1
|
Dai Y, Terskikh V, Wu G. A combined solid-state 1H, 13C, 17O NMR and periodic DFT study of hyperfine coupling tensors in paramagnetic copper(II) compounds. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 132:101945. [PMID: 38968703 DOI: 10.1016/j.ssnmr.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
We report solid-state 1H, 13C, and 17O NMR determination of hyperfine coupling tensors (A-tensors) in several paramagnetic Cu(II) (d9, S = 1/2) complexes: trans-Cu(DL-Ala)2·H217O, Cu([1-13C]acetate)2·H2O, Cu([2-13C]acetate)2·H2O, and Cu(acetate)2·H217O. Using these new experimental results and some A-tensor data available in the literature for trans-Cu(L-Ala)2 and K2CuCl4·2H2O, we were able to examine the accuracy of A-tensor computation from a periodic DFT method implemented in the BAND program. We evaluated A-tensors on 1H (I = 1/2), 13C (I = 1/2), 14N (I = 1), 17O (I = 5/2), 39K (I = 3/2), 35Cl (I = 3/2), and 63Cu (I = 3/2) nuclei over a range spanning more than 3 orders of magnitude. We found that the BAND code can reproduce reasonably well the experimental results for both A-tensors and nuclear quadrupole coupling tensors.
Collapse
Affiliation(s)
- Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
2
|
Goldberga I, Hung I, Sarou-Kanian V, Gervais C, Gan Z, Novák-Špačková J, Métro TX, Leroy C, Berthomieu D, van der Lee A, Bonhomme C, Laurencin D. High-Resolution 17O Solid-State NMR as a Unique Probe for Investigating Oxalate Binding Modes in Materials: The Case Study of Calcium Oxalate Biominerals. Inorg Chem 2024; 63:10179-10193. [PMID: 38729620 DOI: 10.1021/acs.inorgchem.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Oxalate ligands are found in many classes of materials, including energy storage materials and biominerals. Determining their local environments at the atomic scale is thus paramount to establishing the structure and properties of numerous phases. Here, we show that high-resolution 17O solid-state NMR is a valuable asset for investigating the structure of crystalline oxalate systems. First, an efficient 17O-enrichment procedure of oxalate ligands is demonstrated using mechanochemistry. Then, 17O-enriched oxalates were used for the synthesis of the biologically relevant calcium oxalate monohydrate (COM) phase, enabling the analysis of its structure and heat-induced phase transitions by high-resolution 17O NMR. Studies of the low-temperature COM form (LT-COM), using magnetic fields from 9.4 to 35.2 T, as well as 13C-17O MQ/D-RINEPT and 17O{1H} MQ/REDOR experiments, enabled the 8 inequivalent oxygen sites of the oxalates to be resolved, and tentatively assigned. The structural changes upon heat treatment of COM were also followed by high-resolution 17O NMR, providing new insight into the structures of the high-temperature form (HT-COM) and anhydrous calcium oxalate α-phase (α-COA), including the presence of structural disorder in the latter case. Overall, this work highlights the ease associated with 17O-enrichment of oxalate oxygens, and how it enables high-resolution solid-state NMR, for "NMR crystallography" investigations.
