1
|
Gómez IJ, Mariño C, Pérez D, Guitián E, Peña D. Efficient synthesis of β-aminonitriles from arynes and imines in acetonitrile. RSC Adv 2024; 14:33747-33750. [PMID: 39450062 PMCID: PMC11498093 DOI: 10.1039/d4ra04499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Multicomponent reactions are powerful strategies for synthesizing complex molecules in an efficient manner. In this work, we investigate a novel multicomponent reaction involving arynes, imines, and nitriles, leading to chiral β-aminonitriles. Notably, two new bonds (C-C and C-N) are formed in one step without the use of metal catalysts, showing the great potential of this transformation. We demonstrate that this synthetic methodology is compatible with different arynes and imines, and propose a reasonable reaction mechanism initiated by the nucleophilic addition of the imine to the aryne.
Collapse
Affiliation(s)
- I Jénnifer Gómez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña 15071 A Coruña Spain
| | - Cristina Mariño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Dolores Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Enrique Guitián
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
2
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Khan H, Barman D, Sen S. Light-Induced Generation and Cycloaddition Reactions of Benzyne: Synthesis of Naphthoxindoles E and Annulated Indolizines. J Org Chem 2024; 89:6257-6262. [PMID: 38608223 DOI: 10.1021/acs.joc.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
By virtue of their high electrophilic nature, benzynes serve as reactive dienophiles in numerous cycloaddition reactions. However, in situ generation of benzyne involves either base-mediated thermal reactions, low-temperature conditions, or metal-catalyzed reactions of substituted arenes. This limits the applicability of benzynes as suitable dipolarophiles in cycloaddition reactions. Herein, we have reported a UVA (365 nM)-induced in situ generation of benzynes (from triazenyl benzoic acid) and subsequently their [4 + 2] Diels-Alder and [3 + 2] cycloaddition reactions with appropriate reaction partners such as N-protected alkylidene oxindole carboxylates and pyridinium ylides to afford naphthoxindoles E and pyrido[2,1-a]isoindole, respectively, in moderate to excellent yield. The reactions occurred at room temperature and under reagent-free reaction conditions. Each of these building blocks is pharmaceutically relevant; hence, this highlights an interesting strategy to access these classes of compounds.
Collapse
Affiliation(s)
- Haya Khan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, GB Nagar, Uttar Pradesh 201314, India
| | - Dhiraj Barman
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, GB Nagar, Uttar Pradesh 201314, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri, Chithera, GB Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Liu S, Zhang K, Meng Y, Xu J, Chen N. Aryne and CO 2-based formal [2 + 2 + 2] annulation to access tetrahydroisoquinoline-fused benzoxazinones. Org Biomol Chem 2023; 21:6892-6897. [PMID: 37581250 DOI: 10.1039/d3ob01147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Tetrahydroisoquinoline and its fused polyheterocycles are prevalent structural motifs found in numerous natural products. In this study, we report a highly efficient and convergent synthetic approach for the construction of tetrahydroisoquinoline-fused polyheterocycles through a three-component formal [2 + 2 + 2] annulation process by combining 3,4-dihydroisoquinolines, CO2, and benzynes. Notably, electron-rich 3,4-dihydroisoquinolines and electron-deficient benzynes exhibit greater reactivity in this annulation. Moreover, this method benefits from the convergent synthesis and the utilization of carbon dioxide, providing a valuable strategy for the facile synthesis of tetrahydroisoquinoline-fused polyheterocycles, with potential applications in the discovery and development of novel organic molecules.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Kun Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yutong Meng
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
5
|
Abstract
An efficient and metal-free approach for the synthesis of sulfilimines from sulfenamides with aryne and cyclohexyne precursors has been developed. The reaction proceeds through unusual S-C bond formation, which offers a novel and practical entry to access a wide range of sulfilimines in moderate to good yields with excellent chemoselectivity. Moreover, this protocol is amenable to gram-scale synthesis and is applicable to the transformation of the products into useful sulfoximines.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Bao H, Guo Y, Shi J, Li Y. Two Cascade Processes Initiated by the Insertion of Benzyne into the Se═O Bond. Org Lett 2023; 25:1514-1518. [PMID: 36852953 DOI: 10.1021/acs.orglett.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Two sets of cascade processes have been realized, both of which were initiated with a benzyne insertion into the Se═O bond. The key factors to differentiate these processes are based on the structures of diaryl selenium oxides and reaction conditions. When diaryl selenium oxides containing an ortho weak σ-electron-withdrawing group were used, triarylselenonium salts were obtained at room temperature, while ortho-(aryloxy)phenyl phenyl selanes could be produced from diaryl selenium oxides at 100 °C.
