1
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Haak J, Cutsail GE. Distinguishing between aquo and hydroxo coordination in molecular copper complexes by 1H and 17O ENDOR spectroscopy. Dalton Trans 2025; 54:728-744. [PMID: 39569816 DOI: 10.1039/d4dt02708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Aquo and hydroxo ligands play an essential role in the chemistry of many copper enzymes and small molecule catalysts. The formation of a series of copper complexes with H2O and OH- ligands in various positions, including [Cu(bpy)(OAc)(H2O)2,ax]+ (Cu-I), [Cu(bpy)(OH)2,eq(HxO)2,ax] (Cu-III), [Cu(OH)4,eq(HxO)2,ax]2- (Cu-IV), [Cu(bpy)(H2O)2,eq(H2O)2,ax]2+ (Cu-V) and [Cu(bpy)2(H2O)ax]2+ (Cu-VI), were investigated through Electron Paramagnetic Resonance (EPR) and UV-Vis spectroscopy in aqueous copper bipyridine solutions in the dependence of the pH and the copper-to-bipyridine ratio (bpy = 2,2'-bipyridine). 2H- and 17O-enrichment of the copper complexes allowed us to determine the 1H and 17O nuclear hyperfine interactions of their HxO ligands via Q-band Electron Nuclear Double Resonance (ENDOR) spectroscopy. These techniques gave direct insight into the metal-ligand covalencies and geometries and were further supported by Density Functional Theory (DFT) calculations. It is shown that 1H and 17O ENDOR spectroscopy can aid in (1) determining the coordination position, thereby differentiating between equatorial and axial HxO ligands and (2) distinguishing equatorial aqua and hydroxo ligands, particularly through their anisotropic dipolar components. We further studied the influence of trans coordinating ligands on the hyperfine parameters of aquo and hydroxo ligands, enabled through contrasting the coordination environments in the examined complexes, supported by quantum chemical computations.
Collapse
Affiliation(s)
- Julia Haak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45117 Essen, Germany
| |
Collapse
|
3
|
Haak J, Golten O, Sørlie M, Eijsink VGH, Cutsail GE. pH-mediated manipulation of the histidine brace in LPMOs and generation of a tri-anionic variant, investigated by EPR, ENDOR, ESEEM and HYSCORE spectroscopy. Chem Sci 2024; 16:233-254. [PMID: 39605866 PMCID: PMC11590009 DOI: 10.1039/d4sc04794j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) catalyze the oxidative depolymerization of polysaccharides at a monocopper active site, that is coordinated by the so-called histidine brace. In the past, this motif has sparked considerable interest, mostly due to its ability to generate and stabilize highly oxidizing intermediates during catalysis. We used a variety of advanced EPR techniques, including Electron Nuclear Double Resonance (ENDOR), Electron Spin Echo Envelope Modulation (ESEEM) and Hyperfine Sublevel Correlation (HYSCORE) spectroscopy in combination with isotopic labelling (15N, 2H) to characterize the active site of the bacterial LPMO SmAA10A over a wide pH range (pH 4.0-pH 12.5). At elevated pH values, several ligand modifications are observed, including changes in the H x O ligand coordination, but also regarding the protonation state of the histidine brace. At pH > 11.5, the deprotonation of the two remote nitrogen nuclei of the imidazole moieties and of the terminal amine is observed. These deprotonations are associated with major electronic changes, including increased σ-donor capabilities of the imidazolates and an overall reduced interaction of the deprotonated amine function. This observation highlights a potentially more significant role of the imidazole ligands, particularly for the stabilization of potent oxidants during turnover. The presented study demonstrates the application of advanced EPR techniques for a thorough characterization of the active site in LPMOs, which ultimately sets a foundation for and affords an outlook on future applications characterizing reaction intermediates.
