1
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Soliman SS, Dey GR, McCormick CR, Schaak RE. Temporal Evolution of Morphology, Composition, and Structure in the Formation of Colloidal High-Entropy Intermetallic Nanoparticles. ACS NANO 2023; 17:16147-16159. [PMID: 37549244 DOI: 10.1021/acsnano.3c05241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Morphology-controlled nanoparticles of high entropy intermetallic compounds are quickly becoming high-value targets for catalysis. Their ordered structures with multiple distinct crystallographic sites, coupled with the "cocktail effect" that emerges from randomly mixing a large number of elements, yield catalytic active sites capable of achieving advanced catalytic functions. Despite this growing interest, little is known about the pathways by which high entropy intermetallic nanoparticles form and grow in solution. As a result, controlling their morphology remains challenging. Here, we use the high entropy intermetallic compound (Pd,Rh,Ir,Pt)Sn, which adopts a NiAs-related crystal structure, as a model system for understanding how nanoparticle morphology, composition, and structure evolve during synthesis in solution using a slow-injection reaction. By performing a time-point study, we establish the initial formation of palladium-rich cube-like Pd-Sn seeds onto which the other metals deposit over time, concomitant with continued incorporation of tin. For (Pd,Rh,Ir,Pt)Sn, growth occurs on the corners, resulting in a sample having a mixture of flower-like and cube-like morphologies. We then synthesize and characterize a library of 14 distinct intermetallic nanoparticle systems that comprise all possible binary, ternary, and quaternary constituents of (Pd,Rh,Ir,Pt)Sn. From these studies, we correlated compositions, morphologies, and growth pathways with the constituent elements and their competitive reactivities, ultimately mapping out a framework that rationalizes the key features of the high entropy (Pd,Rh,Ir,Pt)Sn intermetallic nanoparticles based on those of their simpler constituents. We then validated these design guidelines by applying them to the synthesis of a morphologically pure variant of flowerlike (Pd,Rh,Ir,Pt)Sn particles as well as a series of (Pd,Rh,Ir,Pt)Sn particles with tunable morphologies based on control of composition.
Collapse
|
3
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
4
|
Narnaware PK, Ravikumar C. Influence of solvents, reaction temperature, and aging time on the morphology of iron oxide nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prashil K. Narnaware
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| | - C. Ravikumar
- Department of Chemical Engineering, Colloids and Nanomaterials Laboratory, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
5
|
Zhao MJ, Su SY, Deng N, Shi JQ, Li F, He JB. The Central Role of Nitrogen Atoms in a Zeolitic Imidazolate Framework-Derived Catalyst for Cathodic Hydrogen Evolution. CHEMSUSCHEM 2021; 14:3926-3934. [PMID: 34288529 DOI: 10.1002/cssc.202101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Platinum usually offers the most effective active center for hydrogen evolution reaction (HER), because of the optimal trade-off between the adsorption and desorption of hydrogeN atoms (H*) on Pt atoms. Herein, we report an unusual result regarding the active center of a HER catalyst, which was synthesized by electrodepositing traces of Pt nanoparticles (NPs) into a porous nitrogen-rich dodecahedron matrix derived from zeolitic imidazolate framework ZIF-8. With an ultra-low Pt loading of 2.76 μg cm-2 , the N-Pt-bonded catalyst can produce a current density of 117 mA cm-2 for the HER in 1.0 m H2 SO4 at an overpotential of 50 mV, whereas the commercial Pt/C (300 μg cm-2 Pt) can only reach 50 mA cm-2 under the same conditions. Cyclic voltammetry demonstrates that both the H* adsorption and the Pt oxidation are not allowed to occur on this catalyst, due to a full surface coverage of the trace Pt NPs by imidazole. The results from the specially designed experiments indicate that the imidazole N atoms may act as proton anchor-sites for the HER due to their electron donor nature. Density functional theory calculations also support a catalytic HER mechanism centered at the Pt-supported N active center, which needs a Gibbs free energy of H* absorption (ΔGH* ) significantly smaller than the absolute value of ΔGH* on the Pt(111) surface. We hope that the results of this study will encourage the research on novel N-centered catalysts for the HER.
