic IAEs act as ferromagnetic elements and trigger ferromagnetic spin alignments within the antiferromagnetic [Gd2C]2+ lattice framework. These results present a broad opportunity to tailor intriguing ferromagnetism originating from quasi-atomic interstitial electrons in low-dimensional materials. Ferromagnetic quasi-atomic behavior of interstitial anionic electrons (IAEs) in practical electrides is yet to be discovered experimentally. Here, the authors reveal that IAEs in two-dimensional electride [Gd2C]²+⋅2e- behave as magnetic elements with their own magnetic moment.
Collapse
|
48
|
Liu G, Díaz-Tinoco M, Ciborowski SM, Martinez-Martinez C, Lyapustina S, Hendricks JH, Ortiz JV, Bowen KH. Excess electrons bound to H2S trimer and tetramer clusters. Phys Chem Chem Phys 2020; 22:3273-3280. [DOI: 10.1039/c9cp06872d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have prepared the hydrogen sulfide trimer and tetramer anions, (H2S)3− and (H2S)4−, measured their anion photoelectron spectra, and applied high-level quantum chemical calculations to interpret the results.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Manuel Díaz-Tinoco
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | | | | | - Jay H. Hendricks
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joseph Vincent Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
49
|
Ariyarathna IR, Miliordos E. Geometric and electronic structure analysis of calcium water complexes with one and two solvation shells. Phys Chem Chem Phys 2020; 22:22426-22435. [DOI: 10.1039/d0cp04309e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of calcium water complexes is investigated quantum mechanically. Ground and excited electronic states are studied for hexa-, octa-, and octakaideca-coordinated complexes, where calcium valence electrons move to outer diffuse orbitals.
Collapse
|
50
|
Ariyarathna IR, Pawłowski F, Ortiz JV, Miliordos E. Aufbau Principle for Diffuse Electrons of Double-Shell Metal Ammonia Complexes: The Case of M(NH3)4@12NH3, M = Li, Be+, B2+. J Phys Chem A 2019; 124:505-512. [DOI: 10.1021/acs.jpca.9b07734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isuru R. Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Joseph Vincent Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|