Collapse
Affiliation(s)
- Julia Haak
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstrasse 5-7 D-45141 Essen Germany
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences N-1432 Ås Norway
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstrasse 5-7 D-45141 Essen Germany
| |
Collapse
|
4
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
5
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Abelein A, Ciofi-Baffoni S, Mörman C, Kumar R, Giachetti A, Piccioli M, Biverstål H. Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer's Disease. JACS AU 2022; 2:2571-2584. [PMID: 36465548 PMCID: PMC9709942 DOI: 10.1021/jacsau.2c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/22/2023]
Abstract
Metal ions, such as copper and zinc ions, have been shown to strongly modulate the self-assembly of the amyloid-β (Aβ) peptide into insoluble fibrils, and elevated concentrations of metal ions have been found in amyloid plaques of Alzheimer's patients. Among the physiological transition metal ions, Cu(II) ions play an outstanding role since they can trigger production of neurotoxic reactive oxygen species. In contrast, structural insights into Cu(II) coordination of Aβ have been challenging due to the paramagnetic nature of Cu(II). Here, we employed specifically tailored paramagnetic NMR experiments to determine NMR structures of Cu(II) bound to monomeric Aβ. We found that monomeric Aβ binds Cu(II) in the N-terminus and combined with molecular dynamics simulations, we could identify two prevalent coordination modes of Cu(II). For these, we report here the NMR structures of the Cu(II)-bound Aβ complex, exhibiting heavy backbone RMSD values of 1.9 and 2.1 Å, respectively. Further, applying aggregation kinetics assays, we identified the specific effect of Cu(II) binding on the Aβ nucleation process. Our results show that Cu(II) efficiently retards Aβ fibrillization by predominately reducing the rate of fibril-end elongation at substoichiometric ratios. A detailed kinetic analysis suggests that this specific effect results in enhanced Aβ oligomer generation promoted by Cu(II). These results can quantitatively be understood by Cu(II) interaction with the Aβ monomer, forming an aggregation inert complex. In fact, this mechanism is strikingly similar to other transition metal ions, suggesting a common mechanism of action of retarding Aβ self-assembly, where the metal ion binding to monomeric Aβ is a key determinant.
Collapse
Affiliation(s)
- Axel Abelein
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Cecilia Mörman
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
- Department
of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, Stockholm106 91, Sweden
| | - Rakesh Kumar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
| | - Andrea Giachetti
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Henrik Biverstål
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
- Department
of Physical Organic Chemistry, Latvian Institute
of Organic Synthesis, RigaLV-1006, Latvia
| |
Collapse
|
7
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
8
|
Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide antibiotic, daptomycin, was repurposed to a multicopper catalyst presenting cooperative rate enhancement in O–O bond formation and activation reactions.
Collapse
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Jodts RJ, Ross MO, Koo CW, Doan PE, Rosenzweig AC, Hoffman BM. Coordination of the Copper Centers in Particulate Methane Monooxygenase: Comparison between Methanotrophs and Characterization of the Cu C Site by EPR and ENDOR Spectroscopies. J Am Chem Soc 2021; 143:15358-15368. [PMID: 34498465 DOI: 10.1021/jacs.1c07018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In nature, methane is oxidized to methanol by two enzymes, the iron-dependent soluble methane monooxygenase (sMMO) and the copper-dependent particulate MMO (pMMO). While sMMO's diiron metal active site is spectroscopically and structurally well-characterized, pMMO's copper sites are not. Recent EPR and ENDOR studies have established the presence of two monocopper sites, but the coordination environment of only one has been determined, that within the PmoB subunit and denoted CuB. Moreover, this recent work only focused on a type I methanotrophic pMMO, while previous observations of the type II enzyme were interpreted in terms of the presence of a dicopper site. First, this report shows that the type II Methylocystis species strain Rockwell pMMO, like the type I pMMOs, contains two monocopper sites and that its CuB site has a coordination environment identical to that of type I enzymes. As such, for the full range of pMMOs this report completes the refutation of prior and ongoing suggestions of multicopper sites. Second, and of primary importance, EPR/ENDOR measurements (a) for the first time establish the coordination environment of the spectroscopically observed site, provisionally denoted CuC, in both types of pMMO, thereby (b) establishing the assignment of this site observed by EPR to the crystallographically observed metal-binding site in the PmoC subunit. Finally, these results further indicate that CuC is the likely site of biological methane oxidation by pMMO, a conclusion that will serve as a foundation for proposals regarding the mechanism of this reaction.