Collapse
Affiliation(s)
- Ieva Goldberga
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Ivan Hung
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | | | | | - Zhehong Gan
- National High Magnetic Laboratory (NHMFL), Tallahassee, Florida 32310, United States
| | | | | | - César Leroy
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
3
|
Wu G, Dai Y, Hung I, Gan Z, Terskikh V. 1H/ 17O Chemical Shift Waves in Carboxyl-Bridged Hydrogen Bond Networks in Organic Solids. J Phys Chem A 2024; 128:4288-4296. [PMID: 38748612 DOI: 10.1021/acs.jpca.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa K1A 0R6, Canada
| |
Collapse
|
4
|
McCalpin SD, Fu R, Ravula T, Wu G, Ramamoorthy A. Magnetically aligned nanodiscs enable direct measurement of 17O residual quadrupolar coupling for small molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107341. [PMID: 36473327 DOI: 10.1016/j.jmr.2022.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The use of 17O in NMR spectroscopy for structural studies has been limited due to its low natural abundance, low gyromagnetic ratio, and quadrupolar relaxation. Previous solution 17O work has primarily focused on studies of liquids where the 17O quadrupolar coupling is averaged to zero by isotropic molecular tumbling, and therefore has ignored the structural information contained in this parameter. Here, we use magnetically aligned polymer nanodiscs as an alignment medium to measure residual quadrupolar couplings (RQCs) for 17O-labelled benzoic acid in the aqueous phase. We show that increasing the magnetic field strength improves spectral sensitivity and resolution and that each satellite peak of the expected pentet pattern resolves clearly at 18.8 T. We observed no significant dependence of the RQC magnitudes on the magnetic field strength. However, changing the orientation of the alignment medium alters the RQC by a consistent factor, suggesting that 17O RQCs measured in this way can provide reliable orientational information for elucidations of molecular structures.
Collapse
Affiliation(s)
- Samuel D McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Jørgensen FK, Reinholdt P, Hedegård ED, Kongsted J. Nuclear Magnetic Shielding Constants with the Polarizable Density Embedding Model. J Chem Theory Comput 2022; 18:7384-7393. [PMID: 36332108 DOI: 10.1021/acs.jctc.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We extend the polarizable density embedding (PDE) model to support the calculation of nuclear magnetic resonance (NMR) shielding constants using gauge-including atomic orbitals (GIAOs) within a density functional theory (DFT) framework. The PDE model divides the total system into fragments, describing some by quantum mechanics (QM) and the others through an embedding model. The PDE model uses anisotropic polarizabilities, inter-fragment two-electron Coulomb integrals, and a non-local repulsion operator to emulate the QM effects. The terms involving Coulomb integrals are straightforwardly extended with GIAOs. In contrast, we consider two approaches to handle the gauge dependency of the non-local operator, employing either simple symmetrization or a gauge transformation. We find the latter approach to be most stable with respect to increasing the basis set size of the QM region. We examine the accuracy of the PDE model for calculating NMR shielding constants on several solutes in a water solution. The performance is compared with the classical polarizable embedding (PE) model in addition to supermolecular reference calculations. Based on these systems, we address the basis set convergence characteristics and the QM region size requirements. Furthermore, we investigate the performance of the PDE model for a system with significant electron spill-out. In many cases, we find that the PDE model outperforms the PE model, especially regarding the accuracy of nuclear shielding constants when using small QM region sizes and in systems with significant electron spill-out.
Collapse
Affiliation(s)
- Frederik Kamper Jørgensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230Odense M, Denmark
| |
Collapse
|
6
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
7
|
Shen J, Terskikh V, Struppe J, Hassan A, Monette M, Hung I, Gan Z, Brinkmann A, Wu G. Solid-state 17O NMR study of α-d-glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chem Sci 2022; 13:2591-2603. [PMID: 35340864 PMCID: PMC8890099 DOI: 10.1039/d1sc06060k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
We report the first “total synthesis” of 17O-labeled d-glucose and its solid-state 17O NMR characterization with unprecedented sensitivity and resolution.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | - Alia Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Martine Monette
- Bruker Biospin Ltd., 2800 High Point Drive, Suite 206, Milton, Ontario L9T 6P4, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Andreas Brinkmann
- Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
8
|
Muniyappan S, Lin Y, Lee YH, Kim JH. 17O NMR Spectroscopy: A Novel Probe for Characterizing Protein Structure and Folding. BIOLOGY 2021; 10:biology10060453. [PMID: 34064021 PMCID: PMC8223985 DOI: 10.3390/biology10060453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Oxygen is a key atom that maintains biomolecular structures, regulates various physiological processes, and mediates various biomolecular interactions. Oxygen-17 (17O), therefore, has been proposed as a useful probe that can provide detailed information about various physicochemical features of proteins. This is attributed to the facts that (1) 17O is an active isotope for nuclear magnetic resonance (NMR) spectroscopic approaches; (2) NMR spectroscopy is one of the most suitable tools for characterizing the structural and dynamical features of biomolecules under native-like conditions; and (3) oxygen atoms are frequently involved in essential hydrogen bonds for the structural and functional integrity of proteins or related biomolecules. Although 17O NMR spectroscopic investigations of biomolecules have been considerably hampered due to low natural abundance and the quadruple characteristics of the 17O nucleus, recent theoretical and technical developments have revolutionized this methodology to be optimally poised as a unique and widely applicable tool for determining protein structure and dynamics. In this review, we recapitulate recent developments in 17O NMR spectroscopy to characterize protein structure and folding. In addition, we discuss the highly promising advantages of this methodology over other techniques and explain why further technical and experimental advancements are highly desired.
