1
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Moon DO. Advancing Cancer Therapy: The Role of KIF20A as a Target for Inhibitor Development and Immunotherapy. Cancers (Basel) 2024; 16:2958. [PMID: 39272816 PMCID: PMC11393963 DOI: 10.3390/cancers16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis begins with a detailed examination of the gene expression and protein structure of KIF20A, highlighting its interaction with critical cellular components that influence key processes such as Golgi membrane transport and mitotic spindle assembly. The primary focus is on the development of specific KIF20A inhibitors, detailing their roles and the challenges encountered in enhancing their efficacy, such as achieving specificity, overcoming tumor resistance, and optimizing delivery systems. Additionally, it delves into the prognostic value of KIF20A across multiple cancer types, emphasizing its role as a novel tumor-associated antigen, which lays the groundwork for the development of targeted peptide vaccines. The therapeutic efficacy of these vaccines as demonstrated in recent clinical trials is discussed. Future directions are proposed, including the integration of precision medicine strategies to personalize treatments and the use of combination therapies to improve outcomes. By concentrating on the significant potential of KIF20A as both a direct target for inhibitors and an antigen in cancer vaccines, this review sets a foundation for future research aimed at harnessing KIF20A for effective cancer treatment.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Saleh K, Al Sakhen M, Kanaan S, Yasin S, Höpfner M, Tahtamouni L, Biersack B. Antitumor activity of the new tyrphostin briva against BRAF V600E-mutant colorectal carcinoma cells. Invest New Drugs 2023; 41:791-801. [PMID: 37870738 DOI: 10.1007/s10637-023-01402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Because of a reduced sensitivity of BRAF-mutant colorectal cancers to BRAF inhibitor treatment when compared with BRAF-mutant melanoma, it is essential to develop efficient drugs to cope with this disease. The new 2-(4-bromophenyl)-3-arylacrylonitrile compound Briva was prepared in one step from commercially available starting compounds. Briva and two known thiophene analogs (Thio-Iva and Thio-Dam) were tested for their cytotoxic activity against various tumor cell lines including colorectal and breast cancer cells. The antitumor activities of the test compounds were assessed in vitro via the MTT assay, DAPI staining of nuclei, RT-PCR and immunoblotting, wound healing, clonogenic assay, collagen I adhesion assay, and kinase inhibition assays. A selective activity of Briva was observed against BRAFV600E-mutant HT-29 and COLO-201 colorectal carcinoma (CRC) cells. Briva caused inhibition of HT-29 clonogenic tumor growth and was found to induce cytotoxicity by activating the intrinsic apoptosis pathway. In addition, Briva reduced HT-29 cell adhesion and migration. Kinase inhibition experiments revealed that Briva inhibits VEGFR2. Thus, Briva can be considered as a promising antitumor compound against BRAFV600E-mutant colon carcinoma by targeting VEGFR2 tyrosine kinase and consequently reducing cell adhesion and metastasis formation.
Collapse
Affiliation(s)
- Khaled Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, 13115, Jordan
| | - Mai Al Sakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, 13115, Jordan
| | - Sana Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, 13115, Jordan
| | - Salem Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, 13115, Jordan
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, 13115, Jordan.
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, 80526, USA.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
5
|
Ranaivoson FM, Crozet V, Benoit MPMH, Abdalla Mohammed Khalid A, Kikuti C, Sirkia H, El Marjou A, Miserey-Lenkei S, Asenjo AB, Sosa H, Schmidt CF, Rosenfeld SS, Houdusse A. Nucleotide-free structures of KIF20A illuminate atypical mechanochemistry in this kinesin-6. Open Biol 2023; 13:230122. [PMID: 37726093 PMCID: PMC10508983 DOI: 10.1098/rsob.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.
Collapse
Affiliation(s)
- Fanomezana Moutse Ranaivoson
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Vincent Crozet
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | | | | | - Carlos Kikuti
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Helena Sirkia
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ahmed El Marjou
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Stéphanie Miserey-Lenkei
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| | - Ana B. Asenjo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hernando Sosa
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christoph F. Schmidt
- Third Institute of Physics-Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
- Department of Physics and Soft Matter Center, Duke University, Durham, NC 27708, USA
| | | | - Anne Houdusse
- Structural Motility, CNRS UMR144, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, 75248 Paris, France
| |
Collapse
|
6
|
Coomar S, Mota P, Penson A, Schwaller J, Abdel-Wahab O, Gillingham D. Overlaid Transcriptional and Proteome Analyses Identify Mitotic Kinesins as Important Targets of Arylsulfonamide-Mediated RBM39 Degradation. Mol Cancer Res 2023; 21:768-778. [PMID: 37255411 PMCID: PMC10395616 DOI: 10.1158/1541-7786.mcr-22-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 05/14/2023]
Abstract
Certain arylsulfonamides (ArSulf) induce an interaction between the E3 ligase substrate adaptor DCAF15 and the critical splicing factor RBM39, ultimately causing its degradation. However, degradation of a splicing factor introduces complex pleiotropic effects that are difficult to untangle, since, aside from direct protein degradation, downstream transcriptional effects also influence the proteome. By overlaying transcriptional data and proteome datasets, we distinguish transcriptional from direct degradation effects, pinpointing those proteins most impacted by splicing changes. Using our workflow, we identify and validate the upregulation of the arginine-and-serine rich protein (RSRP1) and the downregulation of the key kinesin motor proteins KIF20A and KIF20B due to altered splicing in the absence of RBM39. We further show that kinesin downregulation is connected to the multinucleation phenotype observed upon RBM39 depletion by ArSulfs. Our approach should be helpful in the assessment of potential cancer drug candidates which target splicing factors. IMPLICATIONS Our approach provides a workflow for identifying and studying the most strongly modulated proteins when splicing is altered. The work also uncovers a splicing-based approach toward pharmacologic targeting of mitotic kinesins.
Collapse
Affiliation(s)
- Seemon Coomar
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Pedro Mota
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Alexander Penson
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
7
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
8
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
9
|
Synthesis and Anticancer Evaluation of New Indole-Based Tyrphostin Derivatives and Their ( p-Cymene)dichloridoruthenium(II) Complexes. Int J Mol Sci 2023; 24:ijms24010854. [PMID: 36614289 PMCID: PMC9821196 DOI: 10.3390/ijms24010854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
New N-alkylindole-substituted 2-(pyrid-3-yl)-acrylonitriles with putative kinase inhibitory activity and their (p-cymene)Ru(II) piano-stool complexes were prepared and tested for their antiproliferative efficacy in various cancer models. Some of the indole-based derivatives inhibited tumor cell proliferation at (sub-)micromolar concentrations with IC50 values below those of the clinically relevant multikinase inhibitors gefitinib and sorafenib, which served as positive controls. A focus was set on the investigation of drug mechanisms in HCT-116 p53-knockout colon cancer cells in order to evaluate the dependence of the test compounds on p53. Colony formation assays as well as experiments with tumor spheroids confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic caspase-3/7 activity and ROS formation, as well as anti-angiogenic properties. Docking calculations with EGFR and VEGFR-2 identified the two 3-aryl-2-(pyrid-3-yl)acrylonitrile derivatives 2a and 2b as potential kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in cancer treatment.
