1
|
Pilopp Y, Beer H, Bresien J, Michalik D, Villinger A, Schulz A. Designing a visible light-mediated double photoswitch: a combination of biradical and azobenzene structural motifs that can be switched independently. Chem Sci 2025; 16:876-888. [PMID: 39660294 PMCID: PMC11626401 DOI: 10.1039/d4sc07247b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
A new molecular switch is presented that combines both biradical and azobenzene motifs to perform visible light-induced constitutional and stereo-isomerisation within the same molecule. The insertion of isonitrile-functionalised azobenzenes into the four-membered biradical [˙P(μ-NTer)2P˙] (1), yielding a phosphorus-centred cyclopentane-1,3-diyl (E-4B and E-5B), represents a straightforward method to generate the desired double switches (E-4B and E-5B) in excellent yields (>90%). The switching properties are demonstrated for the fluorinated species E-5B and, interestingly, can occur either stepwise or simultaneously, depending on the order in which the sample is irradiated with red and/or green light. All possible isomerisation reactions, i.e., housane formation in the phosphorus-centred cyclopentane-1,3-diyl fragment and E/Z isomerisation at the azobenzene, can be switched by irradiation and the reaction products E-5H, Z-5H and Z-5B (when performing the thermal reverse reaction in the dark) are identified using 19F{1H} and 31P{1H} NMR spectroscopy. Results from quantum chemical calculations contribute to the understanding and visualisation of the different isomers of each of the observed compounds (E-5B, E-5H, Z-5H, and Z-5B) caused by the unique structure of the double switches.
Collapse
Affiliation(s)
- Yannic Pilopp
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Henrik Beer
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Dirk Michalik
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a Rostock D-18059 Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock Albert-Einstein-Straße 3a Rostock D-18059 Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a Rostock D-18059 Germany
| |
Collapse
|
2
|
Lee CK, Gangadharappa C, Fahrenbach AC, Kim DJ. Harnessing Radicals: Advances in Self-Assembly and Molecular Machinery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408271. [PMID: 39177115 DOI: 10.1002/adma.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly. The potential of radical interactions in the development of artificial molecular machines (AMMs) are also discussed. These AMMs, powered by radical-radical interactions, represent significant advancements in non-equilibrium chemistry, mimicking the functionalities of biological systems. From molecular switches to ratchets and pumps, the versatility and unique properties of radically powered AMMs are highlighted. Additionally, the applications of radical assembly in materials science are explored, particularly in creating smart materials with redox-responsive properties. The review concludes by comparing AMMs to biological molecular machines, offering insights into future directions. This overview underscores the impact of radical chemistry on molecular assembly and its promising applications in both synthetic and biological systems.
Collapse
Affiliation(s)
| | | | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Bouwens T, Bakker TMA, Zhu K, Huijser A, Mathew S, Reek JNH. Rotaxane-Functionalized Dyes for Charge-Rectification in p-Type Photoelectrochemical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306032. [PMID: 38110821 PMCID: PMC10916627 DOI: 10.1002/advs.202306032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 12/20/2023]
Abstract
A supramolecular photovoltaic strategy is applied to enhance power conversion efficiencies (PCE) of photoelectrochemical devices by suppressing electron-hole recombination after photoinduced electron transfer (PET). Here, the author exploit supramolecular localization of the redox mediator-in close proximity to the dye-through a rotaxane topology, reducing electron-hole recombination in p-type dye-sensitized solar cells (p-DSSCs). Dye PRotaxane features 1,5-dioxynaphthalene recognition sites (DNP-arms) with a mechanically-interlocked macrocyclic redox mediator naphthalene diimide macrocycle (3-NDI-ring), stoppering synthetically via click chemistry. The control molecule PStopper has stoppered DNP-arms, preventing rotaxane formation with the 3-NDI-ring. Transient absorption and time-resolved fluorescence spectroscopy studies show ultrafast (211 ± 7 fs and 2.92 ± 0.05 ps) PET from the dye-moiety of PRotaxane to its mechanically interlocked 3-NDI-ring-acceptor, slowing down the electron-hole recombination on NiO surfaces compared to the analogue . p-DSSCs employing PRotaxane (PCE = 0.07%) demonstrate a 30% PCE increase compared to PStopper (PCE = 0.05%) devices, combining enhancements in both open-circuit voltages (VOC = 0.43 vs 0.36 V) and short-circuit photocurrent density (JSC = -0.39 vs -0.34 mA cm-2 ). Electrochemical impedance spectroscopy shows that PRotaxane devices exhibit hole lifetimes (τh ) approaching 1 s, a 16-fold improvement compared to traditional I- /I3 - -based systems (τh = 50 ms), demonstrating the benefits obtained upon nanoengineering of interfacial dye-regeneration at the photocathode.
Collapse
Affiliation(s)
- Tessel Bouwens
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Tijmen M. A. Bakker
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Kaijian Zhu
- PhotoCatalytic Synthesis GroupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 217Enschede7500 AEThe Netherlands
| | - Annemarie Huijser
- PhotoCatalytic Synthesis GroupMESA+ Institute for NanotechnologyUniversity of TwenteP.O. Box 217Enschede7500 AEThe Netherlands
| | - Simon Mathew
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| | - Joost N. H. Reek
- van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHThe Netherlands
| |
Collapse
|
4
|
Deng Y, Long G, Zhang Y, Zhao W, Zhou G, Feringa BL, Chen J. Photo-responsive functional materials based on light-driven molecular motors. LIGHT, SCIENCE & APPLICATIONS 2024; 13:63. [PMID: 38429259 PMCID: PMC10907585 DOI: 10.1038/s41377-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.