Collapse
Affiliation(s)
- Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea;
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea;
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute, Daegu 41068, Korea
- Correspondence: (Y.-H.L.); (J.H.K.)
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Correspondence: (Y.-H.L.); (J.H.K.)
| |
Collapse
|
9
|
Lin B, Hung I, Gan Z, Chien PH, Spencer HL, Smith SP, Wu G. 17 O NMR Studies of Yeast Ubiquitin in Aqueous Solution and in the Solid State. Chembiochem 2020; 22:826-829. [PMID: 33058374 DOI: 10.1002/cbic.202000659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Indexed: 12/18/2022]
Abstract
We report a general method for amino acid-type specific 17 O-labeling of recombinant proteins in Escherichia coli. In particular, we have prepared several [1-13 C,17 O]-labeled yeast ubiquitin (Ub) samples including Ub-[1-13 C,17 O]Gly, Ub-[1-13 C,17 O]Tyr, and Ub-[1-13 C,17 O]Phe using the auxotrophic E. coli strain DL39 GlyA λDE3 (aspC- tyrB- ilvE- glyA- λDE3). We have also produced Ub-[η-17 O]Tyr, in which the phenolic group of Tyr59 is 17 O-labeled. We show for the first time that 17 O NMR signals from protein terminal residues and side chains can be readily detected in aqueous solution. We also reported solid-state 17 O NMR spectra for Ub-[1-13 C,17 O]Tyr and Ub-[1-13 C,17 O]Phe obtained at an ultrahigh magnetic field, 35.2 T (1.5 GHz for 1 H). This work represents a significant advance in the field of 17 O NMR studies of proteins.
Collapse
Affiliation(s)
- Binyang Lin
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ivan Hung
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Zhehong Gan
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Po-Hsiu Chien
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Holly L Spencer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
10
|
Abstract
Despite the well-characterized structural symmetry of the dimeric transmembrane antibiotic gramicidin A, we show that the symmetry is broken by selective hydrogen bonding between eight waters comprising a transmembrane water wire and a specific subset of the 26 pore-lining carbonyl oxygens of the gramicidin A channel. The 17O NMR spectroscopic resolution of the carbonyl resonances from the two subunits required the use of a world record high field magnet (35.2 T; 1,500 MHz for 1H). Uniquely, this result documented the millisecond timescale stability of the water wire orientation within the gramicidin A pore that had been reported to have only subnanosecond stability. These 17O spectroscopic results portend wide applications in molecular biophysics and beyond. Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Å apart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.