Collapse
|
10
|
Jin Z, Tao S, Zhang C, Xu D, Zhu Z. KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway. Exp Cell Res 2022; 420:113322. [PMID: 36037925 DOI: 10.1016/j.yexcr.2022.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
Adult fibrosarcoma is an aggressive subtype of soft tissue sarcoma (STS), in which high expression of KIF20A indicates a poor prognosis. However, the precise role of KIF20A in fibrosarcoma progression remains unknown. In this study, we initially examined KIF20A expression and function in the human fibrosarcoma cell line HT-1080. The results showed that KIF20A was highly expressed in HT-1080, knockdown of KIF20A impaired cell proliferation, migration, invasion and induced G2/M arrest and cell apoptosis. Transcriptome study suggested that PI3K-Akt signal pathway was involved in these biological changes. We confirmed that PI3K-Akt and NF-κB signaling pathways were impaired after the down-regulation of KIF20A, which can be reversed by the Akt activator SC79 in HT-1080 in vitro. In a xenograft mouse model, knockdown of KIF20A inhibited tumor growth, Ki67 expression and liver metastasis. Taken together, our results suggested that KIF20A promoted fibrosarcoma progression via PI3K-Akt signaling pathway and might be a potential therapeutic target for fibrosarcoma.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University. Shenzhen, Guangdong Province, China; State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Schrock MS, Scarberry L, Stromberg BR, Sears C, Torres AE, Tallman D, Krupinski L, Chakravarti A, Summers MK. MKLP2 functions in early mitosis to ensure proper chromosome congression. J Cell Sci 2022; 135:275559. [PMID: 35638575 DOI: 10.1242/jcs.259560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Mitotic kinesin-like protein 2 (MKLP2) is a motor protein with a well-established function in promoting cytokinesis. However, our results with siRNAs targeting MKLP2 and small molecule inhibitors of MKLP2 (MKLP2i) suggested a function earlier in mitosis, prior to anaphase. In this study we provide direct evidence that MKLP2 facilitates chromosome congression in prometaphase. We employed live imaging to observe HeLa cells with fluorescently tagged histones treated with MKLP2i and discovered a pronounced chromosome congression defect. We show that MKLP2 facilitates error correction as inhibited cells had a significant increase in unstable, syntelic kinetochore-microtubule attachments. We find that the aberrant attachments are accompanied by elevated Aurora Kinase (A/B) activity and phosphorylation of the downstream target, pHEC1 (Ser 55). Lastly, we show that MKLP2 inhibition results in aneuploidy, confirming that MKLP2 safeguards cells against chromosomal instability.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Luke Scarberry
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, 43210, USA
| | - Claire Sears
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Undergraduate Studies, Kenyon College, Gambier, OH, 43022, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - David Tallman
- Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Lucas Krupinski
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
12
|
Copello VA, Burnstein KL. The kinesin KIF20A promotes progression to castration-resistant prostate cancer through autocrine activation of the androgen receptor. Oncogene 2022; 41:2824-2832. [PMID: 35418689 PMCID: PMC9107495 DOI: 10.1038/s41388-022-02307-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Abstract
Prostate cancer that recurs following androgen-deprivation therapy is termed castration-resistant, which is incurable and is marked by reactivation of androgen receptor (AR) signaling. KIF20A, a kinesin with unique structural features, is overexpressed in human castration-resistant prostate cancer (CRPC) compared to androgen-dependent PC and benign tissue. KIF20A has well-described roles in mitotic processes, but it has a less characterized function in vesicle fission and trafficking within Golgi-driven secretory pathways. Stable expression of KIF20A in androgen-dependent PC cells promoted progression to CRPC through the activation of AR signaling in vitro and in vivo. KIF20A expression resulted in the secretion of autocrine factors in the conditioned media that activated AR and caused castration-resistant proliferation of naïve androgen-dependent cells. Pharmacologic disruption of vesicle biogenesis blocked KIF20A-driven castration-resistant proliferation of androgen-dependent PC. KIF20A depletion or treatment with the KIF20A-specific inhibitor, paprotrain, reduced CRPC. These data are the first to establish KIF20A as a driver of CRPC progression through AR activation and as a promising therapeutic target against CRPC.
Collapse
Affiliation(s)
- Valeria A Copello
- Sheila and David Fuente Graduate Program in Cancer Biology, Miami, FL, USA
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Kerry L Burnstein
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
13
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
14
|
Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schüler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 2021; 374:eabk0410. [PMID: 34882480 PMCID: PMC7612254 DOI: 10.1126/science.abk0410] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ilaria Corrado
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Sophie J. Cnudde
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alex Yuan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Nasrin Torabi Sarijalo
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Oscar Vadas
- Section des Sciences Pharmaceutiques, University of Geneva, 1211 Geneva, Switzerland
| | - Roger L. Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David R. Powell
- Pharmaceutical Biology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hagit N. Baris
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
- Rappaport Family Faculty of Medicine, Technion - –Israel Institute of Technology, Haifa 30196, Israel
| | - Brian M. McDermott
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian D. Perkins
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| |
Collapse
|
15
|
Sen O, Harrison JU, Burroughs NJ, McAinsh AD. Kinetochore life histories reveal an Aurora-B-dependent error correction mechanism in anaphase. Dev Cell 2021; 56:3082-3099.e5. [PMID: 34758290 PMCID: PMC8629432 DOI: 10.1016/j.devcel.2021.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Chromosome mis-segregation during mitosis leads to aneuploidy, which is a hallmark of cancer and linked to cancer genome evolution. Errors can manifest as "lagging chromosomes" in anaphase, although their mechanistic origins and likelihood of correction are incompletely understood. Here, we combine lattice light-sheet microscopy, endogenous protein labeling, and computational analysis to define the life history of >104 kinetochores. By defining the "laziness" of kinetochores in anaphase, we reveal that chromosomes are at a considerable risk of mis-segregation. We show that the majority of lazy kinetochores are corrected rapidly in anaphase by Aurora B; if uncorrected, they result in a higher rate of micronuclei formation. Quantitative analyses of the kinetochore life histories reveal a dynamic signature of metaphase kinetochore oscillations that forecasts their anaphase fate. We propose that in diploid human cells chromosome segregation is fundamentally error prone, with an additional layer of anaphase error correction required for stable karyotype propagation.
Collapse
Affiliation(s)
- Onur Sen
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonathan U Harrison
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute and Zeeman Institute, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute and Zeeman Institute, University of Warwick, Coventry, UK.