Collapse
Affiliation(s)
- Yanping Deng
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Yang Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Wei Zhao
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ben L Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Liu R, Zhang Z, Yan L, Yang X, Zhu Y, Su P, Song H, Wang Z. The Influence of Hydrogen Bonds on the Roaming Reaction. J Phys Chem Lett 2023; 14:9351-9356. [PMID: 37820388 DOI: 10.1021/acs.jpclett.3c02133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Roaming bypasses the conventional transition state and is a significant reaction pathway due to the unusual energy distributions of its products; however, its reaction pathway under external environmental interactions remains unclear. Herein, we report for the first time the roaming process of nitrobenzene, which is influenced by the hydrogen bonds (H-bonds) between nitro- and phenyl radicals and water molecules in the gas phase. Notably, despite the fact that the single water structure produces a higher but narrower barrier, whereas the double water structure leads to a lower but wider barrier, the roaming reaction still occurs. The underlying mechanism responsible for these influences of H-bonds is ascribed to the dramatically changed polarization and correlation interactions between the roaming radicals. The reaction rates and thermal perturbation probabilities are also remarkably influenced due to the presence of the H-bonds, by approximately 2 orders of magnitude. It is anticipated that this work will encourage the promising feasibility of introducing environmental molecules to modulate the roaming reaction.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiyuan Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longxiang Yan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huajie Song
- Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Zhigang Wang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
6
|
Kermagoret A, Bardelang D. The Diversity of Cucurbituril Molecular Switches and Shuttles. Chemistry 2023:e202302114. [PMID: 37725407 DOI: 10.1002/chem.202302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Ring translocation switches and shuttles featuring a macrocycle (or a ring molecule) navigating between two or more stations continue to attract attention. While the vast majority of these systems are developed in organic solvents, the cucurbituril (CB) macrocycles are ideally suited to prepare such systems in water. Indeed, their stability and their relatively high affinity for relevant guest molecules are key attributes toward translating the progresses made in organic solvents, into water. This concept article summarizes the findings, key advances and multiple possibilities offered by CBs toward advanced molecular switches and shuttles in water.
Collapse
|
7
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
9
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
10
|
Yao B, Sun H, Yang L, Wang S, Liu X. Recent Progress in Light-Driven Molecular Shuttles. Front Chem 2022; 9:832735. [PMID: 35186899 PMCID: PMC8847434 DOI: 10.3389/fchem.2021.832735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular shuttles are typical molecular machines that could be applied in various fields. The motion modes of wheel components in rotaxanes could be strategically modulated by external stimuli, such as pH, ions, solvent, light, and so on. Light is particularly attractive because it is harmless and can be operated in a remote mode and usually no byproducts are formed. Over the past decade, many examples of light-driven molecular shuttles are emerging. Accordingly, this review summarizes the recent research progress of light-driven molecular shuttles. First, the light-driven mechanisms of molecular motions with different functional groups are discussed in detail, which show how to drive photoresponsive or non-photoresponsive molecular shuttles. Subsequently, the practical applications of molecular shuttles in different fields, such as optical information storage, catalysis for organic reactions, drug delivery, and so on, are demonstrated. Finally, the future development of light-driven molecular shuttle is briefly prospected.
Collapse
|
11
|
Lv X, Wang P, Li C, Cheng S, Bi Y, Li X. Zanamivir-Cholesterol Conjugate: A Long-Acting Neuraminidase Inhibitor with Potent Efficacy against Drug-Resistant Influenza Viruses. J Med Chem 2021; 64:17403-17412. [PMID: 34797984 DOI: 10.1021/acs.jmedchem.1c01531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antiviral therapy of influenza virus infections depends heavily on two viral neuraminidase (NA) inhibitors, oseltamivir (OSV) and zanamivir (ZNV). The efficacy of OSV is challenged by the development of viral resistance, while the clinical use of ZNV is limited by its poor pharmacokinetic profile and requirement for twice-daily intranasal administration. We have developed a novel NA inhibitor by conjugating ZNV to cholesterol. The ZNV-cholesterol conjugate showed markedly improved antiviral efficacy and plasma half-life compared with ZNV. Single-dose administration of the conjugate protected the mice from lethal challenges with wild-type or mutant H1N1 influenza viruses bearing an OSV-resistant H275Y-substitution. Mechanistic studies showed that the conjugate targeted the cell membrane and entered the host cells, thereby inhibiting the NA function and the assembly of progeny virions. The ZNV-cholesterol conjugate represents a potential new treatment for influenza infections with sustained effect. Cholesterol conjugation may be an effective strategy for improving the pharmacokinetics and efficacy of other small-molecule therapeutics.