Collapse
Affiliation(s)
- Meng-Jie Zhao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Sheng-Ying Su
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ning Deng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Jun-Qing Shi
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Fang Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| | - Jian-Bo He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Laboratory of Green Manufacturing of Power Battery, Tianneng, Fuyang, Jieshou, 236500, P. R. China
| |
Collapse
|
6
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Oladipo AO, Nkambule TTI, Mamba BB, Msagati TAM. Therapeutic nanodendrites: current applications and prospects. NANOSCALE ADVANCES 2020; 2:5152-5165. [PMID: 36132031 PMCID: PMC9417514 DOI: 10.1039/d0na00672f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/03/2020] [Indexed: 05/04/2023]
Abstract
Multidisciplinary efforts in the field of nanomedicine for cancer therapy to provide solutions to common limitations of traditional drug administration such as poor bioaccumulation, hydrophobicity, and nonspecific biodistribution and targeting have registered very promising progress thus far. Currently, a new class of metal nanostructures possessing a unique dendritic-shaped morphology has been designed for improved therapeutic efficiency. Branched metal nanoparticles or metal nanodendrites are credited to present promising characteristics for biomedical applications owing to their unique physicochemical, optical, and electronic properties. Nanodendrites can enhance the loading efficiency of bioactive molecules due to their three-dimensional (3D) high surface area and can selectively deliver their cargo to tumor cells using their stimuli-responsive properties. With the ability to accumulate sufficiently within cells, nanodendrites can overcome the detection and clearance by glycoproteins. Moreover, active targeting ligands such as antibodies and proteins can as well be attached to these therapeutic nanodendrites to enhance specific tumor targeting, thereby presenting a multifunctional nanoplatform with tunable strategies. This mini-review focuses on recent developments in the understanding of metallic nanodendrite synthesis, formation mechanism, and their therapeutic capabilities for next-generation cancer therapy. Finally, the challenges and future opportunities of these fascinating materials to facilitate extensive research endeavors towards the design and application were discussed.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| |
Collapse
|
8
|
Li Y, Liu N, Dai C, Xu R, Wu B, Yu G, Chen B. Mechanistic insight into H 2-mediated Ni surface diffusion and deposition to form branched Ni nanocrystals: a theoretical study. Phys Chem Chem Phys 2020; 22:23869-23877. [PMID: 33073282 DOI: 10.1039/d0cp03126g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Present work systematically investigates the kinetic role played by H2 molecules during Ni surface diffusion and deposition to generate branched Ni nanostructures by employing Density Functional Theory (DFT) calculations and ab initio molecule dynamic (AIMD) simulations, respectively. The Ni surface diffusion results unravel that in comparison to the scenarios of Ni(110) and Ni(100), both the subsurface and surface H hinder the Ni surface diffusion over Ni(111) especially under the surface H coverage of 1.5 ML displaying the lowest Ds values, which greatly favors the trapping of the adatom Ni and subsequent overgrowth along the 111 direction. The Ni deposition simulations by AIMD further suggest that both the H2 molecule (in solution) and surface dissociatively adsorbed atomic H can promote Ni depositions onto Ni(111) and Ni(110) facets in a liquid solution. Moreover, a cooperation effect between H2 molecules and surface atomic H can be clearly observed, which greatly favors Ni depositions. Additionally, in addition to working as the solvent, the liquid C2H5OH can also interact with the Ni(111) surface to produce the surface atomic H, which then favored the Ni deposition. Finally, the Ni deposition rate predicted using the deposition constant (Ddep) was found to be much higher than its surface diffusion rate predicted using Ds for Ni(111) and Ni(110), which quantitatively verified the overgrowth along the 111 and 110 directions to produce the branched Ni nanostructures.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ning Liu
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Chengna Dai
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Ruinian Xu
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Bin Wu
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Gangqiang Yu
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Biaohua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
9
|
Moreira Da Silva C, Girard A, Dufond M, Fossard F, Andrieux-Ledier A, Huc V, Loiseau A. Nickel platinum (Ni x Pt 1-x ) nanoalloy monodisperse particles without the core-shell structure by colloidal synthesis. NANOSCALE ADVANCES 2020; 2:3882-3889. [PMID: 36132757 PMCID: PMC9417886 DOI: 10.1039/d0na00450b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/09/2020] [Indexed: 06/15/2023]
Abstract
We report a new and versatile colloidal route towards the synthesis of nanoalloys with controlled size and chemical composition in the solid solution phase (without phase segregation such as core-shell structure or Janus structure) or chemical ordering. The principle of the procedure is based on the correlation between the oxidation-reduction potential of metal cations present in the precursors and the required synthesis temperature to nucleate particles without phase segregation. The procedure is demonstrated via the synthesis of Face Centered Cubic (FCC) Ni x Pt1-x nanoparticles, which was elaborated by the co-reduction of nickel(ii) acetylacetonate and platinum(ii) acetylacetonate with 1,2-hexadecanediol in benzyl ether, using oleylamine and oleic acid as surfactants. The chemical composition and solid solution FCC structure of the nanoalloy are demonstrated by crosslinking imaging and chemical analysis using transmission electron microscopy and X-ray diffraction techniques. Whatever the chemical composition inspected, a systematic expansion of the lattice parameters is measured in relation to the respective bulk counterpart.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Armelle Girard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
- Université Versailles Saint-Quentin, U. Paris-Saclay Versailles 78035 France
| | - Maxime Dufond
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Amandine Andrieux-Ledier
- Département Physique, Instrumentation, Environnement, Espace, ONERA, U. Paris-Saclay Châtillon 92322 France
| | - Vincent Huc
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Paris Sud, U. Paris-Saclay Orsay 91045 France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS, ONERA, U. Paris-Saclay Châtillon 92322 France
| |
Collapse
|
10
|
Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19151-19168. [PMID: 31079299 DOI: 10.1007/s11356-019-05211-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/16/2019] [Indexed: 05/21/2023]
Abstract
Nanotechnology is an emerging technology that deals with nanosized particles possessing crucial research roles and application. Disciplines like chemistry, biology, physics, engineering, materials science, and health sciences provide an accumulated knowledge of nanotechnology. Nonetheless, it has vast submissions precisely in biology, electronics, and medicine. Aimed at drug delivery system, nanoparticles are based on the mechanism of entrapment of the drugs or biomolecules into the interior structure of the particles; another mechanism could be that the drugs or the biomolecules can be absorbed onto the exterior surfaces of the particles. Currently, nanoparticles (NPs) are used in the delivery of drugs, proteins, genes, vaccines, polypeptides, nucleic acids, etc. In recent years, various applications of the drug delivery system via NPs have encountered an enormous position sector like pharmaceutical, medical, biological, and others. Considering the impact of NPs in drug delivery systems, this review focuses on the detailed profile of NPs, its impact on biology and medicine, and their commercialization prospects.