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.
| |
Collapse
|
16
|
Orr B, De Sousa F, Gomes AM, Afonso O, Ferreira LT, Figueiredo AC, Maiato H. An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors. Cell Rep 2021; 37:109783. [PMID: 34758324 PMCID: PMC8595644 DOI: 10.1016/j.celrep.2021.109783] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Micronuclei are a hallmark of cancer and several other human disorders. Recently, micronuclei were implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here, we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reassembly to prevent micronuclei formation. Using high-resolution live-cell imaging of human cancer and non-cancer cells, we uncover that anaphase lagging chromosomes are more frequent than previously anticipated, yet they rarely form micronuclei. Micronuclei formation from anaphase lagging chromosomes is prevented by a midzone-based Aurora B phosphorylation gradient that stabilizes kinetochore-microtubule attachments and assists spindle forces required for anaphase error correction while delaying nuclear envelope reassembly on lagging chromosomes, independently of microtubule density. We propose that a midzone-based Aurora B phosphorylation gradient actively monitors and corrects frequent chromosome segregation errors to prevent micronuclei formation during human cell division. Anaphase lagging chromosomes are frequent but rarely form micronuclei A midzone Aurora B activity gradient prevents micronuclei from segregation errors Midzone Aurora B assists spindle forces at the kinetochores to correct errors Aurora B spatially regulates nuclear envelope reformation on lagging chromosomes
Collapse
Affiliation(s)
- Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe De Sousa
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Margarida Gomes
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Olga Afonso
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana C Figueiredo
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
17
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
18
|
Schaller E, Ma A, Gosch LC, Klefenz A, Schaller D, Goehringer N, Kaps L, Schuppan D, Volkamer A, Schobert R, Biersack B, Nitzsche B, Höpfner M. New 3-Aryl-2-(2-thienyl)acrylonitriles with High Activity Against Hepatoma Cells. Int J Mol Sci 2021; 22:2243. [PMID: 33668139 PMCID: PMC7956560 DOI: 10.3390/ijms22052243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
New 2-(thien-2-yl)-acrylonitriles with putative kinase inhibitory activity were prepared and tested for their antineoplastic efficacy in hepatoma models. Four out of the 14 derivatives were shown to inhibit hepatoma cell proliferation at (sub-)micromolar concentrations with IC50 values below that of the clinically relevant multikinase inhibitor sorafenib, which served as a reference. Colony formation assays as well as primary in vivo examinations of hepatoma tumors grown on the chorioallantoic membrane of fertilized chicken eggs (CAM assay) confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic capsase-3 activity, while no contribution of unspecific cytotoxic effects was observed in LDH-release measurements. Kinase profiling of cancer relevant protein kinases identified the two 3-aryl-2-(thien-2-yl)acrylonitrile derivatives 1b and 1c as (multi-)kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Additional bioinformatic analysis of the VEGFR-2 binding modes by docking and molecular dynamics calculations supported the experimental findings and indicated that the hydroxy group of 1c might be crucial for its distinct inhibitory potency against VEGFR-2. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in HCC treatment.
Collapse
Affiliation(s)
- Eva Schaller
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (E.S.); (R.S.)
| | - Andi Ma
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.M.); (L.C.G.); (N.G.); (B.N.); (M.H.)
| | - Lisa Chiara Gosch
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.M.); (L.C.G.); (N.G.); (B.N.); (M.H.)
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (D.S.); (A.V.)
| | - Adrian Klefenz
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.K.); (L.K.); (D.S.)
| | - David Schaller
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (D.S.); (A.V.)
| | - Nils Goehringer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.M.); (L.C.G.); (N.G.); (B.N.); (M.H.)
| | - Leonard Kaps
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.K.); (L.K.); (D.S.)
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; (A.K.); (L.K.); (D.S.)
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (D.S.); (A.V.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (E.S.); (R.S.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany; (E.S.); (R.S.)
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.M.); (L.C.G.); (N.G.); (B.N.); (M.H.)
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (A.M.); (L.C.G.); (N.G.); (B.N.); (M.H.)
| |
Collapse
|
19
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
20
|
Ferrero H, Corachán A, Quiñonero A, Bougeret C, Pouletty P, Pellicer A, Domínguez F. Inhibition of KIF20A by BKS0349 reduces endometriotic lesions in a xenograft mouse model. Mol Hum Reprod 2020; 25:562-571. [PMID: 31365745 DOI: 10.1093/molehr/gaz044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several studies have suggested a possible etiological association between ovarian endometriosis and ovarian cancer. Evidence has shown that KIF20A overexpression might confer a malignant phenotype to ovarian tumors by promoting proliferation and inhibiting apoptosis. However, no data about the role of KIF20A in endometriosis have been described. In this study, the human endometrium (n = 4) was transfected by mCherry adenovirus and intraperitoneally implanted in mice. Subsequently, mice were divided in three groups (n = 8/group) that were treated with Vehicle, BKS0349 (KIF20A-antagonist) or cabergoline (dopamine receptor agonist) for 21 days. mCherry-labeled endometriotic lesions were monitored over time using the IVIS Imaging System. Mice were sacrificed 72 h after the last administration; proliferation was evaluated by immunohistochemistry and apoptosis by TUNEL. CCND1 gene expression (G1 phase-related gene) was measured by qRT-PCR. A significant reduction in mCherry-fluorescent signal was observed in the BKS0349 group after treatment ended (D24) compared with D0 (P-value = 0.0313). Moreover, the mCherry signal on D24 showed a significant decrease in the BKS0349 group compared with controls (P-value = 0.0303), along with significant size reduction of endometriotic lesions observed in the BKS0349 group compared with control on D24 (P-value = 0.0006). Functional studies showed a significant reduction in proliferating cells in the BKS0349-treated group compared with controls (P-value = 0.0082). In addition, CCND1 expression was decreased in the BKS0349 group compared with control (P-value = 0.049) at D24 and a significant increase in apoptotic cells among endometriotic lesions in BKS0349-treated mice was observed compared with control (P-value = 0.0317). Based on these findings, we concluded that BKS0349 induces apoptosis and inhibits cell proliferation, reducing endometriotic lesion size and suggesting KIF20A inhibition by BKS0349 as a novel therapeutic treatment for endometriosis.