Collapse
Affiliation(s)
- Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Pengfei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Chenning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China.,Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing 101408, China.,Center for Influenza Research and Early-warning, Chinese Academy of Sciences (CASCIRE), Chaoyang District, Beijing 100101, China
| |
Collapse
|
12
|
Chen X, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Yang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Haochuan Mao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yuanning Feng
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kang Cai
- Department of Chemistry Nankai University 94 Weijin Road, Nankai District Tianjin 300071 China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China
| | - Huang Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Long Zhang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingang Zhao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Hongliang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Song
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yang Jiao
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yong Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Charlotte L. Stern
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
13
|
Chen XY, Mao H, Feng Y, Cai K, Shen D, Wu H, Zhang L, Zhao X, Chen H, Song B, Jiao Y, Wu Y, Stern CL, Wasielewski MR, Stoddart JF. Radically Enhanced Dual Recognition. Angew Chem Int Ed Engl 2021; 60:25454-25462. [PMID: 34342116 DOI: 10.1002/anie.202109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Complexation between a viologen radical cation (V.+ ) and cyclobis(paraquat-p-phenylene) diradical dication (CBPQT2(.+) ) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair of V.+ using radical-pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+ ) in a size-matched bisradical dicationic host - namely, cyclobis(paraquat-2,6-naphthalene)2(.+) , i.e., CBPQN2(.+) . Central to this dual recognition process was the choice of 2,6-bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations in CBPQN2(.+) suitable for binding two MV.+ with relatively short (3.05-3.25 Å) radical-pairing distances. The size-matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the two MV.+ in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex - namely, [(MV)2 ⊂CBPQN]4( .+) - in MeCN was confirmed by VT 1 H NMR, as well as by EPR spectroscopy. The solid-state superstructure of [(MV)2 ⊂CBPQN]4( .+) reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three different V.+ , suggesting that localization of the radical-pairing interactions has a strong influence on the packing of the two MV.+ inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host-guest radical-pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox-switchable recognition motif for the construction of MIMs and AMMs.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kang Cai
- Department of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
14
|
Huang CR, Li Y, Xie Y, Du Y, Peng H, Zeng YL, Liu JC, Xiong RG. The First High-Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021; 60:16668-16673. [PMID: 33982370 DOI: 10.1002/anie.202105744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Organic radical ferroics such as TEMPO have attracted widespread interest. However, the relatively low Curie temperature of 287 K and melting point of 311 K severely hinder its application potential. Despite extensive interest, high-temperature radical ferroics have not yet been found. Here, taking advantage of chemical design and supramolecular radical chemistry, we designed two high-temperature organic supramolecular radical ferroics [(NH3 -TEMPO)([18]crown-6)](ReO4 ) (1) and [(NH3 -TEMPO)([18]crown-6)](ClO4 ) (2), which can retain ferroelectricity up to 413 K and 450 K, respectively. To our knowledge, they are both the first supramolecular radical ferroics and unprecedented high-temperature radical ferroics, where the supramolecular component is vital for the stabilization of the radical and extending the working temperature window. Both also have paramagnetism, non-interacting spin moments, and excellent piezoelectric and electrostrictive behaviors comparable to that of LiNbO3 .
Collapse
Affiliation(s)
- Chao-Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ye Du
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
15
|
Huang C, Li Y, Xie Y, Du Y, Peng H, Zeng Y, Liu J, Xiong R. The First High‐Temperature Supramolecular Radical Ferroics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Ran Huang
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yibao Li
- Key Laboratory of Organo-phamaceutical Chemistry of Jiangxi Province College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 P. R. China
| | - Yongfa Xie
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ye Du
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Yu‐Ling Zeng
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Jun‐Chao Liu
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
16
|
Cai K, Zhang L, Astumian RD, Stoddart JF. Radical-pairing-induced molecular assembly and motion. Nat Rev Chem 2021; 5:447-465. [PMID: 37118435 DOI: 10.1038/s41570-021-00283-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
Radical-pairing interactions between conjugated organic π-radicals are relative newcomers to the inventory of molecular recognition motifs explored in supramolecular chemistry. The unique electronic, magnetic, optical and redox-responsive properties of the conjugated π-radicals render molecules designed with radical-pairing interactions useful for applications in various areas of chemistry and materials science. In particular, the ability to control formation of radical cationic or anionic species, by redox stimulation, provides a flexible trigger for directed assembly and controlled molecular motions, as well as a convenient means of inputting energy to fuel non-equilibrium processes. In this Review, we provide an overview of different examples of radical-pairing-based recognition processes and of their emerging use in (1) supramolecular assembly, (2) templation of mechanically interlocked molecules, (3) stimuli-controlled molecular switches and, by incorporation of kinetic asymmetry in the design, (4) the creation of unidirectional molecular transporters based on pumping cassettes powered by fuelled switching of radical-pairing interactions. We conclude the discussion with an outlook on future directions for the field.
Collapse
|
17
|
Balzani V, Ceroni P, Credi A, Venturi M. Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Jiang WL, Peng Z, Huang B, Zhao XL, Sun D, Shi X, Yang HB. TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. J Am Chem Soc 2020; 143:433-441. [DOI: 10.1021/jacs.0c11738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Zhiyong Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
19
|
Beer H, Bresien J, Michalik D, Schulz A, Villinger A. Reversible switching between housane and cyclopentanediyl isomers: an isonitrile-catalysed thermal reverse reaction. Dalton Trans 2020; 49:13986-13992. [PMID: 32869789 DOI: 10.1039/d0dt02688c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The photo-isomerization of an isolable five-membered singlet biradical based on C, N, and P ([TerNP]2CNDmp, 2a) selectively afforded a closed-shell housane-type isomer (3a) by forming a transannular P-P bond. In the dark, the housane-type species re-isomerized to the biradical, resulting in a fully reversible overall process. In the present study, the influence of tBuNC on the thermal reverse reaction was investigated: the isonitrile acted as a catalyst, thus allowing control over the thermal reaction rate. Moreover, tBuNC also reacted with the biradical to form an adduct species ([TerNP]2CNDmp·CNtBu, 4a), which can be regarded as the resting state of the system. The reactive species 2a and 3a could be re-generated in situ by irradiation with red light. The results of this study extend our understanding of this new class of molecular switches.