Collapse
Affiliation(s)
- Nuzhat Zahin
- Department of Pharmacy, BRAC University, Dhaka, Bangladesh
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Amin Sajid
- Department of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | | |
Collapse
|
11
|
Xie R, Lu S, Deng Y, Mei S, Cao X, Zhou L, Lan C, Gu H. Facile Synthesis of Sea-Urchin-Like Pt and Pt/Au Nanodendrites and Their Enhanced Electrocatalytic Properties. Inorg Chem 2019; 58:5375-5379. [PMID: 30977372 DOI: 10.1021/acs.inorgchem.8b03321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruigang Xie
- Guangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi & College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Shuanglong Lu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yaoyao Deng
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Sujuan Mei
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xueqin Cao
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lingli Zhou
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Cuiling Lan
- Guangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi & College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
El-Nagar GA, Muench F, Roth C. Tailored dendritic platinum nanostructures as a robust and efficient direct formic acid fuel cell anode. NEW J CHEM 2019. [DOI: 10.1039/c8nj06172f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineering of platinum structures with precisely controlled morphology provides an excellent opportunity to efficiently tailor their catalytic performance, greatly improving their durability and activity.
Collapse
Affiliation(s)
- Gumaa A. El-Nagar
- Chemistry Department
- Faculty of Science
- Cairo University
- Egypt
- Institute for Chemistry & Biochemistry
| | - Falk Muench
- Department of Materials and Earth Sciences
- Technische Universität Darmstadt
- Darmstadt
- Germany
| | - Christina Roth
- Institute for Chemistry & Biochemistry
- Freie Universität Berlin
- Berlin
- Germany
| |
Collapse
|
13
|
Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MDP. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 2019; 138:68-104. [PMID: 30553951 DOI: 10.1016/j.addr.2018.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Ferrimagnetic iron oxide nanoparticles (magnetite or maghemite) have been the subject of an intense research, not only for fundamental research but also for their potentiality in a widespread number of practical applications. Most of these studies were focused on nanoparticles with spherical morphology but recently there is an emerging interest on anisometric nanoparticles. This review is focused on the synthesis routes for the production of uniform anisometric magnetite/maghemite nanoparticles with different morphologies like cubes, rods, disks, flowers and many others, such as hollow spheres, worms, stars or tetrapods. We critically analyzed those procedures, detected the key parameters governing the production of these nanoparticles with particular emphasis in the role of the ligands in the final nanoparticle morphology. The main structural and magnetic features as well as the nanotoxicity as a function of the nanoparticle morphology are also described. Finally, the impact of each morphology on the different biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) are analysed in detail. We would like to dedicate this work to Professor Carlos J. Serna, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, for his outstanding contribution in the field of monodispersed colloids and iron oxide nanoparticles. We would like to express our gratitude for all these years of support and inspiration on the occasion of his retirement.
Collapse
Affiliation(s)
- Alejandro G Roca
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E-08193 Barcelona, Spain.
| | - Lucía Gutiérrez
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; Dept. Química Analítica, Instituto de Nanociencia de Aragón, Universidad de Zaragoza and CIBER-BBN, E-50018 Zaragoza, Spain.
| | - Helena Gavilán
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - Maria Eugênia Fortes Brollo
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - Sabino Veintemillas-Verdaguer
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | - María Del Puerto Morales
- Dept. Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
14
|
Peres L, Yi D, Bustos-Rodriguez S, Marcelot C, Pierrot A, Fazzini PF, Florea I, Arenal R, Lacroix LM, Warot-Fonrose B, Blon T, Soulantica K. Shape selection through epitaxy of supported platinum nanocrystals. NANOSCALE 2018; 10:22730-22736. [PMID: 30500037 DOI: 10.1039/c8nr07515h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supported nanocrystals of original shapes are highly desirable for the development of optimized catalysts; however, conventional methods for the preparation of supported catalysts do not allow shape control. In this work, we have synthesized concave platinum nanocubes exposing {110} crystallographic facets at 20 °C. In the presence of a crystallographically oriented Pt(111) support in the reaction medium, the concave nanocubes grow epitaxially on the support, producing macroscopic nanostructured surfaces. Higher reaction temperature produces a mixture of different nanostructures in solution; however, only the nanostructures growing along the 111 direction are obtained on the Pt(111) support. Therefore, the oriented surface acts as a template for a selective immobilization of specific nanostructures out of a mixture, which can be regarded as an "epitaxial resolution" of an inhomogeneous mixture of nanocrystals. Thus, a judicious choice of the support crystallographic orientation may allow the isolation of original nanostructures that cannot be obtained in a pure form.