Collapse
Affiliation(s)
- Richard J Jodts
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew O Ross
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher W Koo
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter E Doan
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian M Hoffman
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Beuning CN, Zocchi LJ, Malikidogo KP, Esmieu C, Dorlet P, Crans DC, Hureau C. Measurement of Interpeptidic Cu II Exchange Rate Constants of Cu II-Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorg Chem 2021; 60:7650-7659. [PMID: 33983723 DOI: 10.1021/acs.inorgchem.0c03555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interpeptidic CuII exchange rate constants were measured for two Cu amyloid-β complexes, Cu(Aβ1-16) and Cu(Aβ1-28), to fluorescent peptides GHW and DAHW using a quantitative tryptophan fluorescence quenching methodology. The second-order rate constants were determined at three pH values (6.8, 7.4, and 8.7) important to the two Cu(Aβ) coordination complexes, components Cu(Aβ)I and Cu(Aβ)II. The interpeptidic CuII exchange rate constant is approximately 104 M-1 s-1 but varies in magnitude depending on many variables. These include pH, length of the Aβ peptide, location of the anchoring histidine ligand in the fluorescent peptide, number of amide deprotonations required in the tryptophan peptide to coordinate CuII, and interconversion between Cu(Aβ)I and Cu(Aβ)II. We also present EPR data probing the CuII exchange between peptides and the formation of ternary species between Cu(Aβ) and GHW. As the nonfluorescent GHK and DAHK peptides are important motifs found in the blood and serum, their ability to sequester CuII ions from Cu(Aβ) complexes may be relevant for the metal homeostasis and its implication in Alzheimer's disease. Thus, their kinetic CuII interpeptidic exchange rate constants are important chemical rate constants that can help elucidate the complex CuII trafficking puzzle in the synaptic cleft.
Collapse
Affiliation(s)
- Cheryle N Beuning
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Luca J Zocchi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, IMM, 13400 Marseille, France
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
11
|
Banchelli M, Cascella R, D’Andrea C, La Penna G, Li MS, Machetti F, Matteini P, Pizzanelli S. Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling. ACS Chem Neurosci 2021; 12:1150-1161. [PMID: 33724783 PMCID: PMC9284516 DOI: 10.1021/acschemneuro.0c00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.