Collapse
Affiliation(s)
- Henrik Beer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Dirk Michalik
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany and Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Alexander Villinger
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| |
Collapse
|
20
|
Zhou D, Zhuang R, Chang X, Li L. Enhanced Light-Harvesting Efficiency and Adaptation: A Review on Visible-Light-Driven Micro/Nanomotors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6821595. [PMID: 33029591 PMCID: PMC7521028 DOI: 10.34133/2020/6821595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/14/2020] [Indexed: 12/13/2022]
Abstract
As visible light accounts for a larger proportion of solar energy and is harmless to living organisms, it has the potential to be the energy source of micro/nanomotors, which transform visible-light energy into mechanical motion, for different applications, especially in environmental remediation. However, how to precisely control the motion of visible-light-driven micro/nanomotors (VLD-MNMs) and efficiently utilize the weak visible-light photon energy to acquire rapid motion are significant challenges. This review summarizes the most critical aspects, involving photoactive materials, propulsion mechanisms, control methods, and applications of VLD-MNMs, and discusses strategies to systematically enhance the energy-harvesting efficiency and adaptation. At first, the photoactive materials have been divided into inorganic and organic photoactive materials and comprehensively discussed. Then, different propulsion mechanisms of the current VLD-MNMs are presented to explain the improvement in the actuation force, speed, and environmental adaptability. In addition, considering the characteristics of easy control of VLD-MNMs, we summarized the direction, speed, and cluster control methods of VLD-MNMs for different application requirements. Subsequently, the potential applications of VLD-MNMs, e.g., in environmental remediation, micropumps, cargo delivery, and sensing in microscale, are presented. Finally, discussions and suggestions for future directions to enhance the energy-harvesting efficiency and adaptation of VLD-MNMs are provided.
Collapse
Affiliation(s)
- Dekai Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Rencheng Zhuang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaocong Chang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Longqiu Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
21
|
|
22
|
Corra S, Curcio M, Baroncini M, Silvi S, Credi A. Photoactivated Artificial Molecular Machines that Can Perform Tasks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906064. [PMID: 31957172 DOI: 10.1002/adma.201906064] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Research on artificial photoactivated molecular machines has moved in recent years from a basic scientific endeavor toward a more applicative effort. Nowadays, the prospect of reproducing the operation of natural nanomachines with artificial counterparts is no longer a dream but a concrete possibility. The progress toward the construction of molecular-machine-based devices and materials in which light irradiation results in the execution of a task as a result of nanoscale movements is illustrated here. After a brief description of a few basic types of photoactivated molecular machines, significant examples of their exploitation to perform predetermined functions are presented. These include switchable catalysts, nanoactuators that interact with cellular membranes, transporters of small molecular cargos, and active joints capable of mechanically coupling molecular-scale movements. Investigations aimed at harnessing the collective operation of a multitude of molecular machines organized in arrays to perform tasks at the microscale and macroscale in hard and soft materials are also reviewed. Surfaces, gels, liquid crystals, polymers, and self-assembled nanostructures are described wherein the nanoscale movement of embedded molecular machines is amplified, allowing the realization of muscle-like actuators, microfluidic devices, and polymeric materials for light energy transduction and storage.
Collapse
Affiliation(s)
- Stefano Corra
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Curcio
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40127, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
23
|
Wang C, Wu G, Zhu J, Jiao T, Zhang Y, Li H. An Octacationic [2]Catenane Formed by Oxime Condensation: A Bistable Molecular Switch. Chempluschem 2019. [DOI: 10.1002/cplu.201900668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiaqi Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
24
|
Jouhara A, Quarez E, Dolhem F, Armand M, Dupré N, Poizot P. Tuning the Chemistry of Organonitrogen Compounds for Promoting All‐Organic Anionic Rechargeable Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alia Jouhara
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Eric Quarez
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Franck Dolhem
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR CNRS 7378 Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens Cedex France
| | - Michel Armand
- CIC Energigune Parque Tecnológico de Alava Miñano, Alava 01510 Spain
| | - Nicolas Dupré
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Philippe Poizot
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| |
Collapse
|
25
|
Jouhara A, Quarez E, Dolhem F, Armand M, Dupré N, Poizot P. Tuning the Chemistry of Organonitrogen Compounds for Promoting All‐Organic Anionic Rechargeable Batteries. Angew Chem Int Ed Engl 2019; 58:15680-15684. [DOI: 10.1002/anie.201908475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Alia Jouhara
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Eric Quarez
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Franck Dolhem
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR CNRS 7378 Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens Cedex France
| | - Michel Armand
- CIC Energigune Parque Tecnológico de Alava Miñano, Alava 01510 Spain
| | - Nicolas Dupré
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| | - Philippe Poizot
- Institut des Matériaux Jean Rouxel (IMN), UMR CNRS 6502 Université de Nantes 2 rue de la Houssinière, B.P. 32229 44322 Nantes Cedex 3 France
| |
Collapse
|
26
|
Milić JV, Schneeberger T, Zalibera M, Diederich F, Boudon C, Ruhlmann L. Spectro-electrochemical toolbox for monitoring and controlling quinone-mediated redox-driven molecular gripping. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Bouwens T, Mathew S, Reek JNH. p-Type dye-sensitized solar cells based on pseudorotaxane mediated charge-transfer. Faraday Discuss 2019; 215:393-406. [PMID: 30951057 DOI: 10.1039/c8fd00169c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficiency of p-type dye-sensitized solar cells (DSSCs) remains low compared to that of n-type congeners due to charge recombination events. We report a supramolecular approach to reduce recombination at the NiO-dye interface, realized by using the cyclophane cyclobis(paraquat-p-phenylene) ring (RING4+/RING3˙+) as a redox mediator and a dye (PN) functionalized with a 1,5-dioxynaphthalene (DNP) recognition site, promoting the supramolecular formation of a pseudorotaxane capable of directing charge transfer away from the NiO-dye interface. The binding affinity of RING4+ to PN is high (Kass = 3.4 × 104 M-1), with quenching of the photoexcited dye (PN*) ascribed to reduction of RING4+ to RING3˙+. The reduced RING3˙+ exhibits a lower binding affinity to PN, facilitating exchange with the excess RING4+ present in solution. This supramolecular phenomenon was implemented into p-type DSSCs by anchoring the PN dye on a NiO photocathode in conjunction with the RING4+/RING3˙+ redox couple, yielding a 10 fold enhancement in the short-circuit photocurrent (JSC) compared to control devices utilizing P1 dye or the methylviologen (MV2+/MV˙+) redox couple that cannot form pseudorotaxanes.