Collapse
Affiliation(s)
- Laurent Peres
- Laboratoire de Physique et Chimie des NanoObjets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077 Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gloag L, Benedetti TM, Cheong S, Marjo CE, Gooding JJ, Tilley RD. Cubic-Core Hexagonal-Branch Mechanism To Synthesize Bimetallic Branched and Faceted Pd–Ru Nanoparticles for Oxygen Evolution Reaction Electrocatalysis. J Am Chem Soc 2018; 140:12760-12764. [DOI: 10.1021/jacs.8b09402] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tania M. Benedetti
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher E. Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
16
|
Palmer RE, Cai R, Vernieres J. Synthesis without Solvents: The Cluster (Nanoparticle) Beam Route to Catalysts and Sensors. Acc Chem Res 2018; 51:2296-2304. [PMID: 30188111 DOI: 10.1021/acs.accounts.8b00287] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is hard to predict the future of science. For example, when C60 and its structure were identified from the mass spectra of gas phase carbon clusters, few could have predicted the era of carbon nanotechnology which the discovery introduced. The solubilization and functionalization of C60, the identification and then synthesis of carbon nanotubes, and the generation and physics of graphene have made a scale of impact on the international R&D (and to some extent industrial) landscape which could not have been foreseen. Technology emerged from a search for molecules of astrochemical interest in the interstellar gas. This little sketch provides the authors with the confidence to present here a status report on progress toward another radical future-the synthesis of nanoparticles (typically metals) on an industrial scale without solvents and consequently effluents, without salts and their sometimes accompanying toxicity, with minimal prospects for unwanted nanoparticle escape into the environment, with a high degree of precision in the control of the size, shape and composition of the nanoparticles produced and with applications from catalysts and sensors to photonics, electronics and theranostics. In fact, our story begins in exactly the same place as the origin of the nanocarbon era-the generation and mass selection of free atomic clusters in a vacuum chamber. The steps along the path so far include deposition of such beams of clusters onto surfaces in vacuum, elucidation of the key elements of the cluster-surface interaction, and demonstrations of the potential applications of deposited clusters. The principal present challenges, formidable but solvable, are the necessary scale-up of cluster beam deposition from the nanogram to the gram scale and beyond, and the processing and integration of the nanoclusters into appropriate functional architectures, such as powders for heterogeneous catalysis, i.e., the formulation engineering problem. The research which is addressing these challenges is illustrated in this Account by examples of cluster production (on the traditional nanogram scale), emphasizing self-selection of size, controlled generation of nonspherical shapes, and nonspherical binary nanoparticles; by the scale-up of cluster beam production by orders of magnitude with the magnetron sputtering, gas condensation cluster source, and especially the Matrix Assembly Cluster Source (MACS); and by promising demonstrations of deposited clusters in gas sensing and in heterogeneous catalysis (this on the gram scale) in relevant environments (both liquid and vapor phases). The impact on manufacturing engineering of the new paradigm described here is undoubtedly radical; the prospects for economic success are, as usual, full of uncertainties. Let the readers form their own judgements.
Collapse
Affiliation(s)
- Richard E. Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Rongsheng Cai
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Jerome Vernieres
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
17
|
Rodrigues TS, Zhao M, Yang TH, Gilroy KD, da Silva AGM, Camargo PHC, Xia Y. Synthesis of Colloidal Metal Nanocrystals: A Comprehensive Review on the Reductants. Chemistry 2018; 24:16944-16963. [PMID: 29923247 DOI: 10.1002/chem.201802194] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Indexed: 01/13/2023]
Abstract
There is a growing interest in controlling the synthesis of colloidal metal nanocrystals and thus tailoring their properties toward various applications. In this context, choosing an appropriate combination of reagents (e.g., salt precursor, reductant, capping agent, and stabilizer) plays a pivotal role in enabling the synthesis of metal nanocrystals with diversified sizes, shapes, and structures. Here we present a comprehensive review that highlights one of the key reagents for the synthesis of metal nanocrystals via chemical reduction: the reductants. We start with a brief introduction to the compounds commonly employed as reductants in the colloidal synthesis of metal nanocrystals by showing their oxidation half-reactions and the corresponding oxidation potentials. Then we offer specific examples pertaining to the controlled synthesis of metal nanocrystals, followed by some fundamental aspects covering the general mechanisms of metal ion reduction based on the Marcus Theory. Afterwards, we present a case-by-case discussion on a wide variety of reductants, including their major properties, reduction mechanisms, and additional effects on the final products. We illustrate these aspects by selecting key examples from the literature and paying close attention to the underlying mechanism in each case. At the end, we conclude by summarizing the highlights of the review and providing some perspectives on future directions.