Collapse
Affiliation(s)
- Martina Banchelli
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Roberta Cascella
- University of Florence, Department of Experimental and Clinical Biomedical Sciences, I-50134 Firenze, Italy
| | - Cristiano D’Andrea
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- National Institute for Nuclear Physics (INFN),
Section of Roma-Tor Vergata, I-00133 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Fabrizio Machetti
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), Sesto Fiorentino, I-50019 FI, Italy
- University of Florence, Department of Chemistry “Ugo Schiff”, Sesto Fiorentino, I-50019 FI, Italy
| | - Paolo Matteini
- National Research Council of Italy, Institute of Applied Physics “Nello Carrara”, Sesto Fiorentino, I-50019 FI, Italy
| | - Silvia Pizzanelli
- National Research Council of Italy (CNR), Institute of Chemistry of Organometallic Compounds (ICCOM), I-56124 Pisa, Italy
| |
Collapse
|
12
|
Cutsail GE, Ross MO, Rosenzweig AC, DeBeer S. Towards a unified understanding of the copper sites in particulate methane monooxygenase: an X-ray absorption spectroscopic investigation. Chem Sci 2021; 12:6194-6209. [PMID: 33996018 PMCID: PMC8098663 DOI: 10.1039/d1sc00676b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enzymatic conversion of the greenhouse gas, methane, to a liquid fuel, methanol, is performed by methane monooxygenases (MMOs) under mild conditions. The copper stoichiometry of particulate MMO (pMMO) has been long debated, with a dicopper site previously proposed on the basis of a 2.51 Å Cu–Cu feature in extended X-ray absorption fine structure (EXAFS) data. However, recent crystallographic data and advanced electron paramagnetic resonance (EPR) characterization support the presence of only mononuclear copper sites. To reconcile these data, we have collected high-energy resolution fluorescence detected (HERFD) and partial fluorescence yield (PFY) EXAFS spectra of Methylococcus (M.) capsulatus (Bath) pMMO. Both methods reveal only monocopper sites. These data were compared to previously published pMMO PFY-EXAFS data from M. capsulatus (Bath) and Methylomicrobium alcaliphilum 20Z, supporting dicopper and monocopper sites, respectively. The FT-EXAFS feature previously attributed to a dicopper site can be reproduced by the inclusion of a metallic copper background signal. The exact position of this feature is dependent on the nature of the sample and the percentage of background contamination, indicating that visual inspection is not sufficient for identifying background metallic contributions. Additionally, an undamaged X-ray absorption spectrum was obtained, consistent with the copper oxidation-state speciation determined by EPR quantification. X-ray photodamage studies suggest that the previously observed Cu(i) XAS features are in part attributable to photodamage. This study illustrates the complex array of factors involved in EXAFS measurement and modeling of pMMO and more generally, dilute metalloproteins with multiple metal centers. Extended X-ray absorption fine structure spectroscopic analysis of particulate methane monooxygenase reveals only monocopper sites and investigates the possible origins of the previous observed dicopper signals.![]()
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany .,University of Duisburg-Essen Universitätsstrasse 7 D-45151 Essen Germany
| | - Matthew O Ross
- Departments of Molecular Biosciences and Chemistry, Northwestern University Evanston 60208 IL USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University Evanston 60208 IL USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
13
|
Atomic-scale evidence for highly selective electrocatalytic N-N coupling on metallic MoS 2. Proc Natl Acad Sci U S A 2020; 117:31631-31638. [PMID: 33257572 PMCID: PMC7749309 DOI: 10.1073/pnas.2008429117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Molybdenum sulfide (MoS2) is the most studied two-dimensional (2D) material bar graphene. Current research on crystal-phase engineering focuses almost exclusively on the improvement of catalytic activity. However, the potential advantages of phase engineering toward regulation of selectivity control during multistep catalytic processes remain unexplored. Here, we report atomic-scale evidence on how metallic MoS2 shows significantly higher selectivity compared to the semiconducting phase during multielectron reduction of nitrite to nitrous oxide. Namely, a reaction intermediate specific to metallic MoS2 increases the selectivity by decoupling the proton and electron transfer steps. This has previously been shown to be a universal mechanism to enhance selectivity, and therefore, our work opens directions of the application of 2D materials toward selective electrocatalysis. Molybdenum sulfide (MoS2) is the most widely studied transition-metal dichalcogenide (TMDs) and phase engineering can markedly improve its electrocatalytic activity. However, the selectivity toward desired products remains poorly explored, limiting its application in complex chemical reactions. Here we report how phase engineering of MoS2 significantly improves the selectivity for nitrite reduction to nitrous oxide, a critical process in biological denitrification, using continuous-wave and pulsed electron paramagnetic resonance spectroscopy. We reveal that metallic 1T-MoS2 has a protonation site with a pKa of ∼5.5, where the proton is located ∼3.26 Å from redox-active Mo site. This protonation site is unique to 1T-MoS2 and induces sequential proton−electron transfer which inhibits ammonium formation while promoting nitrous oxide production, as confirmed by the pH-dependent selectivity and deuterium kinetic isotope effect. This is atomic-scale evidence of phase-dependent selectivity on MoS2, expanding the application of TMDs to selective electrocatalysis.