Collapse
|
11
|
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:135-191. [PMID: 31779879 DOI: 10.1016/j.pnmrs.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118-169], the current review provides a complete coverage of the literature published since 2008 in this area.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
12
|
Keeler EG, Michaelis VK, Wilson CB, Hung I, Wang X, Gan Z, Griffin RG. High-Resolution 17O NMR Spectroscopy of Structural Water. J Phys Chem B 2019; 123:3061-3067. [PMID: 30882222 PMCID: PMC6689193 DOI: 10.1021/acs.jpcb.9b02277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of studying site-specific interactions of structurally similar water molecules in complex systems is well known. We demonstrate the ability to resolve four distinct bound water environments within the crystal structure of lanthanum magnesium nitrate hydrate via 17O solid state nuclear magnetic resonance (NMR) spectroscopy. Using high-resolution multidimensional experiments at high magnetic fields (18.8-35.2 T), each individual water environment was resolved. The quadrupole coupling constants and asymmetry parameters of the 17O of each water were determined to be between 6.6 and 7.1 MHz, 0.83 and 0.90, respectively. The resolution of the four unique, yet similar, structural waters within a hydrated crystal via 17O NMR spectroscopy demonstrates the ability to decipher the unique electronic environment of structural water within a single hydrated crystal structure.
Collapse
Affiliation(s)
- Eric G. Keeler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Vladimir K. Michaelis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Christopher B. Wilson
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| |
Collapse
|
13
|
Gupta R, Stringer J, Struppe J, Rehder D, Polenova T. Direct detection and characterization of bioinorganic peroxo moieties in a vanadium complex by 17O solid-state NMR and density functional theory. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 91:15-20. [PMID: 29506770 PMCID: PMC6267778 DOI: 10.1016/j.ssnmr.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - John Stringer
- PhoenixNMR, 4921 Eagle Lake Drive, Fort Collins, CO, USA
| | | | - Dieter Rehder
- Department of Chemistry, University of Hamburg, D-20146, Hamburg, Germany
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
14
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Keeler EG, Michaelis VK, Colvin MT, Hung I, Gor'kov PL, Cross TA, Gan Z, Griffin RG. 17O MAS NMR Correlation Spectroscopy at High Magnetic Fields. J Am Chem Soc 2017; 139:17953-17963. [PMID: 29111706 DOI: 10.1021/jacs.7b08989] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.
Collapse
Affiliation(s)
- Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael T Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Kong X, Dai Y, Wu G. Solid-state 17O NMR study of 2-acylbenzoic acids and warfarin. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:59-64. [PMID: 28057400 DOI: 10.1016/j.ssnmr.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
We report synthesis and solid-state 17O NMR characterization of four site-specifically 17O-labeled 2-acylbenzoic acids (2-RC(O)C6H4COOH) where R=H and CH3): 2-[3-17O]formylbenzoic acid, 2-[1,2-17O2]formylbenzoic acid, 2-[3-17O]acetylbenzoic acid, and 2-[1,2,3-17O3]acetylbenzoic acid. In the solid state, both 2-formyl- and 2-acetyl-benzoic acids exist as the cyclic phthalide form each containing a five-membered lactone ring and a cyclic hemiacetal/hemiketal group. Static and magic-angle-spinning 17O NMR spectra were recorded at 14.1 and 21.1T for these compounds, from which the 17O chemical shift and nuclear quadrupolar coupling tensors were determined for each oxygen site. These results represent the first time that 17O NMR tensors are fully characterized for lactone, cyclic hemiacetal, and cyclic hemiketal functional groups. We also report solid-state 17O NMR data for the cyclic hemiketal group an anticoagulant drug, warfarin. Experimental 17O NMR tensors in these compounds were compared with computational results obtained with a periodic DFT code BAND.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
17
|
Tang AW, Kong X, Terskikh V, Wu G. Solid-State 17O NMR of Unstable Acyl-Enzyme Intermediates: A Direct Probe of Hydrogen Bonding Interactions in the Oxyanion Hole of Serine Proteases. J Phys Chem B 2016; 120:11142-11150. [PMID: 27731644 DOI: 10.1021/acs.jpcb.6b08798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report preparation, trapping, and solid-state 17O NMR characterization of three unstable acyl-enzyme intermediates (≈ 26 kDa): p-N,N-dimethylamino-[17O]benzoyl-chymotrypsin, trans-o-methoxy-[17O]cinnamoyl-chymotrypsin, and trans-p-methoxy-[17O]cinnamoyl-chymotrypsin. We show that both the 17O chemical shifts and nuclear quadrupolar parameters obtained for these acyl-enzyme intermediates in the solid state are correlated with their deacylation rate constants measured in aqueous solution. With the aid of quantum mechanical calculations, the experimental 17O NMR parameters were interpreted as to reflect the hydrogen bonding interactions between the carbonyl (C═17O) functional group of the acyl moiety and the two NH groups from the protein backbone (Ser195 and Gly193) in the oxyanion hole, a general feature of all serine proteases. Our results further suggest that the 17O chemical shift and quadrupole coupling constant display distinctly different sensitivities toward different aspects of hydrogen bonding, such as hydrogen bond distance and direction. This work demonstrates the utility of 17O as a useful nuclear probe in NMR studies of enzymes.