Collapse
Affiliation(s)
- Thenner S Rodrigues
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Tung-Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Anderson G M da Silva
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Pedro H C Camargo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
18
|
Liang X, Liu N, Qiu H, Zhang C, Mei D, Chen B. Hydrogen assisted synthesis of branched nickel nanostructures: a combined theoretical and experimental study. Phys Chem Chem Phys 2017; 19:26718-26727. [PMID: 28948245 DOI: 10.1039/c7cp04673a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective adsorption of small molecules over specific facets plays an important role in morphology controlled synthesis of metal nanocrystals. In the present work, hydrogen is found to be a good capping agent for direct synthesis of branched nickel nanocrystals, i.e., secondary branching (Ni-SB) nanoparticles and multipods (Ni-MP). Using ab initio thermodynamics and the Wulff construction principle, it has been found that: (i) in the presence of hydrogen (PH2 = 6 bar), the facet structure stability follows the order of Ni(100) > Ni(111) > Ni(110), resulting in competitive over-growth along the 〈111〉 and 〈110〉 directions; (ii) with increasing hydrogen pressure, the Ni deposition rate over the crystal surface increases as a result of more Ni2+ reduction; the competition between deposition and surface diffusion, therefore, becomes the vital factor for the nanocrystal growth process; (iii) the diffusion energy barrier of a surface Ni atom on Ni(111) is lower than that on Ni(110), especially on hydrogen covered surfaces, indicating that the kinetic over-growth only along the 〈111〉 direction producing Ni-MP will be dominant under PH2 = 14 bar; (iv) the ab initio based Wulff construction principle predicts the shapes and morphologies at different hydrogen pressures which is further confirmed with HRTEM results. Finally, compared with nickel nanoparticles (Ni-NP) synthesized in the absence of hydrogen, the hydrogen assisted branched Ni nanomaterials, especially the Ni-MP, show higher catalytic activities for hydrogenation reactions of acetophenone and nitrobenzene.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | | | | | |
Collapse
|
19
|
Camargo BC, Lassagne B, Arenal R, Gatel C, Blon T, Viau G, Lacroix LM, Escoffier W. Platinum tripods as nanometric frequency multiplexing devices. NANOSCALE 2017; 9:14635-14640. [PMID: 28936537 DOI: 10.1039/c7nr04544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical and structural characterization studies of nano-particles are very important steps to determine their potential applications in microelectronics. In this paper, we address the crystallographic and electric transport properties of soft-chemistry-grown nanometric Pt tribranches. We report that Pt nanostars grown from the reduction of H2PtCl6 salt in pure oleylamine present a remarkable crystalline structure and deeply metallic character despite being grown under mild conditions. We demonstrate that such devices are able to operate at current densities surpassing 200 MA cm-2, actuating as highly compact frequency multiplexers in the non-ohmic regime.
Collapse
Affiliation(s)
- Bruno Cury Camargo
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02-668 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xiong Y, Ma Y, Li J, Huang J, Yan Y, Zhang H, Wu J, Yang D. Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation. NANOSCALE 2017; 9:11077-11084. [PMID: 28741632 DOI: 10.1039/c7nr02638b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bimetallic nanocrystals with a branched shape have received great interest as catalysts due to their unique structures and fascinating properties. However, the conventional synthetic approaches based on the island growth mode often lead to the dendritic nanostructures with inhomogeneous and uncontrolled branches. Here precise control over the number of branches has been realized in the deposition of Pt on Pd seeds through the Stranski-Krastanov growth mechanism. Based on such a growth mode, Pd@Pt core-shell hexapods and octapods have been generated by a seeded growth with Pd octahedra and cubes as the seeds, respectively. We found that Pt atoms are initially deposited on the side faces of Pd seeds through a layer-by-layer epitaxial growth in the presence of oleylamine (OAm), leading to a local strain focused at their corners. These strain-concentrated sites promote the subsequent island growth of Pt atoms at the corners of the Pd seeds, resulting in the Pd@Pt core-shell hexapods or octapods. Both the Pd@Pt core-shell hexapods and octapods exhibit the substantially enhanced catalytic properties in terms of activity and stability towards a methanol oxidation reaction (MOR) relative to the commercial Pt/C. Specifically, the Pd@Pt core-shell hexapods show the highest specific (1.97 mA cm-2) activity and mass activity (0.52 mA μgPt-1) for the MOR, which are 5.8 and 2.6 times higher than those of the commercial Pt/C, respectively. This enhancement can probably be attributed to their unique structures and the synergistic effect between Pt and Pd.
Collapse
Affiliation(s)
- Yalin Xiong
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li M, Zheng H, Han G, Xiao Y, Li Y. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Abbas SA, Iqbal MI, Kim SH, Jung KD. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Fu S, Zhu C, Song J, Zhang P, Engelhard MH, Xia H, Du D, Lin Y. Low Pt-content ternary PdCuPt nanodendrites: an efficient electrocatalyst for oxygen reduction reaction. NANOSCALE 2017; 9:1279-1284. [PMID: 28054683 DOI: 10.1039/c6nr06646a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dendritic nanostructures are capturing increasing attention in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time, bromide ion mediated synthesis of low Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between a Pt precursor and a PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In detail, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A mgPt-1 at 0.85 V vs. RHE, which is 14 times higher than that of a commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient method to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.
Collapse
Affiliation(s)
- Shaofang Fu
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Chengzhou Zhu
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Junhua Song
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Peina Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, P. R. China
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National laboratory, Richland, WA 99352, USA
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, P. R. China
| | - Dan Du
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Yuehe Lin
- The School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA. and Environmental Molecular Sciences Laboratory, Pacific Northwest National laboratory, Richland, WA 99352, USA
| |
Collapse
|
24
|
Lu S, Eid K, Ge D, Guo J, Wang L, Wang H, Gu H. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. NANOSCALE 2017; 9:1033-1039. [PMID: 28009900 DOI: 10.1039/c6nr08895c] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bimetallic Pt-based nanodendrites are of particular interest in various catalytic applications due to their high surface areas and low densities. Herein, we provide a facile method for one-pot synthesis of PtRu nanodendrites via the co-reduction of Pt and Ru precursors in oleylamine by H2. The as-fabricated PtRu nanodendrites exhibit superior catalytic activity and durability compared with PtRu nanocrystals (NCs), synthesized under the same reaction conditions, and the commercial Pt/C catalyst towards the methanol oxidation reaction (MOR).