Collapse
Affiliation(s)
- Hongpeng Bao
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Yongjin Guo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China 400030.,College of Chemistry, Jilin University, Changchun, P. R. China 130012
| |
Collapse
|
7
|
Chen D, Yang C, Li M, Zhao G, Wang W, Wang X, Quan Z. Recent Progress on Arylation with Aryne through Three-Component Reaction. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Yaragorla S, Arun D. Arylation and Aryne Insertion into C-Acylimines: A Simple, Flexible, and Divergent Synthesis of C2-Aryl Indoles. J Org Chem 2022; 87:14250-14263. [PMID: 36219251 DOI: 10.1021/acs.joc.2c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We reveal a direct strategy for the flexible synthesis of C2-aryl/heteroaryl indoles without transition metal catalysts. The synthesis involves a one-pot, four-component reaction of readily available starting materials to offer diversity around the indole moiety with a broad substrate scope and high yields. The reaction proceeds via the Friedel-Crafts C-arylation of C-acylimine formed in situ, followed by N-arylation with aryne, a formal [3+2] cycloaddition, and a subsequent aromatization cascade.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Doma Arun
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
9
|
Guo Y, Bao H, Chen L, Shi J, Li Y. Diverse Synthesis of Triarylselenonium Salts and o-(Alkoxy)aryl Aryl Selanes via Insertion of Benzyne into the Se═O Bond. Org Lett 2022; 24:6999-7003. [PMID: 36125196 DOI: 10.1021/acs.orglett.2c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An insertion of benzyne into the Se═O bond has been realized. In this reaction, two types of compounds containing selenium could be synthesized from different substrates. When diaryl selenium oxides were used, triarylselenonium salts were furnished, while o-(alkoxy)phenyl phenyl selanes could be produced from aryl alkyl selenium oxides.
Collapse
Affiliation(s)
- Yongjin Guo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China
| | - Hongpeng Bao
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China
| | - Liyuan Chen
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China
| | - Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400030, P. R. China.,College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Zhu A, Wang J, Wang M, Fan D, Li L. An Efficient Catalytic System Based on CuI and Ionic Liquid for the Synthesis of Propargylamines Through One-Pot A3 Coupling Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Guan W, Lu D, Yang X, Deng W, Xiang J, Kambe N, Qiu R. CF 3SO 2Na-Mediated Five-Component Carbonylation of Triarylboroxines with TMSCF 3 and THF/LiOH/NaI to Give Aroyloxyalkyl Iodides. J Org Chem 2022; 87:9635-9644. [PMID: 35830500 DOI: 10.1021/acs.joc.2c00662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we developed an efficient and transition-metal-free multicomponent coupling reaction for the synthesis of aroyloxyl alkyl iodides. In the reaction among 2,4,6-triarylboroxines, THF, TMSCF3, LiOH, and NaI, five-component reactions could be precisely controlled by modulating CF3SO2Na, supplying one type of aroyloxyl alkyl iodides in moderate to high yields. The reaction exhibits good functional group tolerance and a wide substrate scope and can be easily transformed into other useful compounds. The mechanism is proposed on the basis of the control experiments.