Collapse
Affiliation(s)
- Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | | |
Collapse
|
28
|
Milić JV, Diederich F. The Quest for Molecular Grippers: Photo‐Electric Control of Molecular Gripping Machinery. Chemistry 2019; 25:8440-8452. [DOI: 10.1002/chem.201900852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jovana V. Milić
- Laboratory of Photonics and InterfacesÉcole Polytechnique Fédéralé de Lausanne 1015 Lausanne Switzerland
| | - François Diederich
- Department of Chemistry and Applied BiosciencesETH Zurich Vladimir-Prelog-Weg 3 8010 Zurich Switzerland
| |
Collapse
|
29
|
Baggi G, Casimiro L, Baroncini M, Silvi S, Credi A, Loeb SJ. Threading-gated photochromism in [2]pseudorotaxanes. Chem Sci 2019; 10:5104-5113. [PMID: 31183062 PMCID: PMC6524668 DOI: 10.1039/c9sc00913b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
Rigid, Y-shaped imidazole compounds containing the bis(thienyl)ethene moiety were designed and synthesized. The 4,5-bis(benzothienyl)-2-phenylimidazolium cations were then used as axles for [2]pseudorotaxane formation with 24-membered crown ether wheels. It was demonstrated using 1H NMR spectroscopy, UV-Vis absorption and emission spectroscopies that this host-guest interaction results in significant changes in the photochromic properties of the imidazolium axles. This is a rare example of gated photochromism, which exploits the recognition event of an interpenetrated molecular system to tune the photochromic properties in one of the components.
Collapse
Affiliation(s)
- Giorgio Baggi
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON N9B 3P4 , Canada .
| | - Lorenzo Casimiro
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , 40126 Bologna , Italy .
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , 40127 Bologna , Italy
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , 40126 Bologna , Italy .
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , 40127 Bologna , Italy
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON N9B 3P4 , Canada .
| |
Collapse
|
30
|
Bresien J, Kröger-Badge T, Lochbrunner S, Michalik D, Müller H, Schulz A, Zander E. A chemical reaction controlled by light-activated molecular switches based on hetero-cyclopentanediyls. Chem Sci 2019; 10:3486-3493. [PMID: 30996939 PMCID: PMC6430090 DOI: 10.1039/c8sc04893b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/17/2019] [Indexed: 01/22/2023] Open
Abstract
Molecular switches are molecules that can reversibly be shifted between at least two stable states with different physical and chemical properties, making them interesting for application as chemical sensors or molecular machines. We recently discovered that five-membered, cyclic biradicals based on group 15 elements are efficient and robust photochemical switches that can be activated by red light. The quantum yield of the photo-isomerization is as high as 24.6%, and the thermal equilibration of the photo-activation product proceeds rapidly at ambient temperature. The fully reversible process was studied by experimental and high-level ab initio techniques. We could further demonstrate that the biradical character could be completely turned on and off, so the system could be applied to control chemical equilibria that involve activation products of the cyclic biradicals.