Collapse
Affiliation(s)
- Shuanglong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| | - Kamel Eid
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Danhua Ge
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| | - Jun Guo
- Analysis and Testing Centre, Soochow University, Suzhou 215123, P.R. China
| | - Liang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
25
|
Singh MK, Mukherjee B, Mandal RK. Growth morphology and special diffraction characteristics of multifaceted gold nanoparticles. Micron 2017; 94:46-52. [PMID: 28049098 DOI: 10.1016/j.micron.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/10/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
This paper deals with morphology of synthesized nano gold particles through seed based growth. Various types of morphologies have been observed. They primarily relate to decahedral and truncated tetrahedral shapes. Their relative abundance is dependent on temporal evolution of nanoparticles. These shapes are understood to have evolved from a seed having symmetry that is a supergroup of the point groups possessed by these nanoparticles. The usual pentagonal twinned morphologies observed under High Resolution Transmission Electron Microscopy have displayed two distinct types of interfaces. They have been attributed to cubic and icosahedral three-fold orientations. Such a discussion is lacking in literature. The five triangular faces of decahedral particles are essentially rotational twins resulting out of a common five-fold axis. Two special diffraction features for truncated tetrahedral particles have been observed. They refer to (i) triangular streaks around Braggs spots conforming to three fold symmetry of these particles and (ii) by observation of forbidden reflections of the type 1/3{422} and 2/3{422} along 〈422〉 directions. Latter has been understood in terms of intrinsic fault whereas former arises owing to shape transform of nanoparticles. The presence of faults has helped rationalize decrease of lattice parameter vis-à-vis that of standard FCC gold. The variation of intensities of these forbidden reflections seems to be arising out of density of such intrinsic faults in nano gold particles in addition to dynamical effects.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221105, Uttar Pradesh, India
| | - Bratindranath Mukherjee
- Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221105, Uttar Pradesh, India
| | - Rajiv Kumar Mandal
- Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221105, Uttar Pradesh, India.
| |
Collapse
|
26
|
Lin Z, Chen W, Jiang Y, Bian T, Zhang H, Wu J, Wang Y, Yang D. Facile synthesis of Ru-decorated Pt cubes and icosahedra as highly active electrocatalysts for methanol oxidation. NANOSCALE 2016; 8:12812-12818. [PMID: 27297644 DOI: 10.1039/c6nr03303b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PtRu bimetallic particles are well-known commercial catalysts with promising performance for methanol oxidation. However, shape-controlled synthesis of PtRu bimetallic nanocrystals, especially for the platonic structures with {100} (e.g., cubes) or {111} facets (e.g., icosahedra) exposed towards catalysis, has met only limited success due to the different crystal structures of Pt and Ru. Here we report a facile approach to the synthesis of Ru decorated Pt bimetallic cubes and icosahedra in a mixed solvent. We found that the cubes were formed in the solvent containing N,N-dimethylmethanamide (DMF) and oleylamine (OAm) possibly due to the selective adsorption of CO on Pt{100} arising from the decomposition of DMF catalyzed by a Ru salt precursor. When hexadecane was added into the aforementioned solvent, the synthesis became a two-phase interfacial reaction due to the large difference in solvent polarity, thereby retarding the reaction kinetics and promoting the formation of the icosahedra with the composition similar to the cubes. When evaluated as catalysts towards methanol oxidation, the Ru decorated Pt icosahedra showed much better performance in terms of specific and mass activity relative to the corresponding cubes. Specifically, the Ru decorated Pt bimetallic icosahedra achieved a specific activity of 0.76 mA cm(-2) and mass activity of 74.43 mA mgPt(-1), which is ∼6.7 and 2.2 times as high as those of the carbon supported Pt7Ru nanoparticles, respectively. This enhancement can be attributed to a combination of twin-induced strain and facet effects.
Collapse
Affiliation(s)
- Zhuoqing Lin
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, and Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides. Sci Rep 2016; 6:26196. [PMID: 27184228 PMCID: PMC4869020 DOI: 10.1038/srep26196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022] Open
Abstract
Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs.
Collapse
|
28
|
Amiens C, Ciuculescu-Pradines D, Philippot K. Controlled metal nanostructures: Fertile ground for coordination chemists. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Bazán-Díaz L, Mendoza-Cruz R, Velázquez-Salazar JJ, Plascencia-Villa G, Romeu D, Reyes-Gasga J, Herrera-Becerra R, José-Yacamán M, Guisbiers G. Gold-copper nanostars as photo-thermal agents: synthesis and advanced electron microscopy characterization. NANOSCALE 2015; 7:20734-20742. [PMID: 26602429 DOI: 10.1039/c5nr06491k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoalloys have emerged as multi-functional nanoparticles with applications in biomedicine and catalysis. This work reports the efficient production and the advanced transmission electron microscopy characterization of gold-copper pentagonal nanostars. The morphology of the branches is controlled by the adequate choice of the capping agent. When oleylamine is used rounded nanostars are produced, while pointed nanostars are obtained by using hexadecylamine. Both types of nanostars were proved to be thermally stable and could therefore be used as therapeutic agents in photo-thermal therapies as confirmed by the near-infrared absorption spectra.