Collapse
Affiliation(s)
- Wenjian Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | | | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiannan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
12
|
Li X, Wang X, Li Y, Xiao J, Du Y. Application of DMSO as a methylthiolating reagent in organic synthesis. Org Biomol Chem 2022; 20:4471-4495. [PMID: 35593912 DOI: 10.1039/d2ob00570k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the past decades, DMSO has been widely used not only as a common solvent but also as an environmentally benign oxidant in various organic transformations. Most strikingly, DMSO can be used as a sulfur source to construct methylthiolated building blocks of potential biologically active molecules, which is a remarkable achievement in the field of organic sulfur chemistry. The purpose of this review article is to summarize and discuss the main developments in the application of DMSO as a methylthiolating reagent to introduce the -SMe functionality in organic synthesis.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Liu J, Tang S, Zhao M, Huai J, Yu J, Zhao J, Li P. Reactivity of Vinyl Epoxides/Oxetanes/Cyclopropanes toward Arynes: Access to Functionalized Phenanthrenes. ACS OMEGA 2021; 6:35852-35865. [PMID: 34984314 PMCID: PMC8717566 DOI: 10.1021/acsomega.1c06166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The reactivity of vinyl epoxides/oxetanes/cyclopropanes toward arynes has been demonstrated under mild conditions to give the corresponding phenanthrenes in moderate to good yields. This transition-metal-free cascade process involves a series of Diels-Alder reaction, ring-opening aromatization, and ene reaction. Various functionalized phenanthrenes could be synthesized utilizing the versatile hydroxy group. Interestingly, vinyl epoxides/oxiranes experience preferentially the Diels-Alder reaction toward arynes over nucleophilic attack of epoxides/oxiranes.
Collapse
|
14
|
Liu J, Li J, Ren B, Zhang Y, Xue L, Wang Y, Zhao J, Zhang P, Xu X, Li P. Domino Ring‐Opening of
N
‐Tosyl Vinylaziridines Triggered by Aryne Diels‐Alder Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiupeng Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jiaqi Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Bowen Ren
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yun Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Linyi Xue
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yanying Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Puyu Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| |
Collapse
|
15
|
Hazarika H, Gogoi P. Access to diverse organosulfur compounds via arynes: a comprehensive review on Kobayashi's aryne precursor. Org Biomol Chem 2021; 19:8466-8481. [PMID: 34568887 DOI: 10.1039/d1ob01436f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes are highly reactive transient intermediates having enormous applications in organic synthesis. In the last three decades aryne chemistry has shown incredible developments in carbon-carbon and carbon-heteroatom bond formation reactions. After the discovery of Kobayashi's protocol for the generation of aryne intermediates in a mild way, this field of chemistry witnessed rapid growth in synthetic organic chemistry. One aspect of development in this field involves C-S bond formation under mild conditions which has a tremendous scope for the synthesis of various important organosulfur building blocks.
Collapse
Affiliation(s)
- Hemanta Hazarika
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| |
Collapse
|
16
|
Dehydrobenzene in the Reaction of a Tandem [4+2]/[4+2] Cycloaddition with Linear bis-furyldienes. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Guin A, Gaykar RN, Deswal S, Biju AT. Three-Component, Diastereoselective [6 + 3] Annulation of Tropone, Imino Esters, and Arynes. Org Lett 2021; 23:7456-7461. [PMID: 34510902 DOI: 10.1021/acs.orglett.1c02662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A transition-metal-free, three-component, and diastereoselective [6 + 3] annulation reaction employing tropone, imino esters, and arynes allowing the synthesis of bridged azabicyclo[4.3.1]decadienes is demonstrated. The key nitrogen ylides for the [6 + 3] annulation were generated by the addition of imino esters to the arynes followed by a proton transfer. The nitrogen ylides undergo a regioselective addition to tropone to furnish the desired products in moderate to good yields with good functional group tolerance under mild conditions.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul N Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Ikawa T, Yamamoto Y, Heguri A, Fukumoto Y, Murakami T, Takagi A, Masuda Y, Yahata K, Aoyama H, Shigeta Y, Tokiwa H, Akai S. Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. J Am Chem Soc 2021; 143:10853-10859. [PMID: 34197100 DOI: 10.1021/jacs.1c05434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, London dispersion interactions, which are the attractive component of the van der Waals potential, have been found to play an important role in controlling the regio- and/or stereoselectivity of various reactions. Particularly, the dispersion interactions between substrates and catalysts (or ligands) are dominant in various selective catalyzes. In contrast, repulsive steric interactions, rather than the attractive dispersion interactions, between bulky substituents are predominant in most of the noncatalytic reactions. Herein, we demonstrate the first example of London dispersion-controlled noncatalytic (2 + 2) cyclodimerization of substituted benzynes to selectively afford proximal biphenylenes in high yields and regioselectivities, depending on the extent of dispersion interactions in the substituents. This method can be applied for the synthesis of novel helical biphenylenes, which would be fascinating for chemists as these compounds are potential skeletons for ligands, catalysts, and medicines.