Collapse
Affiliation(s)
- Jonas Bresien
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ;
| | - Thomas Kröger-Badge
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ;
| | - Stefan Lochbrunner
- Institute of Physics , University of Rostock , Albert-Einstein-Str. 23-24 , D-18059 Rostock , Germany.,Department of Life, Light & Matter , University of Rostock , D-18051 Rostock , Germany
| | - Dirk Michalik
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ; .,Leibniz Institute for Catalysis at the University of Rostock e.V. , Albert-Einstein-Straße 29a , D-18059 Rostock , Germany
| | - Henrik Müller
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ;
| | - Axel Schulz
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ; .,Department of Life, Light & Matter , University of Rostock , D-18051 Rostock , Germany.,Leibniz Institute for Catalysis at the University of Rostock e.V. , Albert-Einstein-Straße 29a , D-18059 Rostock , Germany
| | - Edgar Zander
- Institute of Chemistry , University of Rostock , Albert-Einstein-Str. 3a , D-18059 Rostock , Germany . ;
| |
Collapse
|
31
|
Percástegui EG, Mosquera J, Ronson TK, Plajer AJ, Kieffer M, Nitschke JR. Waterproof architectures through subcomponent self-assembly. Chem Sci 2018; 10:2006-2018. [PMID: 30881630 PMCID: PMC6385555 DOI: 10.1039/c8sc05085f] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
Metal–organic containers are readily prepared through self-assembly, but achieving solubility and stability in water remains challenging due to ligand insolubility and the reversible nature of the self-assembly process. Here we have developed conditions for preparing a broad range of architectures that are both soluble and kinetically stable in water through metal(ii)-templated (MII = CoII, NiII, ZnII, CdII) subcomponent self-assembly. Although these structures are composed of hydrophobic and poorly-soluble subcomponents, sulfate counterions render them water-soluble, and they remain intact indefinitely in aqueous solution. Two strategies are presented. Firstly, stability increased with metal–ligand bond strength, maximising when NiII was used as a template. Architectures that disassembled when CoII, ZnII and CdII templates were employed could be directly prepared from NiSO4 in water. Secondly, a higher density of connections between metals and ligands within a structure, considering both ligand topicity and degree of metal chelation, led to increased stability. When tritopic amines were used to build highly chelating ligands around ZnII and CdII templates, cryptate-like water-soluble structures were formed using these labile ions. Our synthetic platform provides a unified understanding of the elements of aqueous stability, allowing predictions of the stability of metal–organic cages that have not yet been prepared.
Collapse
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Alex J Plajer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| |
Collapse
|
32
|
Yamamoto K, Call A, Sakai K. Photocatalytic H2Evolution Using a Ru Chromophore Tethered to Six Viologen Acceptors. Chemistry 2018; 24:16620-16629. [DOI: 10.1002/chem.201803662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Keiya Yamamoto
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Arnau Call
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Sakai
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
33
|
Zheng X, Zhang Y, Cao N, Li X, Zhang S, Du R, Wang H, Ye Z, Wang Y, Cao F, Li H, Hong X, Sue ACH, Yang C, Liu WG, Li H. Coulombic-enhanced hetero radical pairing interactions. Nat Commun 2018; 9:1961. [PMID: 29773784 PMCID: PMC5958055 DOI: 10.1038/s41467-018-04335-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/20/2018] [Indexed: 11/09/2022] Open
Abstract
Spin-spin interactions between two identical aromatic radicals have been studied extensively and utilized to establish supramolecular recognition. Here we report that spin-pairing interactions could also take place between two different π-electron radicals, namely a bipyridinium radical cation (BPY+•) and a naphthalene-1,8:4,5-bis(dicarboximide) radical anion (NDI─•). The occurrence of this type of previously unreported hetero radical-pairing interactions is attributed to enhancement effect of Coulombic attraction between these two radicals bearing opposite charges. The Coulombic-enhanced hetero radical pairing interactions are employed to drive host-guest recognition, as well as the reversible switching of a bistable [2]rotaxane.
Collapse
Affiliation(s)
- Xujun Zheng
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- Department of Chemistry, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 430072, Wuhan, China
| | - Yang Zhang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Ning Cao
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Xin Li
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Shuoqing Zhang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Renfeng Du
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Haiying Wang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Zhenni Ye
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Yan Wang
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Fahe Cao
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China
| | - Chuluo Yang
- Department of Chemistry, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, 430072, Wuhan, China
| | - Wei-Guang Liu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455-0431, USA
| | - Hao Li
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
34
|
Fumanal M, Capdevila-Cortada M, Novoa JJ. Understanding room-temperature π-dimerisation of radical ions: intramolecular π-[TTF] 22+ in functionalised calix[4]arenes. Phys Chem Chem Phys 2018; 19:3807-3819. [PMID: 28102383 DOI: 10.1039/c6cp07794c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Long, multicentre π-dimers of radical ions are weakly bound and can only be observed in solution at low temperature. However, recent supramolecular approaches induce the extra stabilisation required to preserve them at room temperature, by different means depending on the approach. In particular, π-[TTF]22+ dimers (TTF = tetrathiafulvalene) were detected upon oxidation of a TTF-based calix[4]arene in acetonitrile solution at room temperature, manifesting intramolecular [R-TTF]˙+[R-TTF]˙+ interactions (Chem. Commun. 2006, 2, 2233). In this work, the reasons behind the remarkable formation of these π-dimers in the calix[4]arene, [calix], molecule are unravelled by means of DFT calculations. We first demonstrate that the properties of the π-[R-TTF]22+ dimers are preserved in the [calix]2+. Most importantly, our results show that the π-dimerised and non-dimerised forms of the [calix]2+ are isoenergetic at room temperature, and that the activation energy for this process is ca. 9.5 kcal mol-1. Hence, both forms coexist in equilibrium at 298 K, as the intramolecular nature of the interaction ensures a high reaction rate. The role of the Na+ cation in preventing the π-[R-TTF]22+ dimerisation of the [calix]2+ receptor is also examined, unveiling that this effect is mostly due to the electrostatic repulsion induced by the cation. Finally, we provide a revision on room-temperature stable supramolecular long, multicentre π-dimers of radical ions, a class of systems with great potential as molecular switches.