Collapse
Affiliation(s)
- H Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,INCLIVA Biomedical Research Institute, Research Department Valencia, Spain
| | - A Corachán
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - A Quiñonero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain
| | - C Bougeret
- Biokinesis SAS, Research Department. Paris, France
| | - P Pouletty
- Biokinesis SAS, Research Department. Paris, France
| | - A Pellicer
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - F Domínguez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Research Department Valencia, Spain.,Health Research Institute La Fe. Research Department. Valencia, Spain
| |
Collapse
|
21
|
Adriaans IE, Hooikaas PJ, Aher A, Vromans MJ, van Es RM, Grigoriev I, Akhmanova A, Lens SM. MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase. Curr Biol 2020; 30:2628-2637.e9. [DOI: 10.1016/j.cub.2020.04.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023]
|
22
|
Nakamura M, Takano A, Thang PM, Tsevegjav B, Zhu M, Yokose T, Yamashita T, Miyagi Y, Daigo Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int J Oncol 2020; 57:277-288. [PMID: 32467984 DOI: 10.3892/ijo.2020.5060] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify novel prognostic biomarkers and therapeutic targets for breast cancer; thus, genes that are frequently overexpressed in several types of breast cancer were screened. Kinesin family member 20A (KIF20A) was identified as a candidate molecule during this process. Immunohistochemical staining performed using tissue microarrays from 257 samples of different breast cancer subtypes revealed that KIF20A was expressed in 195 (75.9%) of these samples, whereas it was seldom expressed in normal breast tissue. KIF20A protein was expressed in all types of breast cancer observed. However, it was more frequently expressed in human epidermal growth factor receptor 2 (HER2)‑positive and triple‑negative breast cancer than in the luminal type. Moreover, KIF20A expression was significantly associated with the poor prognosis of patients with breast cancer. A multivariate analysis indicated that KIF20A expression was an independent prognostic factor for patients with breast cancer. The suppression of endogenous KIF20A expression using small interfering ribonucleic acids or via treatment with paprotrain, a selective inhibitor of KIF20A, significantly inhibited breast cancer cell growth through cell cycle arrest at the G2/M phase and subsequent mitotic cell death. These results suggest that KIF20A is a candidate prognostic biomarker and therapeutic target for different types of breast cancer.
Collapse
Affiliation(s)
- Masako Nakamura
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Phung Manh Thang
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Bayarbat Tsevegjav
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Ming Zhu
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| |
Collapse
|
23
|
Jia Y, Wen X, Gong Y, Wang X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur J Med Chem 2020; 200:112359. [PMID: 32531682 DOI: 10.1016/j.ejmech.2020.112359] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Cancer chemotherapy is frequently hampered by drug resistance, so the resistance to anticancer agents represents one of the major obstacles for the effective cancer treatment. Indole derivatives have the potential to act on diverse targets in cancer cells and exhibit promising activity against drug-resistant cancers. Moreover, some indole-containing compounds such as Semaxanib, Sunitinib, Vinorelbine, and Vinblastine have already been applied in clinics for various kinds of cancer even drug-resistant cancer therapy. Thus, indole derivatives are one of significant resources for the development of novel anti-drug-resistant cancer agents. This review focuses on the recent development of indole derivatives with potential therapeutic application for drug-resistant cancers, and the mechanisms of action, the critical aspects of design as well as structure-activity relationships, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
- Yanshu Jia
- Chongqing Institute of Engineering, Chongqing, 400056, China
| | - Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xuefeng Wang
- Department of Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhejiang Province, 311800, China.
| |
Collapse
|
24
|
Li TF, Zeng HJ, Shan Z, Ye RY, Cheang TY, Zhang YJ, Lu SH, Zhang Q, Shao N, Lin Y. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell Int 2020; 20:123. [PMID: 32322170 PMCID: PMC7161125 DOI: 10.1186/s12935-020-01191-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kinesin superfamily (KIFs) has a long-reported significant influence on the initiation, development, and progress of breast cancer. However, the prognostic value of whole family members was poorly done. Our study intends to demonstrate the value of kinesin superfamily members as prognostic biomarkers as well as a therapeutic target of breast cancer. METHODS Comprehensive bioinformatics analyses were done using data from TCGA, GEO, METABRIC, and GTEx. LASSO regression was done to select tumor-related members. Nomogram was constructed to predict the overall survival (OS) of breast cancer patients. Expression profiles were testified by quantitative RT-PCR and immunohistochemistry. Transcription factor, GO and KEGG enrichments were done to explore regulatory mechanism and functions. RESULTS A total of 20 differentially expressed KIFs were identified between breast cancer and normal tissue with 4 (KIF17, KIF26A, KIF7, KIFC3) downregulated and 16 (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B, KIF22, KIF23, KIF24, KIF26B, KIF2C, KIF3B, KIF4A, KIFC1) overexpressed. Among which, 11 overexpressed KIFs (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, KIFC1) significantly correlated with worse OS, relapse-free survival (RFS) and distant metastasis-free survival (DMFS) of breast cancer. A 6-KIFs-based risk score (KIF10, KIF15, KIF18A, KIF18B, KIF20A, KIF4A) was generated by LASSO regression with a nomogram validated an accurate predictive efficacy. Both mRNA and protein expression of KIFs are experimentally demonstrated upregulated in breast cancer patients. Msh Homeobox 1 (MSX1) was identified as transcription factors of KIFs in breast cancer. GO and KEGG enrichments revealed functions and pathways affected in breast cancer. CONCLUSION Overexpression of tumor-related KIFs correlate with worse outcomes of breast cancer patients and can work as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Tian-Fu Li
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Hui-Juan Zeng
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Zhen Shan
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Run-Yi Ye
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Tuck-Yun Cheang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Yun-Jian Zhang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Si-Hong Lu
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Qi Zhang
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
- Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
25
|
Kinesin-6 family motor KIF20A regulates central spindle assembly and acrosome biogenesis in mouse spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118636. [PMID: 31884069 DOI: 10.1016/j.bbamcr.2019.118636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 11/21/2022]
Abstract
Kinesin-6 KIF20A is essential for microtubule organization and central spindle assembly during cytokinesis. However, the functions of KIF20A in meiotic division and spermatogenesis remain elusive. Here, we report that kinesin-6 KIF20A locates at the microtubules in mouse spermatogenic cells and co-localizes with the spindle midzone and midbody. We demonstrate that central spindle organization and chromosomal stability are regulated by KIF20A in male meiotic division. KIF20A inhibition leads to the defects in central spindle assembly and cytokinetic abscission, and finally results in the increase of aneuploid cells and the alteration of cell populations in the spermatogenic cells. Furthermore, we have revealed that kinesin-6 KIF20A is associated with the formation and maturation of the acrosomes during spermatogenesis. Our findings have identified the specific roles of KIF20A in central spindle organization in meiotic division.