Collapse
Affiliation(s)
- Takashi Ikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501-1196, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Akito Heguri
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Fukumoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonari Murakami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Masuda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Guin A, Bhattacharjee S, Biju AT. Transition-Metal-Free C2-Functionalization of Pyridines through Aryne Three-Component Coupling. Chemistry 2021; 27:13864-13869. [PMID: 34288154 DOI: 10.1002/chem.202102005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/29/2022]
Abstract
The direct C2-functionalization of pyridines through a transition-metal-free protocol by using aryne multicomponent coupling is demonstrated. The reaction allowed a broad-scope synthesis of C2-substituted pyridine derivatives bearing the -CF3 group in good yields with α,α,α-trifluoroacetophenones as the third component. Activated keto esters could also be employed as the third component in this formal 1,2-di(hetero)arylation of ketones. Performing the reaction under dilute conditions inhibited the competing pyridine-aryne polymerization pathway. Nucleophilic attack by the initially generated pyridylidene intermediate on the carbonyl followed by an SN Ar process resembling the Smiles rearrangement affords the desired products.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
20
|
Gaykar RN, George M, Guin A, Bhattacharjee S, Biju AT. An Umpolung Oxa-[2,3] Sigmatropic Rearrangement Employing Arynes for the Synthesis of Functionalized Enol Ethers. Org Lett 2021; 23:3447-3452. [PMID: 33830779 DOI: 10.1021/acs.orglett.1c00911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An oxa-[2,3] sigmatropic rearrangement involving arynes is reported featuring the umpolung of ketones, where the C═O bond polarity is reversed. The in situ-generated sulfur ylides from β-keto thioethers and arynes undergo efficient rearrangement allowing the facile and robust synthesis of functionalized enol ethers in high yields and excellent functional group compatibility. Preliminary mechanistic studies rule out the possibility of Pummerer-type rearrangement operating in this case.
Collapse
Affiliation(s)
- Rahul N Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Malini George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
22
|
Zilla MK, Mahajan S, Khajuria R, Gupta VK, Kapoor KK, Ali A. An efficient synthesis of 4-phenoxy-quinazoline, 2-phenoxy-quinoxaline, and 2-phenoxy-pyridine derivatives using aryne chemistry. RSC Adv 2021; 11:3477-3483. [PMID: 35424287 PMCID: PMC8693993 DOI: 10.1039/d0ra09994e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Herein we report the mild and efficient synthesis of 4-phenoxyquinazoline, 2-phenoxyquinoxaline, and 2-phenoxypyridine derivatives from the starting materials viz. quinazolin-4(3H)-one, quinoxalin-2(1H)-one, and pyridin-2(1H)-one and aryne generated in situ from 2-(trimethylsilyl)phenyl trifluoromethanesulfonate and cesium fluoride. This synthetic methodology gives a new environmentally benign way for the preparation of several unnatural series of 4-phenoxyquinazoline, 2-phenoxyquinoxaline and 2-phenoxypyridine compounds with high yields and broad substrate scope. Efficient synthesis of 4-phenoxyquinazoline, 2-phenoxyquinoxaline, 2-phenoxypyridine derivatives were generated of aryne from 2-(trimethylsilyl)phenyltrifluoromethanesulfonate with cesium fluoride.![]()
Collapse
Affiliation(s)
- Mahesh K Zilla
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha 760010 India .,CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Sheena Mahajan
- CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
| | - Rajni Khajuria
- Department of Chemistry, GDC for Women Kathua Kathua-184101 India
| | - Vivek K Gupta
- Post-Graduate Department of Physics & Electronics, University of Jammu Jammu Tawi- 180006 India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu Jammu Tawi-180006 India
| | - Asif Ali
- CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India .,CSIR-Traditional Knowledge Digital Library (TKDL) 14-Satsang Vihar, Vigyan Suchna Bhawan New Delhi-110067 India
| |
Collapse
|
23
|
Scherübl M, Daniliuc CG, Studer A. Arynes as Radical Acceptors: TEMPO-Mediated Cascades Comprising Addition, Cyclization, and Trapping. Angew Chem Int Ed Engl 2021; 60:711-715. [PMID: 33038065 PMCID: PMC7839731 DOI: 10.1002/anie.202012654] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Indexed: 12/18/2022]
Abstract
The application of arynes as radical acceptors is described. The stable radical TEMPO (2,2,6,6-tetramethyl piperidine 1-oxyl) is shown to add to various ortho-substituted benzynes generating the corresponding aryl radicals which engage in 5-exo or 6-endo cyclizations. The cyclized radicals are eventually trapped by TEMPO. The introduced method provides ready access to various dihydrobenzofurans, oxindoles, and sultones by a conceptually novel approach.