Collapse
|
14
|
Interactions of Aβ1-42 Peptide and Its Three Fragments (Aβ8-12, Aβ8-13, and Aβ5-16) with Selected Nonsteroidal Drugs and Compounds of Natural Origin. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the following paper, we present the results of our studies on the interactions of the Aβ1-42 peptide and its three short fragments, namely Aβ5-16 (RHDSGYEVHHQK; HZ1), Aβ8-13 (SGYEVH; HZ2), and Aβ8-12 (SGYEV; HZ3) with selected painkillers (ibuprofen and aspirin) and compounds of natural origin (anabasine and epinephrine). Steady-state fluorescence spectroscopy was used to study the binding properties of the selected systems. Additionally, based on molecular dynamics (MD) calculations supported by NMR-derived restrains, we have proposed the most likely area of the interactions of Aβ1-42 and Aβ5-16 peptides with the investigated compounds. The influence of symmetrically oriented side chains of amino acid residues present in the first part of the Aβ1-42 sequence on the stability of the resulting complexes has been discussed. Finally, the changes in the peptide structures on account of complex formation were analyzed.
Collapse
|
15
|
Schilling KM, Tao L, Wu B, Kiblen JTM, Ubilla-Rodriguez NC, Pushie MJ, Britt RD, Roseman GP, Harris DA, Millhauser GL. Both N-Terminal and C-Terminal Histidine Residues of the Prion Protein Are Essential for Copper Coordination and Neuroprotective Self-Regulation. J Mol Biol 2020; 432:4408-4425. [PMID: 32473880 PMCID: PMC7387163 DOI: 10.1016/j.jmb.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023]
Abstract
The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.
Collapse
Affiliation(s)
- Kevin M Schilling
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lizhi Tao
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA
| | - Joseph T M Kiblen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Natalia C Ubilla-Rodriguez
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, Saskatoon, SK S7N 5E5, Canada
| | - R David Britt
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St Silvio Conte., Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
16
|
Huy Pham DQ, Krupa P, Nguyen HL, La Penna G, Li MS. Computational Model to Unravel the Function of Amyloid-β Peptides in Contact with a Phospholipid Membrane. J Phys Chem B 2020; 124:3300-3314. [DOI: 10.1021/acs.jpcb.0c00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dinh Quoc Huy Pham
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 00133 Ho Chi Minh City, Vietnam
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, 00186 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
17
|
Mei Y, Quan J, Gu Y, Yang Y, Huang J, Sun K, Li H. Chiral Selective Adhesion of Protein Droplets on Calix[4]arene-Enantiomer-Modified Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:1226-1232. [DOI: 10.1021/acsabm.9b01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxiao Mei
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiaxin Quan
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yulin Gu
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Yuxia Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Jinmei Huang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Kunpeng Sun
- National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academic Sciences, Lanzhou, 730000, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
18
|
Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, Mayo SL, Rosenzweig AC, Hoffman BM. Particulate methane monooxygenase contains only mononuclear copper centers. Science 2019; 364:566-570. [PMID: 31073062 PMCID: PMC6664434 DOI: 10.1126/science.aav2572] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Bacteria that oxidize methane to methanol are central to mitigating emissions of methane, a potent greenhouse gas. The nature of the copper active site in the primary metabolic enzyme of these bacteria, particulate methane monooxygenase (pMMO), has been controversial owing to seemingly contradictory biochemical, spectroscopic, and crystallographic results. We present biochemical and electron paramagnetic resonance spectroscopic characterization most consistent with two monocopper sites within pMMO: one in the soluble PmoB subunit at the previously assigned active site (CuB) and one ~2 nanometers away in the membrane-bound PmoC subunit (CuC). On the basis of these results, we propose that a monocopper site is able to catalyze methane oxidation in pMMO.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological Electron Paramagnetic Resonance Spectroscopy, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jingzhou Wang