Collapse
|
26
|
Mandal K, Pogoda K, Nandi S, Mathieu S, Kasri A, Klein E, Radvanyi F, Goud B, Janmey PA, Manneville JB. Role of a Kinesin Motor in Cancer Cell Mechanics. NANO LETTERS 2019; 19:7691-7702. [PMID: 31565944 PMCID: PMC7737127 DOI: 10.1021/acs.nanolett.9b02592] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular motors play important roles in force generation, migration, and intracellular trafficking. Changes in specific motor activities are altered in numerous diseases. KIF20A, a motor protein of the kinesin-6 family, is overexpressed in bladder cancer, and KIF20A levels correlate negatively with clinical outcomes. We report here a new role for the KIF20A kinesin motor protein in intracellular mechanics. Using optical tweezers to probe intracellular mechanics and surface AFM to probe cortical mechanics, we first confirm that bladder urothelial cells soften with an increasing cancer grade. We then show that inhibiting KIF20A makes the intracellular environment softer for both high- and low-grade bladder cancer cells. Upon inhibition of KIF20A, cortical stiffness also decreases in lower grade cells, while it surprisingly increases in higher grade malignant cells. Changes in cortical stiffness correlate with the interaction of KIF20A with myosin IIA. Moreover, KIF20A inhibition negatively regulates bladder cancer cell motility irrespective of the underlying substrate stiffness. Our results reveal a central role for a microtubule motor in cell mechanics and migration in the context of bladder cancer.
Collapse
Affiliation(s)
- Kalpana Mandal
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Institute of Nuclear Physics , Polish Academy of Sciences , PL-31342 Krakow 31-342 , Poland
| | - Satabdi Nandi
- School of Veterinary Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Laboratory of Molecular Biology and Immunology , National Institute on Aging , Baltimore , Maryland 21224 , United States
| | - Samuel Mathieu
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Amal Kasri
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
- ICM Brain and Spine Institute , Pitié Salpêtrière Hospital , 47-83 Boulevard de l'Hôpital , Paris 75013 , France
| | - Eric Klein
- Department of Biology , Rutgers University-Camden Waterfront Tech Center , Camden , New Jersey 08103 , United States
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| | - Paul A Janmey
- Institute for Medicine and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
- Departments of Physiology and Physics & Astronomy , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144 , 26 rue d'Ulm , Paris Cedex 05 75248 , France
| |
Collapse
|
27
|
Wu WD, Yu KW, Zhong N, Xiao Y, She ZY. Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division. Eur J Cell Biol 2019; 98:74-80. [DOI: 10.1016/j.ejcb.2018.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
|
28
|
Sheng Y, Wang W, Hong B, Jiang X, Sun R, Yan Q, Zhang S, Lu M, Wang S, Zhang Z, Lin W, Li Y. Upregulation of KIF20A correlates with poor prognosis in gastric cancer. Cancer Manag Res 2018; 10:6205-6216. [PMID: 30538567 PMCID: PMC6260125 DOI: 10.2147/cmar.s176147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background KIF20A is well known as one of the key proteins in mitosis. Recently, a number of studies illustrated that KIF20A might function as an oncogene in some carcinomas. However, its expression levels and clinical value remained unclear in gastric cancer (GC). Patients and methods In this study, we investigated the expression of KIF20A in samples from GC patients and cell lines by quantitative real-time PCR and Western blot. The function of KIF20A in cell proliferation of GC cell lines was examined via cell viability and colony formation assays. Immunohistochemistry assay based on a tissue microarray consisting of 146 cases was performed to evaluate the prognostic value of KIF20A. The overall survival rate of 122 GC patients based on KIF20A expression was analyzed as well. Finally, using KIF20A inhibitor, genistein, and combining it with cisplatin or fluorouracil, the antitumor effects were studied. Results Most GC samples (56.76%) showed higher KIF20A expression level compared to their corresponding normal specimens, which demonstrated the potential oncogenic role of KIF20A in GC. The functional studies elucidated the essential role of KIF20A in GC cell proliferation. Besides, tissue microarray result showed that the expression level of KIF20A was significantly related to the histological grades (P=0.036). Furthermore, we found the expression of KIF20A was related to poor overall survival rate, which is coincident with the results from Kaplan–Meier plotter database. In addition, we found that a KIF20A inhibitor, genistein, could enhance the antitumor activity of cisplatin and fluorouracil, which might be considered as a chemosensitive agent in GC. Conclusion KIF20A can promote cell proliferation in GC, which might be used as an independent prognostic factor and a potential therapeutic target.
Collapse
Affiliation(s)
- Yi Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Bo Hong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Xingwang Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Ruochuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Qiang Yan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Shengyi Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| |
Collapse
|
29
|
Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131). Eur J Med Chem 2018; 156:344-367. [DOI: 10.1016/j.ejmech.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
|
30
|
Kawai Y, Shibata K, Sakata J, Suzuki S, Utsumi F, Niimi K, Sekiya R, Senga T, Kikkawa F, Kajiyama H. KIF20A expression as a prognostic indicator and its possible involvement in the proliferation of ovarian clear‑cell carcinoma cells. Oncol Rep 2018; 40:195-205. [PMID: 29749467 PMCID: PMC6059742 DOI: 10.3892/or.2018.6401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Kinesin family member 20A (KIF20A), which is involved in cytokinesis and intracellular transportation, has been recently reported to be upregulated in several malignancies and may contribute to chemotherapeutic resistance. We examined the distribution and expression of KIF20A in clear‑cell carcinoma (CCC) of the ovary to elucidate its clinical significance and molecular mechanism. Paraffin sections from ovarian CCC tissues (N=43) were immunostained with KIF20A antibody, and the staining intensities were semi‑quantitatively evaluated. Furthermore, we investigated whether silencing of KIF20A contributes to the proliferation‑inhibitory potential using CCC cells. During the observational period, 18 patients (41.9%) developed recurrence. The median time to recurrence was 11.5 months. Patients in the high KIF20A expression group showed poorer progression‑free survival (PFS) and overall survival (OS) than those in the low expression group (P=0.0443 and P=0.0478, respectively). In multivariable analyses, KIF20A expression was also a significantly independent indicator of PFS and a marginally significant indicator of OS [PFS: HR (high vs. low), 5.488; 95% CI, 1.410‑24.772 (P=0.0136); OS: HR, 2.835; 95% CI, 0.854‑11.035, (P=0.0897)]. In in vitro studies, the ovarian CCC cell proliferation was significantly decreased by KIF20A silencing or in the presence of KIF20A inhibitor in CCC cells. Cell cycle G2/M arrest and a higher apoptosis‑induced fraction were more frequently observed in si‑KIF20A‑transfected CCC cells than in the control cells. Although the present study was preliminary, these data indicate the possible involvement of KIF20A in the proliferation of CCC, suggesting that targeting this molecule may contribute to reversing the malignant potential consequently affecting the oncologic outcome of CCC patients.