Collapse
Affiliation(s)
- Maria Fumanal
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Juan J Novoa
- Departament de Química Física and IQTCUB, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
35
|
Wang Y, Frasconi M, Stoddart JF. Introducing Stable Radicals into Molecular Machines. ACS CENTRAL SCIENCE 2017; 3:927-935. [PMID: 28979933 PMCID: PMC5620985 DOI: 10.1021/acscentsci.7b00219] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY•+) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY•+-based molecular machines with useful functions.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Chen M, Liang J, Zeng Z, Lin X, Zhang S, Jiang L. Acid/base controllable self-complexes that mimic flapping butterfly. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Qi Q, Yang B, Xi CG, Yang X, Zhang DW, Liu S, Li ZT. Doubly, Triply and Multiply Pleated Sheets of Bipyridinium Radical Cation-Incorporated Polymers Tuned by Four Cucurbiturils. ChemistrySelect 2016. [DOI: 10.1002/slct.201601760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Qi
- Department of Chemistry; Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Bo Yang
- Department of Chemistry; Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Cheng-Gang Xi
- Department of Chemistry; Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Xiran Yang
- School of Chemistry and Chemical Engineering; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Dan-Wei Zhang
- Department of Chemistry; Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| | - Simin Liu
- School of Chemistry and Chemical Engineering; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Zhan-Ting Li
- Department of Chemistry; Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM); Fudan University; 220 Handan Road Shanghai 200433 China
| |
Collapse
|
38
|
Steinmann M, Wagner M, Wurm FR. Poly(phosphorodiamidate)s by Olefin Metathesis Polymerization with Precise Degradation. Chemistry 2016; 22:17329-17338. [PMID: 27781304 DOI: 10.1002/chem.201603990] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 11/10/2022]
Abstract
Degradable polymers are a currently growing field of research for biomedical and materials science applications. The majority of such compounds are based on polyesters and polyamides. In contrast, their phosphorus-containing counterparts are much less studied, in spite of their potential precise degradation profile and biocompatibility. Herein, the first library of poly(phosphorodiamidate)s (PPDAs) with two P-N bonds forming the polymer backbone and a pendant P-OR group is prepared through acyclic diene metathesis polymerization. They are designed to vary in their hydrophilicity and are compared with the structural analogues poly(phosphoester)s (PPEs) with respect to their thermal properties and degradation profiles. The degradation of PPDAs can be controlled precisely by the pH: under acidic conditions the P-N linkages in the polymer backbone are cleaved, whereas under basic conditions the pendant ester is cleaved selectively and almost no backbone degradation occurs. The PPDAs exhibit distinctively higher thermal stability (from thermogravimetric analysis (TGA)) and higher glass transition and/or melting temperatures (from differential scanning calorimetry (DSC)) compared with analogous PPEs. This renders this exotic class of phosphorus-containing polymers as highly promising for the development of future drug carriers or tissue engineering scaffolds.
Collapse
Affiliation(s)
- Mark Steinmann
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
39
|
Faulkner A, van Leeuwen T, Feringa BL, Wezenberg SJ. Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor. J Am Chem Soc 2016; 138:13597-13603. [PMID: 27669358 PMCID: PMC5073371 DOI: 10.1021/jacs.6b06467] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The
rotational speed of an overcrowded alkene-based molecular rotary
motor, having an integrated 4,5-diazafluorenyl coordination motif,
can be regulated allosterically via the binding of metal ions. DFT
calculations have been used to predict the relative speed of rotation
of three different (i.e., zinc, palladium, and platinum) metal dichloride
complexes. The photochemical and thermal isomerization behavior of
these complexes has been studied in detail using UV–vis and 1H NMR spectroscopy. Our results confirm that metal coordination
induces a contraction of the diazafluorenyl lower half, resulting
in a reduction of the steric hindrance in the “fjord”
region of the molecule, which causes an increase of the rotational
speed. Importantly, metal complexation can be accomplished in situ and is found to be reversible upon the addition
of a competing ligand. Consequently, the rotational behavior of these
molecular motors can be dynamically controlled with chemical additives.
Collapse
Affiliation(s)
- Adele Faulkner
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas van Leeuwen
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sander J Wezenberg
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Kitamoto K, Sakai K. Tris(2,2′-bipyridine)ruthenium Derivatives with Multiple Viologen Acceptors: Quadratic Dependence of Photocatalytic H2Evolution Rate on the Local Concentration of the Acceptor Site. Chemistry 2016; 22:12381-90. [DOI: 10.1002/chem.201601554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kyoji Kitamoto
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Sakai
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
42
|
Milić J, Zalibera M, Pochorovski I, Trapp N, Nomrowski J, Neshchadin D, Ruhlmann L, Boudon C, Wenger OS, Savitsky A, Lubitz W, Gescheidt G, Diederich F. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. J Phys Chem Lett 2016; 7:2470-2477. [PMID: 27300355 DOI: 10.1021/acs.jpclett.6b01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices.