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alex Nisthal
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thomas J Lawton
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Barry D Olafson
- Protabit, 1010 E. Union Street, Suite 110, Pasadena, CA 91106, USA
| | - Stephen L Mayo
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Brian M Hoffman
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Summers KL, Schilling KM, Roseman G, Markham KA, Dolgova NV, Kroll T, Sokaras D, Millhauser GL, Pickering IJ, George GN. X-ray Absorption Spectroscopy Investigations of Copper(II) Coordination in the Human Amyloid β Peptide. Inorg Chem 2019; 58:6294-6311. [PMID: 31013069 DOI: 10.1021/acs.inorgchem.9b00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aβ) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aβ, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aβ via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aβ in vitro, there is still uncertainty surrounding Cu(II) coordination in Aβ. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aβ(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aβ(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aβ(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aβ(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aβ(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aβ(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Kevin M Schilling
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Graham Roseman
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Kate A Markham
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Natalia V Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences , University of Saskatchewan , 114 Science Place , Saskatoon , Saskatchewan S7N 5E2 , Canada.,Department of Chemistry , University of Saskatchewan , 110 Science Place , Saskatoon , Saskatchewan S7N 5C9 , Canada
| |
Collapse
|
20
|
Jeong D, Han S, Lim YB, Kim SH. Investigation of the Hydration State of Self-Assembled Peptide Nanostructures with Advanced Electron Paramagnetic Resonance Spectroscopy. ACS OMEGA 2019; 4:114-120. [PMID: 31459317 PMCID: PMC6648812 DOI: 10.1021/acsomega.8b02450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 06/10/2023]
Abstract
Probing the intermolecular interactions and local environments of self-assembled peptide nanostructures (SPNs) is crucial for a better understanding of the underlying molecular details of self-assembling phenomena. In particular, investigation of the hydration state is important to understand the nanoscale structural and functional characteristics of SPNs. In this report, we examined the local hydration environments of SPNs in detail to understand the driving force of the discrete geometric structural self-assembling phenomena for peptide nanostructures. Advanced electron paramagnetic resonance spectroscopy was used to probe the hydrogen bond formation and geometry as well as the hydrophobicity of the local environments at various spin-labeled sites in SPNs. The experimental results supplement the sparse experimental data regarding local structures of SPNs, such as the hydrogen bonding and the hydrophobicity of the local environment, providing important information on the formation of SPNs, which have immense potential for bioactive materials.
Collapse
Affiliation(s)
- Donghyuk Jeong
- Western
Seoul Center, Korea Basic Science Institute
(KBSI), Seoul 03759, Republic of Korea
| | - Sanghun Han
- Department
of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-beom Lim
- Department
of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun Hee Kim
- Western
Seoul Center, Korea Basic Science Institute
(KBSI), Seoul 03759, Republic of Korea
| |
Collapse
|
21
|
La Penna G, Li MS. Computational models explain how copper binding to amyloid-β peptide oligomers enhances oxidative pathways. Phys Chem Chem Phys 2019; 21:8774-8784. [DOI: 10.1039/c9cp00293f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) peptides are intrinsically disordered peptides and their aggregation is the major hallmark of Alzheimer's disease (AD) development.