Collapse
Affiliation(s)
- Aaron W Tang
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Xianqi Kong
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Victor Terskikh
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Department of Chemistry, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University , 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
18
|
Abstract
The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole.
Collapse
Affiliation(s)
- Eric G. Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Wu G. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:1-14. [PMID: 26651417 DOI: 10.1016/j.ssnmr.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
20
|
Rorick A, Michael MA, Yang L, Zhang Y. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds. J Phys Chem B 2015; 119:11618-25. [PMID: 26274812 PMCID: PMC4583422 DOI: 10.1021/acs.jpcb.5b06536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.
Collapse
Affiliation(s)
- Amber Rorick
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Matthew A. Michael
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Liu Yang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Yong Zhang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| |
Collapse
|
21
|
Kong X, Terskikh V, Toubaei A, Wu G. A solid-state 17O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report synthesis and solid-state NMR characterization of two 17O-labeled platinum anticancer drugs: cis-diammine(1,1-cyclobutane-[17O4]dicarboxylato)platinum(II) (carboplatin) and ([17O4]oxalato)[(1R, 2R)-(−)-1,2-cyclohexanediamine)]platinum(II) (oxaliplatin). Both 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were measured for the carboxylate groups in these two compounds. With the aid of plane wave DFT computations, the 17O CS and QC tensor orientations were determined in the molecular frame of reference. Significant changes in the 17O CS and QC tensors were observed for the carboxylate oxygen atom upon its coordination to Pt(II). In particular, the 17O isotropic chemical shifts for the oxygen atoms directly bonded to Pt(II) are found to be smaller (more shielded) by 200 ppm than those for the non-Pt-coordinated oxygen atoms within the same carboxylate group. Examination of the 17O CS tensor components reveals that such a large 17O coordination shift is primarily due to the shielding increase along the direction that is within the O=C–O–Pt plane and perpendicular to the O–Pt bond. This result is interpreted as due to the σ donation from the oxygen nonbonding orbital (electron lone pair) to the Pt(II) empty dyz orbital, which results in large energy gaps between σ(Pt–O) and unoccupied molecular orbitals, thus reducing the paramagnetic shielding contribution along the direction perpendicular to the O–Pt bond. We found that the 17O QC tensor of the carboxylate oxygen is also sensitive to Pt(II) coordination, and that 17O CS and QC tensors provide complementary information about the O–Pt bonding.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Victor Terskikh
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Abouzar Toubaei
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
22
|
Perras FA, Kobayashi T, Pruski M. Natural Abundance (17)O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy. J Am Chem Soc 2015; 137:8336-9. [PMID: 26098846 DOI: 10.1021/jacs.5b03905] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to its extremely low natural abundance and quadrupolar nature, the (17)O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to (17)O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from (1)H. Here, we demonstrate new DNP-based measurements that extend (17)O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional (1)H-(17)O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional (1)H-(17)O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone (17)O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. Lastly, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the (17)O nuclide.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- †U.S. DOE Ames Laboratory, Ames, Iowa 50011-3020, United States.,‡Department of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| |
Collapse
|
23
|
Michaelis VK, Keeler EG, Ong TC, Craigen KN, Penzel S, Wren JEC, Kroeker S, Griffin RG. Structural Insights into Bound Water in Crystalline Amino Acids: Experimental and Theoretical (17)O NMR. J Phys Chem B 2015; 119:8024-36. [PMID: 25996165 PMCID: PMC4894719 DOI: 10.1021/acs.jpcb.5b04647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate here that the (17)O NMR properties of bound water in a series of amino acids and dipeptides can be determined with a combination of nonspinning and magic-angle spinning experiments using a range of magnetic field strengths from 9.4 to 21.1 T. Furthermore, we propose a (17)O chemical shift fingerprint region for bound water molecules in biological solids that is well outside the previously determined ranges for carbonyl, carboxylic, and hydroxyl oxygens, thereby offering the ability to resolve multiple (17)O environments using rapid one-dimensional NMR techniques. Finally, we compare our experimental data against quantum chemical calculations using GIPAW and hybrid-DFT, finding intriguing discrepancies between the electric field gradients calculated from structures determined by X-ray and neutron diffraction.