Collapse
Affiliation(s)
- Maximilian Scherübl
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
24
|
Miyabe H. Aryne-Mediated Synthesis of Oxygen Heterocycles and Application to Cysteine-Selective Trapping. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Scherübl M, Daniliuc CG, Studer A. Arine als Radikalakzeptoren: TEMPO‐induzierte Kaskaden über Addition, Zyklisierung und Kreuzkupplung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maximilian Scherübl
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
26
|
Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Thiophenols as Protic Nucleophilic Triggers in Aryne Three-Component Coupling. Org Lett 2020; 22:9097-9101. [DOI: 10.1021/acs.orglett.0c03494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Adepu R, Dhanaji JR, Samatha P, Mainkar PS, Chandrasekhar S. Synthesis of 2-Amino-2′-hydroxy-1,1′-biaryls via Cascade Benzannulation and C–N Bond Cleavage Sequence. Org Lett 2020; 22:8224-8228. [DOI: 10.1021/acs.orglett.0c02749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Adepu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jadhav Rahul Dhanaji
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Polasani Samatha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Lim T, Kim BM. Synthesis of α-Aminophosphonates via Phosphonylation of an Aryne-Imine Adduct. J Org Chem 2020; 85:13246-13255. [PMID: 32924484 DOI: 10.1021/acs.joc.0c01410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicomponent phosphonylation is accomplished upon the reaction of an imine with an aryne generated in situ in the presence of a dialkyl phosphite. This transition-metal-free protocol shows a broad substrate scope, providing a variety of α-aminophosphonates in moderate to good yields. A plausible mechanism for the reaction is proposed based on a deuterium exchange experiment.
Collapse
Affiliation(s)
- Taehyun Lim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Lange H, Schröder H, Oberem E, Villinger A, Rabeah J, Ludwig R, Neymeyr K, Seidel WW. Facile Synthesis of a Stable Side-on Phosphinyne Complex by Redox Driven Intramolecular Cyclisation. Chemistry 2020; 26:11492-11502. [PMID: 32181544 PMCID: PMC7540294 DOI: 10.1002/chem.201905750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Indexed: 11/23/2022]
Abstract
Alkyne complexes with vicinal substitution by a Lewis acid and a Lewis base at the coordinated alkyne are prospective frustrated Lewis pairs exhibiting a particular mutual distance and, hence, a specific activation potential. In this contribution, investigations on the generation of a WII alkyne complex bearing a phosphine as Lewis base and a carbenium group as Lewis acid are presented. Independently on potential substrates added, an intramolecular cyclisation product was always isolated. A subsequent deprotonation step led to an unprecedented side-on λ5 -phosphinyne complex, which is interpreted as highly zwitterionic according to visible absorption spectroscopy supported by TD-DFT. Low-temperature 31 P NMR and EPR spectroscopic measurements combined with time-dependent IR-spectroscopic monitoring provided insights in the mechanism of the cyclisation reaction. Decomposition of the multicomponent IR spectra by multivariate curve resolution and a kinetic hard-modelling approach allowed the derivation of kinetic parameters. Assignment of the individual IR spectra to potential intermediates was provided by DFT calculations.