Collapse
Affiliation(s)
- Yosuke Kawai
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya 454‑8509, Japan
| | - Jun Sakata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Ryuichiro Sekiya
- Department of Obstetrics and Gynecology, Banbuntane Hotokukai Hospital, Fujita Health University, Nagoya 454‑8509, Japan
| | - Takeshi Senga
- Department of Internal Medicine, Yahagigawa Hospital, Aichi 444‑1164, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466‑8550, Japan
| |
Collapse
|
31
|
Luo F, Lu Y, Hu M, Tian J, Zhang L, Bao W, Yan C, Huang X, Wang ZX, Peng B. Reductive ortho C–H cyanoalkylation of aryl(heteroaryl) sulfoxides: a general approach to α-aryl(heteroaryl) nitriles. Org Chem Front 2018. [DOI: 10.1039/c8qo00268a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free low-temperature cyanoalkylation has been developed as a general protocol for the synthesis of α-aryl(heteroaryl) nitriles.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yu Lu
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| | - Mengjie Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Junsong Tian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Wangzhen Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Chao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zhi-Xiang Wang
- School of Chemical Sciences
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
32
|
Taulet N, Vitre B, Anguille C, Douanier A, Rocancourt M, Taschner M, Lorentzen E, Echard A, Delaval B. IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning. Nat Commun 2017; 8:1928. [PMID: 29203870 PMCID: PMC5715026 DOI: 10.1038/s41467-017-01479-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning. Cytokinesis relies on central spindle organization and provides a spatial landmark for lumen formation. Here, the authors show that intraflagellar transport proteins are required for the localization of the cytokinetic regulator Aurora B and subsequent cleavage furrow ingression and lumen positioning.
Collapse
Affiliation(s)
- Nicolas Taulet
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Benjamin Vitre
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Christelle Anguille
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Audrey Douanier
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Murielle Rocancourt
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Michael Taschner
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Arnaud Echard
- Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France
| | - Benedicte Delaval
- CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
33
|
Miserey-Lenkei S, Bousquet H, Pylypenko O, Bardin S, Dimitrov A, Bressanelli G, Bonifay R, Fraisier V, Guillou C, Bougeret C, Houdusse A, Echard A, Goud B. Coupling fission and exit of RAB6 vesicles at Golgi hotspots through kinesin-myosin interactions. Nat Commun 2017; 8:1254. [PMID: 29093437 PMCID: PMC5665954 DOI: 10.1038/s41467-017-01266-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
The actin and microtubule cytoskeletons play important roles in Golgi structure and function, but how they are connected remain poorly known. In this study, we investigated whether RAB6 GTPase, a Golgi-associated RAB involved in the regulation of several transport steps at the Golgi level, and two of its effectors, Myosin IIA and KIF20A participate in the coupling between actin and microtubule cytoskeleton. We have previously shown that RAB6–Myosin IIA interaction is critical for the fission of RAB6-positive transport carriers from Golgi/TGN membranes. Here we show that KIF20A is also involved in the fission process and serves to anchor RAB6 on Golgi/TGN membranes near microtubule nucleating sites. We provide evidence that the fission events occur at a limited number of hotspots sites. Our results suggest that coupling between actin and microtubule cytoskeletons driven by Myosin II and KIF20A ensures the spatial coordination between RAB6-positive vesicles fission from Golgi/TGN membranes and their exit along microtubules. Actin and microtubules play important roles in Golgi structure and function but how they are connected is poorly understood. Here the authors show that KIF20A is involved in the fission process and, in association with Myosin II, serves to anchor RAB6 on Golgi/TGN membranes near microtubules nucleating sites.
Collapse
Affiliation(s)
- Stéphanie Miserey-Lenkei
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France.
| | - Hugo Bousquet
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Olena Pylypenko
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Sabine Bardin
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Ariane Dimitrov
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France
| | - Gaëlle Bressanelli
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Raja Bonifay
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR 144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | | | | | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS, UMR 144, Structural Motility, F-75005, Paris, France
| | - Arnaud Echard
- Institut Pasteur, CNRS UMR3691, Membrane Traffic and Cell Division, F-75015, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport, F-75005, Paris, France.
| |
Collapse
|
34
|
Atherton J, Yu IM, Cook A, Muretta JM, Joseph A, Major J, Sourigues Y, Clause J, Topf M, Rosenfeld SS, Houdusse A, Moores CA. The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry. eLife 2017; 6:27793. [PMID: 28826477 PMCID: PMC5602324 DOI: 10.7554/elife.27793] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
MKLP2, a kinesin-6, has critical roles during the metaphase-anaphase transition and cytokinesis. Its motor domain contains conserved nucleotide binding motifs, but is divergent in sequence (~35% identity) and size (~40% larger) compared to other kinesins. Using cryo-electron microscopy and biophysical assays, we have undertaken a mechanochemical dissection of the microtubule-bound MKLP2 motor domain during its ATPase cycle, and show that many facets of its mechanism are distinct from other kinesins. While the MKLP2 neck-linker is directed towards the microtubule plus-end in an ATP-like state, it does not fully dock along the motor domain. Furthermore, the footprint of the MKLP2 motor domain on the MT surface is altered compared to motile kinesins, and enhanced by kinesin-6-specific sequences. The conformation of the highly extended loop6 insertion characteristic of kinesin-6s is nucleotide-independent and does not contact the MT surface. Our results emphasize the role of family-specific insertions in modulating kinesin motor function. Cells constantly replicate to provide new cells for growing tissues, and to replace ageing or defective cells around the body. Each new cell needs a copy of the genetic material, and a cellular structure called the mitotic spindle makes sure that this material is shared correctly when a cell divides in two. The spindle is built from protein filaments called microtubules, and the protein filaments grow and shrink as the mitotic spindle carries out its role. Many of these changes in the spindle are driven by proteins called molecular motors, which break down energy-rich molecules of ATP to power them as they walk along the filaments. Kinesins, for example, are molecular motors that can move along microtubules and there are over 40 different kinesins encoded in the human genome. More than half of the human kinesins are involved in cell division including one called MKLP2. Little is known about MKLP2 but some earlier findings had suggested that it would behave very differently compared to other kinesins. Understanding how a kinesin motor works requires studying it in complex with its microtubule tracks. Atherton, Yu et al. have now used a technique called cryo-electron microscopy – which is uniquely suited to looking at large and complicated samples in three dimensions – to observe how the motor in MKLP2 changes shape as it works. This revealed that, while MKLP2 works in a fundamentally similar way to other kinesins, many aspects of its molecular mechanism are highly unusual. These include how it binds to the microtubule, how it interacts with ATP and how it generates force. These findings show that there is much greater diversity in the molecular mechanisms of the kinesins involved in cell division than was previously thought. Several anticancer drugs target kinesins to stop cells dividing and so this diversity may make it easier to target only certain kinesins with drugs, which in turn would have fewer side effects. First, though, it will be important to find out how the unusual mechanism of MKLP2 coordinates and influences other components of the spindle to reveal a fuller picture of what happens when cells replicate.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - I-Mei Yu
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Alexander Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joseph M Muretta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United Sates
| | - Agnel Joseph
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jennifer Major
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Yannick Sourigues
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Jeffrey Clause
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Steven S Rosenfeld
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| |
Collapse
|
35
|
Labrière C, Lozach O, Blairvacq M, Meijer L, Guillou C. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. Eur J Med Chem 2016; 124:920-934. [DOI: 10.1016/j.ejmech.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
36
|
Talapatra SK, Rath O, Clayton E, Tomasi S, Kozielski F. Depsidones from Lichens as Natural Product Inhibitors of M-Phase Phosphoprotein 1, a Human Kinesin Required for Cytokinesis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1576-1585. [PMID: 27300079 DOI: 10.1021/acs.jnatprod.5b00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
M-Phase Phosphoprotein 1 (MPP1), a microtubule plus end directed kinesin, is required for the completion of cytokinesis. Previous studies have shown that MPP1 is upregulated in various types of bladder cancer. This article describes inhibitor screening leading to the identification of a new class of natural product inhibitors of MPP1. Two compounds with structural similarity, norlobaridone (1) and physodic acid (2), were found to inhibit MPP1. Physodic acid is not competitive with ATP, indicating the presence of an allosteric inhibitor-binding pocket. Initial drug-like property screening indicates that physodic acid is more soluble than norlobaridone and has more favorable lipophilicity. However, both suffer from high clearance in human microsomal stability assays mediated by the lability of the lactone ring as well as hydroxylation of the alkyl chains as shown by metabolite identification studies. In cell-based assays physodic acid is a weak inhibitor with EC50 values of about 30 μM in a range of tumor cell lines. The two depsidones identified and characterized here could be used for future improvement of their activity against MPP1 and will be useful chemical probes for studying this unique molecular motor in more depth.