Collapse
Affiliation(s)
- Vladimir K. Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Eric G. Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Ta-Chung Ong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - Kimberley N. Craigen
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Susanne Penzel
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| | - John E. C. Wren
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Scott Kroeker
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 USA
| |
Collapse
|
24
|
Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-state ¹⁷O NMR spectroscopy of paramagnetic coordination compounds. Angew Chem Int Ed Engl 2015; 54:4753-7. [PMID: 25694203 PMCID: PMC4418630 DOI: 10.1002/anie.201409888] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/09/2022]
Abstract
High-quality solid-state (17)O (I=5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing V(III) (S=1), Cu(II) (S=1/2), and Mn(III) (S=2) metal centers, the (17)O isotropic paramagnetic shifts were found to span a range of more than 10,000 ppm. In several cases, high-resolution (17)O NMR spectra were recorded under very fast magic-angle spinning (MAS) conditions at 21.1 T. Quantum-chemical computations using density functional theory (DFT) qualitatively reproduced the experimental (17)O hyperfine shift tensors.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen's University Kingston, Ontario, K7L 3N6 (Canada)
| | - Victor V. Terskikh
- Department of Chemistry, University of Ottawa Ottawa, Ontario, K1N 6N5 (Canada)
| | - Rahul L. Khade
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Liu Yang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Amber Rorick
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology Castle Point on Hudson, Hoboken, New Jersey 07030 (USA)
| | - Peng He
- Department of Chemistry, University of Western Ontario London, Ontario, N6A 5B7 (Canada)
| | - Yining Huang
- Department of Chemistry, University of Western Ontario London, Ontario, N6A 5B7 (Canada)
| | - Gang Wu
- Department of Chemistry, Queen's University Kingston, Ontario, K7L 3N6 (Canada)
| |
Collapse
|
25
|
Kong X, Tang A, Wang R, Ye E, Terskikh V, Wu G. Are the amide bonds in N-acyl imidazoles twisted? A combined solid-state 17O NMR, crystallographic, and computational study. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report synthesis of 17O-labeling and solid-state 17O NMR measurements of three N-acyl imidazoles of the type R-C(17O)-Im: R = p-methoxycinnamoyl (MCA-Im), R = 4-(dimethylamino)benzoyl (DAB-Im), and R = 2,4,6-trimethylbenzoyl (TMB-Im). Solid-state 17O NMR experiments allowed us to determine for the first time the 17O quadrupole coupling and chemical shift tensors in this class of organic compounds. We also determined the crystal structures of these compounds using single-crystal X-ray diffraction. The crystal structures show that, while the C(O)–N amide bond in DAB-Im exhibits a small twist, those in MCA-Im and TMB-Im are essentially planar. We found that, in these N-acyl imidazoles, the 17O quadrupole coupling and chemical shift tensors depend critically on the torsion angle between the conjugated acyl group and the C(O)–N amide plane. The computational results from a plane-wave DFT approach, which takes into consideration the entire crystal lattice, are in excellent agreement with the experimental solid-state 17O NMR results. Quantum chemical computations also show that the dependence of 17O NMR parameters on the Ar–C(O) bond rotation is very similar to that previously observed for the C(O)–N bond rotation in twisted amides. We conclude that one should be cautious in linking the observed NMR chemical shifts only to the twist of the C(O)–N amide bond.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Aaron Tang
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Ruiyao Wang
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Eric Ye
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Victor Terskikh
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
26
|
Kong X, Terskikh VV, Khade RL, Yang L, Rorick A, Zhang Y, He P, Huang Y, Wu G. Solid-State17O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Determinants of protein–ligand complex formation in the thyroid hormone receptor α: A molecular dynamics simulation study. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Perras FA, Bryce DL. Theoretical study of homonuclear J coupling between quadrupolar spins: single-crystal, DOR, and J-resolved NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:23-32. [PMID: 24594753 DOI: 10.1016/j.jmr.2014.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/12/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences.