Collapse
Affiliation(s)
- Helge Lange
- Institut für ChemieUniversität RostockAlbert-Einstein-Str. 3a18059RostockGermany
| | - Henning Schröder
- Institut für MathematikUniversität RostockUlmenstraße 6918057RostockGermany
| | - Elisabeth Oberem
- Institut für ChemieUniversität RostockAlbert-Einstein-Str. 3a18059RostockGermany
| | - Alexander Villinger
- Institut für ChemieUniversität RostockAlbert-Einstein-Str. 3a18059RostockGermany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Ralf Ludwig
- Institut für ChemieUniversität RostockAlbert-Einstein-Str. 3a18059RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Klaus Neymeyr
- Institut für MathematikUniversität RostockUlmenstraße 6918057RostockGermany
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Wolfram W. Seidel
- Institut für ChemieUniversität RostockAlbert-Einstein-Str. 3a18059RostockGermany
| |
Collapse
|
30
|
Bhattacharjee S, Raju A, Gaykar RN, Gonnade RG, Roy T, Biju AT. Rapid Synthesis of Zwitterionic Phosphonium Benzoates by a Three-Component Coupling Involving Phosphines, Arynes and CO 2. Chem Asian J 2020; 15:2203-2207. [PMID: 32488981 DOI: 10.1002/asia.202000610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Indexed: 12/28/2022]
Abstract
A mild and easy to perform multicomponent coupling involving phosphines, arynes generated from 2-(trimethylsilyl)aryl triflates, and CO2 allowing the transition-metal-free synthesis of zwitterionic phosphonium benzoates has been developed. The reaction proceeds via the generation of 1 : 1 zwitterionic intermediates from phosphines and arynes followed by the interception with CO2 to deliver the carboxylates in moderate to good yields instead of the anticipated benzooxaphosphol-3(1H)-ones.
Collapse
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Anjali Raju
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rahul N Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajesh G Gonnade
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Tony Roy
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
31
|
Okuma K, Qu Y, Fujiie N, Nagahora N. Old and New Aryne Precursor, Anthranilic Acid: Multicomponent Reaction of Benzyne with Quinolines or Imines and Pronucleophiles. CHEM LETT 2020. [DOI: 10.1246/cl.190944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kentaro Okuma
- Department of Chemistry, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuxuan Qu
- Department of Chemistry, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Nonoka Fujiie
- Department of Chemistry, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Noriyoshi Nagahora
- Department of Chemistry, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
32
|
Ikawa T, Sun J, Takagi A, Akai S. One-Pot Generation of Functionalized Benzynes from Readily Available 2-Hydroxyphenylboronic Acids. J Org Chem 2020; 85:3383-3392. [PMID: 32013426 DOI: 10.1021/acs.joc.9b03169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a one-pot method for the generation of benzynes from a range of readily available 2-hydroxyphenylboronic acids. This method features the in situ activation of both boronic acid and hydroxyl groups of the substrate to enhance benzyne generation at 60 °C. Such mild conditions facilitate the generation of functionalized benzynes that immediately react with diverse arynophiles to produce multisubstituted fused benzenes.
Collapse
Affiliation(s)
- Takashi Ikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - JingKai Sun
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Akira Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan.,Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Kaldas SJ, Kran E, Mück-Lichtenfeld C, Yudin AK, Studer A. Reaction of Vinyl Aziridines with Arynes: Synthesis of Benzazepines and Branched Allyl Fluorides. Chemistry 2020; 26:1501-1505. [PMID: 31628755 DOI: 10.1002/chem.201904727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/02/2023]
Abstract
We report the cycloaddition between vinyl aziridines and arynes. Depending on the reaction conditions and the choice of the aryne precursor, the aziridinium intermediate can be trapped through two distinct mechanistic pathways. The first one proceeds through a formal [5+2] cycloaddition to furnish valuable multi-substituted benzazepines. In the second pathway, the aziridinium is intercepted by a fluoride ion to afford allylic fluorides in good yields. Both reactions proceed stereospecifically and furnish enantiopure benzazepines and allylic fluorides.