Collapse
Affiliation(s)
- Lourdes Bazán-Díaz
- Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhu C, Du D, Eychmüller A, Lin Y. Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem Rev 2015; 115:8896-943. [DOI: 10.1021/acs.chemrev.5b00255] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Key
Laboratory of Pesticide and Chemical Biology of the Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | | | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
31
|
Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of achieving high activity? J Catal 2015. [DOI: 10.1016/j.jcat.2015.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Lai J, Niu W, Qi W, Zhao J, Li S, Gao W, Luque R, Xu G. A Platinum Highly Concave Cube with one Leg on each Vertex as an Advanced Nanocatalyst for Electrocatalytic Applications. ChemCatChem 2015. [DOI: 10.1002/cctc.201403042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Polavarapu L, Mourdikoudis S, Pastoriza-Santos I, Pérez-Juste J. Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 2015. [DOI: 10.1039/c5ce00112a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Xie R, Pan Y, Gu H. Synthesis of Pt dendritic nanocubes with enhanced catalytic properties. RSC Adv 2015. [DOI: 10.1039/c4ra16920d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pt dendritic nanocubes (DNCs) were successfully synthesized in oleylamine under a 1 bar H2 atmosphere. The catalytic activity of Pt DNCs was much greater than conventional Pt nanoparticles (NPs) for methanol electrooxidation.
Collapse
Affiliation(s)
- Ruigang Xie
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Yue Pan
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
| |
Collapse
|
35
|
Wang X, Sun Y, Hu J, Li YJ, Yeung ES. Electrochemical fabrication of Hydrangea macrophylla flower-like Pt hierarchical nanostructures and their properties for methanol electrooxidation. RSC Adv 2015. [DOI: 10.1039/c4ra10595h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrangea macrophylla flower-like Pt hierarchical nanostructures were fabricated by a one-step current-directed growth method and exhibited better electrocatalytic activity and extremely strong stability toward methanol oxidation.
Collapse
Affiliation(s)
- Xia Wang
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yue Sun
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Jun Hu
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Edward S. Yeung
- State Key Lab of Chemo/Biosensing and Chemometrics
- School of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
36
|
Osmić M, Kolny-Olesiak J, Al-Shamery K. Size control and shape evolution of single-twinned platinum nanocrystals in a room temperature colloidal synthesis. CrystEngComm 2014. [DOI: 10.1039/c4ce01342e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Zhou N, Li D, Yang D. Morphology and composition controlled synthesis of flower-like silver nanostructures. NANOSCALE RESEARCH LETTERS 2014; 9:302. [PMID: 24994957 PMCID: PMC4070649 DOI: 10.1186/1556-276x-9-302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/06/2014] [Indexed: 05/27/2023]
Abstract
Flower-like silver nanostructures with controlled morphology and composition were prepared through wet-chemical synthesis. The reaction rate is simply manipulated by the amount of catalyzing agent ammonia added which is the key point to determine the ratio of hexagonal close-packed (HCP) to face-centered cubic (FCC) phase in silver nanostructures. The existence of formic acid that is the oxidation product of aldehyde group is demonstrated to play a crucial role in achieving the metastable HCP crystal structures by replacing ionic surfactants with polyvinylpyrrolidone (PVP). Utilizing flower-like silver nanostructures as surface-enhanced Raman scattering (SERS) substrates, Raman signal of Rhodamine 6G, or 4-aminothiophenol with concentration as low as 10(-7) M was detected. Moreover, it is demonstrated that phase composition has no direct relation to the SERS enhancing factor which is mainly determined by the amount of hot spots.
Collapse
Affiliation(s)
- Ning Zhou
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Dongsheng Li
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
38
|
Branched Au nanostructures enriched with a uniform facet: facile synthesis and catalytic performances. Sci Rep 2014; 4:5259. [PMID: 24918973 PMCID: PMC4052748 DOI: 10.1038/srep05259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/23/2014] [Indexed: 01/29/2023] Open
Abstract
Well–defined noble metal nanocrystals (NMNCs) of a unique morphology yet a uniform facet have attracted broad interests. In this regard, those with a highly branched architecture have gained particular attention. Most of the currently existing branched NMNCs, however, are enclosed by mixed facets. We now report that branched Au nanoarchitectures could be facilely fabricated by mixing an aqueous solution of KAuCl4, an aqueous dispersion of graphene oxide, and ethanol under ambient conditions. Interestingly, unilike the conventional branched NMNCs, our unique Au nanostructures are predominately enriched with a uniform facet of {111}. Compared to the spherical Au nanostructures exposed with mixed facets, our branched nanospecies of a uniform facet display superior catalytic performances both for the catalytic reduction of 4–nitrophenol and the electrocatalytic oxidation of methanol. Our investigation represents the first example that Au nanostructures simultaneously featured with a highly branched architecture and a uniform crystal facet could be formulated. Our unique Au nanostructures provide a fundamental yet new scientific forum to disclose the correlation between the surface atomic arrangement and the catalytic performances of branched NMNCs.