Collapse
Affiliation(s)
- Sandeep K Talapatra
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, U.K
| | - Oliver Rath
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, U.K
| | - Eddie Clayton
- Cyprotex Discovery Ltd , 15 Beech Lane, Macclesfield, Cheshire SK10 2DR, U.K
| | - Sophie Tomasi
- Equipe PNSCM "Produits Naturels - Synthèses - Chimie Médicinale", Unités Mixtes de Recherche, Centre National de la Recherche Scientifique, 6226 Sciences Chimiques de Rennes, UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne Loire , 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
37
|
Khongkow P, Gomes AR, Gong C, Man EPS, Tsang JWH, Zhao F, Monteiro LJ, Coombes RC, Medema RH, Khoo US, Lam EWF. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene 2016; 35:990-1002. [PMID: 25961928 PMCID: PMC4538879 DOI: 10.1038/onc.2015.152] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022]
Abstract
FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance.
Collapse
Affiliation(s)
- P Khongkow
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - A R Gomes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - C Gong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - E P S Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J W-H Tsang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - F Zhao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - L J Monteiro
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - R C Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - R H Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - U S Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
38
|
Labrière C, Talapatra SK, Thoret S, Bougeret C, Kozielski F, Guillou C. New MKLP-2 inhibitors in the paprotrain series: Design, synthesis and biological evaluations. Bioorg Med Chem 2015; 24:721-34. [PMID: 26778612 DOI: 10.1016/j.bmc.2015.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 11/17/2022]
Abstract
Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure-activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target.
Collapse
Affiliation(s)
- Christophe Labrière
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sandeep K Talapatra
- School of Pharmacy, University College London, Department of Pharmaceutical and Biological Chemistry, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sylviane Thoret
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | - Frank Kozielski
- School of Pharmacy, University College London, Department of Pharmaceutical and Biological Chemistry, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
Pgp efflux pump decreases the cytostatic effect of CENP-E inhibitor GSK923295. Cancer Lett 2015; 361:97-103. [DOI: 10.1016/j.canlet.2015.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
|
40
|
Cochran JC. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Biophys Rev 2015; 7:269-299. [PMID: 28510227 DOI: 10.1007/s12551-014-0150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 11/25/2022] Open
Abstract
Molecular motors are enzymes that convert chemical potential energy into controlled kinetic energy for mechanical work inside cells. Understanding the biophysics of these motors is essential for appreciating life as well as apprehending diseases that arise from motor malfunction. This review focuses on kinesin motor enzymology with special emphasis on the literature that reports the chemistry, structure and physics of several different kinesin superfamily members.
Collapse
Affiliation(s)
- J C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Simon Hall Room 405C, 212 S. Hawthorne Dr., Bloomington, IN, 47405, USA.
| |
Collapse
|
41
|
Exertier P, Javerzat S, Wang B, Franco M, Herbert J, Platonova N, Winandy M, Pujol N, Nivelles O, Ormenese S, Godard V, Becker J, Bicknell R, Pineau R, Wilting J, Bikfalvi A, Hagedorn M. Impaired angiogenesis and tumor development by inhibition of the mitotic kinesin Eg5. Oncotarget 2014; 4:2302-16. [PMID: 24327603 PMCID: PMC3926828 DOI: 10.18632/oncotarget.1490] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kinesin motor proteins exert essential cellular functions in all eukaryotes. They control mitosis, migration and intracellular transport through interaction with microtubules. Small molecule inhibitors of the mitotic kinesin KiF11/Eg5 are a promising new class of anti-neoplastic agents currently evaluated in clinical cancer trials for solid tumors and hematological malignancies. Here we report induction of Eg5 and four other mitotic kinesins including KIF20A/Mklp2 upon stimulation of in vivo angiogenesis with vascular endothelial growth factor-A (VEGF-A). Expression analyses indicate up-regulation of several kinesin-encoding genes predominantly in lymphoblasts and endothelial cells. Chemical blockade of Eg5 inhibits endothelial cell proliferation and migration in vitro. Mitosis-independent vascular outgrowth in aortic ring cultures is strongly impaired after Eg5 or Mklp2 protein inhibition. In vivo, interfering with KIF11/Eg5 function causes developmental and vascular defects in zebrafish and chick embryos and potent inhibition of tumor angiogenesis in experimental tumor models. Besides blocking tumor cell proliferation, impairing endothelial function is a novel mechanism of action of kinesin inhibitors.
Collapse
Affiliation(s)
- Prisca Exertier
- University Bordeaux, LAMC, UMR 1029, F-33405 Talence, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu J, Wang QC, Cui XS, Wang ZB, Kim NH, Sun SC. MKlp2 inhibitor paprotrain affects polar body extrusion during mouse oocyte maturation. Reprod Biol Endocrinol 2013; 11:117. [PMID: 24359300 PMCID: PMC3878103 DOI: 10.1186/1477-7827-11-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian oocyte meiotic maturation involves a number of important processes, including spindle assembly and migration, cortical reorganization and polar body extrusion. Numerous proteins contribute to these processes, but it is unknown whether MKlp2 (mitotic kinesin-like protein 2; also called KIF20A), a microtubule-associated protein that regulates cytokinesis during mitosis, is involved in oocyte maturation. METHODS Confocal microscopy, time lapse microscopy, inhibitor treatment were adopted to examine the roles of MKlp2 in mouse oocyte. RESULTS Immunostaining results showed that MKlp2 localized to oocyte microtubules. Time-lapse microscopy showed that disrupting MKlp2 expression with paprotrain, a specific inhibitor of MKlp2, resulted in polar body extrusion failure. This could be rescued after rescuing oocytes from paprotrain in fresh medium. Cell cycle analysis showed that most oocytes were arrested at metaphase I or telophase I. However, oocyte spindle structure and chromosome alignment were not disrupted after the inhibition of MKlp2 by paprotrain. CONCLUSIONS This study demonstrated that MKlp2 is crucial for oocyte maturation by regulating polar body extrusion.