Collapse
Affiliation(s)
- Jovana Milić
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michal Zalibera
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology , Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Igor Pochorovski
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Julia Nomrowski
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - Laurent Ruhlmann
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Corinne Boudon
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Oliver S Wenger
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - François Diederich
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
43
|
Cheng C, Cheng T, Xiao H, Krzyaniak MD, Wang Y, McGonigal PR, Frasconi M, Barnes JC, Fahrenbach AC, Wasielewski MR, Goddard WA, Stoddart JF. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. J Am Chem Soc 2016; 138:8288-300. [DOI: 10.1021/jacs.6b04343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chuyang Cheng
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tao Cheng
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Hai Xiao
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul R. McGonigal
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Marco Frasconi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Jonathan C. Barnes
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Albert C. Fahrenbach
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, Howard Hughes Medical Institute, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Earth-Life
Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
44
|
Black SP, Wood DM, Schwarz FB, Ronson TK, Holstein JJ, Stefankiewicz AR, Schalley CA, Sanders JKM, Nitschke JR. Catenation and encapsulation induce distinct reconstitutions within a dynamic library of mixed-ligand Zn 4L 6 cages. Chem Sci 2016; 7:2614-2620. [PMID: 28660033 PMCID: PMC5477050 DOI: 10.1039/c5sc04906g] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/21/2016] [Indexed: 12/27/2022] Open
Abstract
Two new Zn4L6 cages composed of diamine subcomponents containing either naphthalene diimide (NDI) or porphyrin moieties are described. Their structural differences allow these cages to exhibit distinct interactions with different chemical stimuli, yielding different supramolecular products. The electron-poor NDI subunits of the first cage were observed to thread through electron-rich aromatic crown-ether macrocycles, forming mechanically-interlocked species up to a [3]catenane, whereas the porphyrin ligands of the second cage interacted favourably with C70, causing it to be bound as a guest. When mixed, the two cages were observed to form a dynamic combinatorial library (DCL) of seven constitutionally distinct mixed-ligand Zn4L6 cages. The DCL was observed to reconstitute in opposing ways when treated with either the crown ether or C70: the electron-rich macrocycle templated the formation of heteroleptic catenanes, whereas C70 caused the DCL to self-sort into homoleptic structures.
Collapse
Affiliation(s)
- Samuel P Black
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Daniel M Wood
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Felix B Schwarz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Julian J Holstein
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
- Global Phasing Ltd. , Sheraton House, Castle Park , Cambridge , CB3 0AX , UK
| | - Artur R Stefankiewicz
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany .
| | - Jeremy K M Sanders
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| |
Collapse
|
45
|
Madasamy K, Kathiresan M. Dimeric and Star-Shaped Viologens: Synthesis and Capping interactions with β-cyclodextrin. ChemistrySelect 2016. [DOI: 10.1002/slct.201600102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kanagaraj Madasamy
- Electro Organic Division; CSIR-Central ElectroChemical Research Institute; Karaikudi- 630003 TamilNadu INDIA
| | - Murugavel Kathiresan
- Electro Organic Division; CSIR-Central ElectroChemical Research Institute; Karaikudi- 630003 TamilNadu INDIA
| |
Collapse
|
46
|
Hartlieb KJ, Liu WG, Fahrenbach AC, Blackburn AK, Frasconi M, Hafezi N, Dey SK, Sarjeant AA, Stern CL, Goddard WA, Stoddart JF. Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene. Chemistry 2016; 22:2736-45. [PMID: 26784535 DOI: 10.1002/chem.201502157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/06/2022]
Abstract
The promiscuous encapsulation of π-electron-rich guests by the π-electron-deficient host, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge-transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT(4+), is an emerald-green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas-phase calculations that reinterpreted this CT band in terms of an intermolecular side-on interaction of TTF with one of the bipyridinium (BIPY(2+)) units of CBPQT(4+), rather than the encapsulation of TTF inside the cavity of CBPQT(4+). We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT(4+) arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY(2+) units of a CBPQT(4+) ring residing on a separate [2]rotaxane in a side-on fashion. This [2]rotaxane has similar UV/Vis and (1)H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT(4+). The [2]rotaxane exists as an equimolar mixture of cis- and trans-isomers associated with the disubstituted TTF unit in its dumbbell component. Solid-state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT(4+).
Collapse
Affiliation(s)
- Karel J Hartlieb
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Wei-Guang Liu
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Albert C Fahrenbach
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.,Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anthea K Blackburn
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Marco Frasconi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Nema Hafezi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Sanjeev K Dey
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Amy A Sarjeant
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - William A Goddard
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA, 91125, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.
| |
Collapse
|
47
|
Zhang Q, Qu DH. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials. Chemphyschem 2016; 17:1759-68. [DOI: 10.1002/cphc.201501048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road Shanghai China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road Shanghai China
| |
Collapse
|
48
|
Wong HL, Yeung MCL, Yam VWW. Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. STRUCTURE AND BONDING 2016:201-289. [DOI: 10.1007/430_2015_204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
49
|
Kitamoto K, Ogawa M, Ajayakumar G, Masaoka S, Kraatz HB, Sakai K. Molecular photo-charge-separators enabling single-pigment-driven multi-electron transfer and storage leading to H2 evolution from water. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00150a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel unimolecular architectures that enable single-pigment-driven multi-electron transfer coupled with double-electron-storage leading to catalytic H2 evolution are reported.
Collapse
Affiliation(s)
- Kyoji Kitamoto
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Makoto Ogawa
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shigeyuki Masaoka
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry
| | - Ken Sakai
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
50
|
Zhan TG, Zhou TY, Lin F, Zhang L, Zhou C, Qi QY, Li ZT, Zhao X. Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers. Org Chem Front 2016. [DOI: 10.1039/c6qo00298f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of π-conjugated oligomeric viologens have been synthesized, from which supramolecular radical polymers were constructed through the stacking of their radical cations.
Collapse
Affiliation(s)
- Tian-Guang Zhan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Tian-You Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Feng Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Liang Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Cen Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| | - Zhan-Ting Li
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|