Collapse
Affiliation(s)
- Sherif J Kaldas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Eva Kran
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
34
|
Hazarika H, Gogoi P. Direct synthesis of ortho-methylthio allyl and vinyl ethers via three component reaction of aryne, activated alkene and DMSO. Org Biomol Chem 2020; 18:2727-2738. [DOI: 10.1039/d0ob00275e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A transition-metal free synthetic strategy for the direct synthesis of ortho-methylthio allyl and vinyl ethers via cascade three-component coupling of aryne, activated alkene and DMSO.
Collapse
Affiliation(s)
- Hemanta Hazarika
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| |
Collapse
|
35
|
Neog K, Gogoi P. Recent advances in the synthesis of organophosphorus compounds via Kobayashi's aryne precursor: a review. Org Biomol Chem 2020; 18:9549-9561. [DOI: 10.1039/d0ob01988g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review systematically summarizes the progress in aryne chemistry for the synthesis of organophosphorus compounds via aryne insertion into the C–P, P–N, P–P, P–O, PP, PN and PS bonds.
Collapse
Affiliation(s)
- Kashmiri Neog
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| |
Collapse
|
36
|
Abstract
The generation of pyridynes from diyne nitriles is reported. These cyano-containing precursors are analogues of the triyne substrates typically used for the hexadehydro-Diels-Alder (HDDA) cycloisomerization reactions that produce ring-fused benzynes. Hence, the new processes described represent aza-HDDA reactions. Depending on the location of the nitrile, either 3,4-pyridynes (from 1,3-diynes containing a tethered cyano group) or 2,3-pyridynes (from 1-cyanoethyne derivatives containing a tethered alkyne) are produced. In situ trapping of these reactive intermediates leads to highly substituted and functionalized pyridine derivatives. In several instances, unprecedented pyridyne trapping reactions are seen. Differences in reaction energetics between the aza-HDDA substrates and that of their analogous HDDA (triyne) substrates are discussed.
Collapse
Affiliation(s)
- Severin K Thompson
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Thomas R Hoye
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
37
|
Cheng B, Li Y, Zu B, Wang T, Wang R, Li Y, Zhai H. Syntheses of spiro[indazole-3,3′-indolin]-2′-ones and spiro[indazole-3,3′-indolin]-2′-imines via 1,3-dipolar cycloadditions of arynes and studies on their isomerization reactions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Gaykar RN, Guin A, Bhattacharjee S, Biju AT. Three-Component Aminoselenation of Arynes. Org Lett 2019; 21:9613-9617. [DOI: 10.1021/acs.orglett.9b03789] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
39
|
Ding W, Yu A, Zhang L, Meng X. Construction of Eight-Membered Cyclic Diaryl Sulfides via Domino Reaction of Arynes with Thioaurone Analogues and DFT Study on the Reaction Mechanism. Org Lett 2019; 21:9014-9018. [DOI: 10.1021/acs.orglett.9b03417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenhuan Ding
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
40
|
Guin A, Gaykar RN, Bhattacharjee S, Biju AT. Selective Synthesis of N-H and N-Aryl Benzotriazoles by the [3 + 2] Annulation of Sodium Azide with Arynes. J Org Chem 2019; 84:12692-12699. [DOI: 10.1021/acs.joc.9b02198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
41
|
Zhao J, Li H, Li P, Wang L. Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. J Org Chem 2019; 84:9007-9016. [DOI: 10.1021/acs.joc.9b00893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Zhao
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
42
|
Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Iodide as a Nucleophilic Trigger in Aryne Three-Component Coupling for the Synthesis of 2-Iodobenzyl Alcohols. Org Lett 2019; 21:4383-4387. [DOI: 10.1021/acs.orglett.9b01621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
43
|
Wang W, Wan H, Du G, Dai B, He L. Synthesis of Benzo[b]fluoranthenes and Spiroacridines from Fluorene-Derived Alkenes and N-Arylimines via a Tandem Reaction with Benzynes. Org Lett 2019; 21:3496-3500. [DOI: 10.1021/acs.orglett.9b00659] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weihua Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, China
| | - Hongwei Wan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, China
| | - Guangfen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, China
| |
Collapse
|
44
|
John J, Omanakuttan VK, T. A, Suresh CH, Jones PG, Hopf H. Tandem α-Arylation/Cyclization of 4-Haloacetoacetates with Arynes: A Metal-Free Approach toward 4-Aryl-3-(2H)-furanones. J Org Chem 2019; 84:5957-5964. [DOI: 10.1021/acs.joc.9b00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu K. Omanakuttan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneeja T.