Collapse
Affiliation(s)
- Frédéric A Perras
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
29
|
Michaelis VK, Corzilius B, Smith AA, Griffin RG. Dynamic nuclear polarization of 17O: direct polarization. J Phys Chem B 2013; 117:14894-906. [PMID: 24195759 PMCID: PMC3922122 DOI: 10.1021/jp408440z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at <88 K and were >100 using the trityl (OX063) radical and <10 with the other polarizing agents. The >10,000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.
Collapse
Affiliation(s)
- Vladimir K. Michaelis
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
30
|
Kong X, Shan M, Terskikh V, Hung I, Gan Z, Wu G. Solid-State 17O NMR of Pharmaceutical Compounds: Salicylic Acid and Aspirin. J Phys Chem B 2013; 117:9643-54. [DOI: 10.1021/jp405233f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianqi Kong
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
| | - Melissa Shan
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
| | - Victor Terskikh
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A
0R6, Canada
| | - Ivan Hung
- Center of Interdisciplinary
Magnetic
Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Zhehong Gan
- Center of Interdisciplinary
Magnetic
Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Gang Wu
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, K7L 3N6, Canada
| |
Collapse
|
31
|
Access to any site directed stable isotope ((2)H, (13)C, (15)N, (17)O and (18)O) in genetically encoded amino acids. Molecules 2013; 18:482-519. [PMID: 23282537 PMCID: PMC6269845 DOI: 10.3390/molecules18010482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides play a preeminent role in the processes of living cells. The only way to study structure-function relationships of a protein at the atomic level without any perturbation is by using non-invasive isotope sensitive techniques with site-directed stable isotope incorporation at a predetermined amino acid residue in the protein chain. The method can be extended to study the protein chain tagged with stable isotope enriched amino acid residues at any position or combinations of positions in the system. In order to access these studies synthetic methods to prepare any possible isotopologue and isotopomer of the 22 genetically encoded amino acids have to be available. In this paper the synthetic schemes and the stable isotope enriched building blocks that are available via commercially available stable isotope enriched starting materials are described.
Collapse
|
32
|
Sahakyan AB. Computational studies of dielectric permittivity effects on chemical shifts of alanine dipeptide. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Kong X, O’Dell LA, Terskikh V, Ye E, Wang R, Wu G. Variable-Temperature 17O NMR Studies Allow Quantitative Evaluation of Molecular Dynamics in Organic Solids. J Am Chem Soc 2012; 134:14609-17. [DOI: 10.1021/ja306227p] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario K7L 3N6, Canada
| | - Luke A. O’Dell
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A
0R6, Canada
| | - Victor Terskikh
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A
0R6, Canada
| | - Eric Ye
- Department of
Chemistry, University of Ottawa, 10 Marie
Curie Private, Ottawa,
Ontario K1N 6N5, Canada
| | - Ruiyao Wang
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario K7L 3N6, Canada
| |
Collapse
|
34
|
Michaelis VK, Markhasin E, Daviso E, Herzfeld J, Griffin RG. Dynamic Nuclear Polarization of Oxygen-17. J Phys Chem Lett 2012; 3:2030-2034. [PMID: 23024834 PMCID: PMC3459188 DOI: 10.1021/jz300742w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oxygen-17 detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of signal intensities at 82 K, using the biradical TOTAPOL. The >6,000-fold savings in acquisition time enables (17)O-(1)H distance measurements and heteronuclear correlation experiments. These experiments are the initial demonstration of the feasibility of DNP NMR on quadrupolar (17)O.