Collapse
Affiliation(s)
- Jun Liu
- College of Animal Sciences and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qiao-Chu Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, 361-763 Cheongju, Korea
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, 361-763 Cheongju, Korea
| | - Shao-Chen Sun
- College of Animal Sciences and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
43
|
Herman B, Gudrun A, Potopalsky AI, Chroboczek J, Tcherniuk SO. Amitozyn impairs chromosome segregation and induces apoptosis via mitotic checkpoint activation. PLoS One 2013; 8:e57461. [PMID: 23505430 PMCID: PMC3591406 DOI: 10.1371/journal.pone.0057461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/24/2013] [Indexed: 11/23/2022] Open
Abstract
Amitozyn (Am) is a semi-synthetic drug produced by the alkylation of major celandine (Chelidonium majus L.) alkaloids with the organophosphorous compound N,N'N'-triethylenethiophosphoramide (ThioTEPA). We show here that the treatment of living cells with Am reversibly perturbs the microtubule cytoskeleton, provoking a dose-dependent cell arrest in the M phase. Am changed the dynamics of tubulin polymerization in vitro, promoted the appearance of aberrant mitotic phenotypes in HeLa cells and induced apoptosis by the activation of caspase-9, caspase-3 and PARP, without inducing DNA breaks. Am treatment of HeLa cells induced changes in the phosphorylation of the growth suppressor pRb that coincided with maximum mitotic index. The dose-dependent and reversible anti-proliferative effect of Am was observed in several transformed cell lines. Importantly, the drug was also efficient against multidrug-resistant, paclitaxel-resistant or p53-deficient cells. Our results thus open the way to further pre-clinical evaluation of Am.
Collapse
Affiliation(s)
- Bastien Herman
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aldrian Gudrun
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Anatoly I. Potopalsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine (NAN Ukraine), Kiev, Ukraine
| | - Jadwiga Chroboczek
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
- Thérapeutique Recombinante Expérimentale/Techniques de l’Ingénierie Médicale et de la Complexité/Informatique, Mathématiques et Applications de Grenoble (Therex/TIMC/IMAG), Centre National de la Recherche Scientifique (CNRS)/Université Joseph Fourier (UJF), Domaine de la Merci, La Tronche, France
| | - Sergey O. Tcherniuk
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Biological Sciences, Academy of Young Scientists of Ukraine (AYSU), Kiev, Ukraine
| |
Collapse
|
44
|
Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. PLoS One 2012; 7:e45381. [PMID: 23071517 PMCID: PMC3469574 DOI: 10.1371/journal.pone.0045381] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.
Collapse
|
45
|
Abstract
Kinesins are a family of molecular motors that travel unidirectionally along microtubule tracks to fulfil their many roles in intracellular transport or cell division. Over the past few years kinesins that are involved in mitosis have emerged as potential targets for cancer drug development. Several compounds that inhibit two mitotic kinesins (EG5 (also known as KIF11) and centromere-associated protein E (CENPE)) have entered Phase I and II clinical trials either as monotherapies or in combination with other drugs. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the range of kinesin-based drug targets may expand in the future.
Collapse
Affiliation(s)
- Oliver Rath
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | | |
Collapse
|
46
|
Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, Bourgain-Guglielmetti F, Desdouets C, Lacombe ML, Zucman-Rossi J, Sobczak-Thépot J. KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:131-40. [PMID: 22056911 DOI: 10.1016/j.ajpath.2011.09.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/24/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Mitotic kinesin-like protein 2 (MKlp2), a microtubule-associated motor, is required during mitosis exit for the final step of cytokinesis. It also contributes to retrograde vesicular trafficking from the Golgi apparatus to the endoplasmic reticulum in interphase. The KIF20A gene encoding MKlp2 is controlled by the E2F-retinoblastoma protein-p16 pathway, and its widely expressed mRNA is found in fetal and proliferating adult tissues. The expression pattern and function of MKlp2 in the adult liver, however, have not been investigated. We report herein that MKlp2 transiently accumulates in vivo during mouse liver regeneration after partial hepatectomy and is strongly overexpressed in preneoplastic and neoplastic mouse liver. In vitro in mitogen-stimulated primary hepatocytes, MKlp2 accumulated in the nucleus during the G2 phase of the cell cycle coincident with the mitotic kinase Aurora B. Human hepatoma cell lines exhibited high levels of MKlp2; however, it was undetectable in normal human hepatocytes. RNAi-mediated MKlp2 knockdown in hepatoma cells induced polyploidization consistent with its essential function in promoting cytokinesis and inhibited cell proliferation without inducing apoptosis. KIF20A mRNA was strongly accumulated in a large series of human hepatocellular carcinomas, with the highest expression observed in tumors with genomic instability. Accumulation of MKlp2 in normal proliferating, preneoplastic, and transformed hepatocytes suggests that MKlp2 contributes to both normal and pathologic hepatocyte proliferation and is linked to tumor aggressiveness in human hepatocellular carcinomas.
Collapse
|
47
|
Good JAD, Skoufias DA, Kozielski F. Elucidating the functionality of kinesins: an overview of small molecule inhibitors. Semin Cell Dev Biol 2011; 22:935-45. [PMID: 22001111 DOI: 10.1016/j.semcdb.2011.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/30/2011] [Indexed: 12/19/2022]
Abstract
Kinesin motor proteins are ubiquitously involved in multiple fundamental cellular processes, coordinating transport and mediating changes to cellular architecture. Thus, specific small molecule kinesin inhibitors can shed new light on the functions of kinesins and the dynamic roles in which they participate. Here we review the range of known inhibitors, their key characteristics, and specificity, and discuss their potential suitability for chemical genetics as starting points to further investigate complex kinesin-mediated processes.
Collapse
Affiliation(s)
- James A D Good
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | | | | |
Collapse
|
48
|
Li Y, Xu X, Tan J, Xia C, Zhang D, Liu Q. Double Isocyanide Cyclization: A Synthetic Strategy for Two-Carbon-Tethered Pyrrole/Oxazole Pairs. J Am Chem Soc 2011; 133:1775-7. [DOI: 10.1021/ja110864t] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yifei Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xianxiu Xu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jing Tan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunyu Xia
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dawei Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|