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
| | - Henning Hopf
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
| |
Collapse
|
45
|
Devaraj K, Ingner FJL, Sollert C, Gates PJ, Orthaber A, Pilarski LT. Arynes and Their Precursors from Arylboronic Acids via Catalytic C-H Silylation. J Org Chem 2019; 84:5863-5871. [PMID: 30835118 DOI: 10.1021/acs.joc.9b00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, operationally simple approach is presented to access arynes and their fluoride-activated precursors based on Ru-catalyzed C-H silylation of arylboronates. Chromatographic purification may be deferred until after aryne capture, rendering the arylboronates de facto precursors. Access to various new arynes and their derivatives is demonstrated, including, for the first time, those based on a 2,3-carbazolyne and 2,3-fluorenyne core, which pave the way for novel derivatizations of motifs relevant to materials chemistry.
Collapse
Affiliation(s)
- Karthik Devaraj
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Fredric J L Ingner
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Carina Sollert
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Paul J Gates
- School of Chemistry , University of Bristol , Cantock's Close, Clifton, Bristol BS8 1TS , United Kingdom
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories , Uppsala University , Box 523, Uppsala 75-120 , Sweden
| | - Lukasz T Pilarski
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| |
Collapse
|
46
|
Xu YN, Tian SK. Facile construction of three-membered rings via benzyne-promoted Darzens-type reaction of tertiary amines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Li Z, Wang W, Jian H, Li W, Dai B, He L. Synthesis of 9-phenol-substituted xanthenes by cascade O-insertion/1,6-conjugate addition of benzyne with ortho-hydroxyphenyl substituted para-quinone methides. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
Chen C, Hao Y, Zhang TY, Pan JL, Ding J, Xiang HY, Wang M, Ding TM, Duan A, Zhang SY. Computational and experimental studies on copper-mediated selective cascade C-H/N-H annulation of electron-deficient acrylamide with arynes. Chem Commun (Camb) 2019; 55:755-758. [PMID: 30500009 DOI: 10.1039/c8cc08708c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient and convenient copper-mediated method has been developed to achieve direct cascade C-H/N-H annulation to synthesize 2-quinolinones from electron-deficient acrylamides and arynes. This method highlights an emerging but simple strategy to transform inert C-H bonds into versatile functional groups in organic synthesis to provide a new method of synthesizing 2-quinolinones efficiently. Mechanistic investigations by experimental and density functional theory (DFT) studies suggest that an organometallic C-H activation via a Cu(iii) intermediate is likely to be involved in the reaction.
Collapse
Affiliation(s)
- Chao Chen
- Sixth People's Hospital South Campus, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ghotekar GS, Shaikh AC, Muthukrishnan M. Transition-Metal-Free Benzannulation of Tricarbonyl Derivatives with Arynes: Access to 1,3-Dinaphthol Precursors for the Synthesis of Rhodamine Dye Analogues. J Org Chem 2019; 84:2269-2276. [DOI: 10.1021/acs.joc.8b02560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganesh S. Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aslam C. Shaikh
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
| | - M. Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
50
|
Roy T, Gaykar RN, Bhattacharjee S, Biju AT. The aryne Sommelet–Hauser rearrangement. Chem Commun (Camb) 2019; 55:3004-3007. [DOI: 10.1039/c9cc00629j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An aryne induced transition-metal-free and mild Sommelet–Hauser rearrangement of tertiary benzylamines for the synthesis of α-aryl amino acid derivatives in moderate to good yields and with broad substrate scope is presented.
Collapse
Affiliation(s)
- Tony Roy
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rahul N. Gaykar
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | | | - Akkattu T. Biju
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|