Collapse
Affiliation(s)
- Vladimir K Michaelis
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139
| | | | | | | | | |
Collapse
|
35
|
Wong A, Howes AP, Yates JR, Watts A, Anupõld T, Past J, Samoson A, Dupree R, Smith ME. Ultra-high resolution 17O solid-state NMR spectroscopy of biomolecules: A comprehensive spectral analysis of monosodium L-glutamate·monohydrate. Phys Chem Chem Phys 2011; 13:12213-24. [DOI: 10.1039/c1cp20629j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Zhu J, Lau JYC, Wu G. A solid-state (17)O NMR study of L-tyrosine in different ionization states: implications for probing tyrosine side chains in proteins. J Phys Chem B 2010; 114:11681-8. [PMID: 20712305 DOI: 10.1021/jp1055123] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr). This is the first time that these fundamental (17)O NMR tensors are completely determined for phenolic oxygens in different ionization states. We find that, while the (17)O QC tensor changes very little upon phenol ionization, the (17)O CS tensor displays a remarkable sensitivity. In particular, the isotropic (17)O chemical shift increases by approximately 60 ppm upon phenol ionization, which is 6 times larger than the corresponding change in the isotropic (13)C chemical shift for the C(zeta) nucleus of the same phenol group. By examining the CS tensor orientation in the molecular frame of reference, we discover a "cross-over" effect between delta(11) and delta(22) components for both (17)O and (13)C CS tensors. We demonstrate that the knowledge of such "cross-over" effects is crucial for understanding the relationship between the observed CS tensor components and chemical bonding. Our results suggest that solid-state (17)O NMR can potentially be used to probe the ionization state of tyrosine side chains in proteins.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
37
|
Zhu J, Wu G. Quadrupole central transition 17O NMR spectroscopy of biological macromolecules in aqueous solution. J Am Chem Soc 2010; 133:920-32. [PMID: 21175170 DOI: 10.1021/ja1079207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate a general nuclear magnetic resonance (NMR) spectroscopic approach in obtaining high-resolution (17)O (spin-5/2) NMR spectra for biological macromolecules in aqueous solution. This approach, termed quadrupole central transition (QCT) NMR, is based on the multiexponential relaxation properties of half-integer quadrupolar nuclei in molecules undergoing slow isotropic tumbling motion. Under such a circumstance, Redfield's relaxation theory predicts that the central transition, m(I) = +1/2 ↔ -1/2, can exhibit relatively long transverse relaxation time constants, thus giving rise to relatively narrow spectral lines. Using three robust protein-ligand complexes of size ranging from 65 to 240 kDa, we have obtained (17)O QCT NMR spectra with unprecedented resolution, allowing the chemical environment around the targeted oxygen atoms to be directly probed for the first time. The new QCT approach increases the size limit of molecular systems previously attainable by solution (17)O NMR by nearly 3 orders of magnitude (1000-fold). We have also shown that, when both quadrupole and shielding anisotropy interactions are operative, (17)O QCT NMR spectra display an analogous transverse relaxation optimized spectroscopy type behavior in that the condition for optimal resolution depends on the applied magnetic field. We conclude that, with the currently available moderate and ultrahigh magnetic fields (14 T and higher), this (17)O QCT NMR approach is applicable to a wide variety of biological macromolecules. The new (17)O NMR parameters so obtained for biological molecules are complementary to those obtained from (1)H, (13)C, and (15)N NMR studies.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|