Collapse
|
39
|
Wu H, Mei S, Cao X, Zheng J, Lin M, Tang J, Ren F, Du Y, Pan Y, Gu H. Facile synthesis of Pt/Pd nanodendrites for the direct oxidation of methanol. NANOTECHNOLOGY 2014; 25:195702. [PMID: 24762712 DOI: 10.1088/0957-4484/25/19/195702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The demand for clean and energy-efficient fuel cell systems requires electrocatalysts with greater activity and stability. Here, we report a facile wet-chemical approach for the synthesis of high-quality three-dimensional (3D) Pt/Pd bimetallic nanodendrites. The simple and unique process developed here used oleylamine as a reducing agent, and hydrogen gas to control the morphology. The as-prepared Pt/Pd nanodendrites were characterized by transmission electron microscopy, x-ray diffraction and energy dispersive x-ray spectroscopy, cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The nanodendrites showed superior electrocatalytic activity (609.565 mA mg(-1) Pt) for the oxidation of methanol compared with Pt nanoparticle electrocatalysts. This method could provide a general approach for the morphology-controlled synthesis of bimetallic Pt-based nanocatalysts, which are promising materials for applications in fuel cells.
Collapse
Affiliation(s)
- Hai Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sahu SC, Samantara AK, Satpati B, Bhattacharjee S, Jena BK. A facile approach for in situ synthesis of graphene-branched-Pt hybrid nanostructures with excellent electrochemical performance. NANOSCALE 2013; 5:11265-11274. [PMID: 24088741 DOI: 10.1039/c3nr03372d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile and green approach for the synthesis of highly electroactive branched Pt nanostructures well dispersed on graphene has been developed by in situ reduction of graphene oxides and Pt(iv) ions in an aqueous medium. The as-synthesized branched Pt and graphene hybrid nanomaterials (GR-BPtNs) were thoroughly characterized using Transmission Electron Microscope (TEM), UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Raman spectroscopy. This report clearly exploits the decisive role of the graphene support, the pH of the solution and the stabiliser on shaping the branched morphology of the Pt nanostructures well dispersed on graphene. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements were employed to investigate the electrocatalytic performance and durability of GR-BPtNs towards methanol oxidation and oxygen reduction. The results reveal that the synergetic effect of the graphene support and the branched morphology triggers electrocatalytic performance and robust tolerance to surface poisoning of GR-BPtNs.
Collapse
Affiliation(s)
- Subash Chandra Sahu
- Colloids & Materials Chemistry, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
| | | | | | | | | |
Collapse
|
41
|
Xia BY, Wu HB, Wang X, Lou XWD. Highly Concave Platinum Nanoframes with High-Index Facets and Enhanced Electrocatalytic Properties. Angew Chem Int Ed Engl 2013; 52:12337-40. [DOI: 10.1002/anie.201307518] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 11/07/2022]
|
42
|
Xia BY, Wu HB, Wang X, Lou XWD. Highly Concave Platinum Nanoframes with High-Index Facets and Enhanced Electrocatalytic Properties. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Mourdikoudis S, Chirea M, Altantzis T, Pastoriza-Santos I, Pérez-Juste J, Silva F, Bals S, Liz-Marzán LM. Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. NANOSCALE 2013; 5:4776-84. [PMID: 23613112 DOI: 10.1039/c3nr00924f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m(2) g(-1)) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.
Collapse
|
44
|
Niu X, Lan M, Zhao H, Chen C. Well-Dispersed Pt Cubes on Porous Cu Foam: High-Performance Catalysts for the Electrochemical Oxidation of Glucose in Neutral Media. Chemistry 2013; 19:9534-41. [DOI: 10.1002/chem.201300234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 11/10/2022]
|
45
|
Assembly of Pt Nanowires into Cubelike Superstructures Supported on Aligned Carbon Nanotubes as Highly Stable Electrocatalysts. Chemistry 2013; 19:9155-9. [DOI: 10.1002/chem.201203874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/11/2013] [Indexed: 11/07/2022]
|
46
|
Li GR, Xu H, Lu XF, Feng JX, Tong YX, Su CY. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. NANOSCALE 2013; 5:4056-4069. [PMID: 23584514 DOI: 10.1039/c3nr00607g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrochemical synthesis represents a highly efficient method for the fabrication of nanostructured energy materials, and various nanostructures, such as nanorods, nanowires, nanotubes, nanosheets, dendritic nanostructures, and composite nanostructures, can be easily fabricated with advantages of low cost, low synthetic temperature, high purity, simplicity, and environmental friendliness. The electrochemical synthesis, characterization, and application of electrochemical energy nanomaterials have advanced greatly in the past few decades, allowing an increasing understanding of nanostructure-property-performance relationships. Herein, we highlight some recent progress in the electrochemical synthesis of electrochemical energy materials with the assistance of additives and templates in solution or grafted onto metal or conductive polymer supports, with special attention to the effects on surface morphologies, structures and, more importantly, electrochemical performance. The methodology for preparing novel electrochemical energy nanomaterials and their potential applications has been summarized. Finally, we outline our personal perspectives on the electrochemical synthesis and applications of electrochemical energy nanomaterials.
Collapse
Affiliation(s)
- Gao-Ren Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | |
Collapse
|
47
|
Yoon J, Khi NT, Kim H, Kim B, Baik H, Back S, Lee S, Lee SW, Kwon SJ, Lee K. High yield synthesis of catalytically active five-fold twinned Pt nanorods from a surfactant-ligated precursor. Chem Commun (Camb) 2013; 49:573-5. [DOI: 10.1039/c2cc36905b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. NEW J CHEM 2013. [DOI: 10.1039/c3nj00650f] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Lara P, Philippot K, Chaudret B. Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem 2012. [DOI: 10.1002/cctc.201200666] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Li C, Han L, Liu R, Li H, Zhang S, Zhang G. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35415b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|