Collapse
Affiliation(s)
- Giovanni La Penna
- National Research Council of Italy (CNR)
- Institute for Chemistry of Organometallic Compounds (ICCOM)
- via Madonna del Piano 10
- 50019 Sesto Fiorentino
- Firenze
| | - Mai Suan Li
- Institute of Physics
- Polish Academy of Sciences
- Al. Lotnikow 32/46
- 02-668 Warsaw
- Poland
| |
Collapse
|
22
|
Hong S, Go YK, Derrick JS, Han S, Kim J, Lim MH, Kim SH. Advanced Electron Paramagnetic Resonance Studies of a Ternary Complex of Copper, Amyloid-β, and a Chemical Regulator. Inorg Chem 2018; 57:12665-12670. [DOI: 10.1021/acs.inorgchem.8b01824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoo Kyung Go
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sanghun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Borghesani V, Alies B, Hureau C. Cu(II) binding to various forms of amyloid-β peptides. Are they friends or foes? Eur J Inorg Chem 2018; 2018:7-15. [PMID: 30186035 PMCID: PMC6120674 DOI: 10.1002/ejic.201700776] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/25/2023]
Abstract
In the present micro-review, we describe the Cu(II) binding to several forms of amyloid-β peptides, the peptides involved in Alzheimer's disease. It has indeed been shown that in addition to the "full-length" peptide originating from the precursor protein after cleavage at position 1, several other shorter peptides do exist in large proportion and may be involved in the disease as well. Cu(II) binding to amyloid-β peptides is one of the key interactions that impact both the aggregating properties of the amyloid peptides and the Reactive Oxygen Species (ROS) production, two events linked to the etiology of the disease. Binding sites and affinity are described in correlation with Cu(II) induced ROS formation and Cu(II) altered aggregation, for amyloid peptides starting at position 1, 3, 4, 11 and for the corresponding pyroglutamate forms when they could be obtained (i.e. for peptides cleaved at positions 3 and 11). It appears that the current paradigm which points out a toxic role of the Cu(II) - amyloid-β interaction might well be shifted towards a possible protective role when the peptides considered are the N-terminally truncated ones.
Collapse
Affiliation(s)
- Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | | | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
24
|
Frandsen KEH, Simmons TJ, Dupree P, Poulsen JCN, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol 2016; 12:298-303. [PMID: 26928935 DOI: 10.1038/nchembio.2029] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.
Collapse
Affiliation(s)
| | - Thomas J Simmons
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Luisa Ciano
- Department of Chemistry, University of York, York, UK
| | | | | | | | | | - Laurence Marmuse
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Sébastien Fort
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Sylvain Cottaz
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Hugues Driguez
- Centre de Recherches sur les Macromolecules Végétales (CERMAV), Université de Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France.,Institut National de la Recherche Agronomique (INRA), AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France.,Institut National de la Recherche Agronomique (INRA), AFMB, Marseille, France
| | - Floriana Tuna
- Engineering and Physical Sciences Research Council (EPSRC) National EPR Facility, School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Amgalanbaatar Baldansuren
- Engineering and Physical Sciences Research Council (EPSRC) National EPR Facility, School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Paul H Walton
- Department of Chemistry, University of York, York, UK
| |
Collapse
|
25
|
Bhardwaj S, Maurya N, Singh AK, Varshney R, Roy P. Promising ESIPT-based fluorescence sensor for Cu2+ and CN− ions: investigation towards logic gate behaviour, anticancer activities and bioimaging application. RSC Adv 2016. [DOI: 10.1039/c6ra22352d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An excited state intramolecular proton transfer (ESIPT) process-based novel chromogenic and fluorogenic probe (2) was synthesized with the aim of sequential in situ detection of Cu2+ and CN− ions under aqueous and biological conditions.
Collapse
Affiliation(s)
| | - Nirma Maurya
- Department of Chemistry
- Indian Institute of Technology – Roorkee
- Roorkee 247667
- India
| | - Ashok Kumar Singh
- Department of Chemistry
- Indian Institute of Technology – Roorkee
- Roorkee 247667
- India
| | - Ritu Varshney
- Department of Biotechnology
- Indian Institute of Technology – Roorkee
- Roorkee 247667
- India
| | - Partha Roy
- Department of Biotechnology
- Indian Institute of Technology – Roorkee
- Roorkee 247667
- India
| |
Collapse
|
26
|
De Santis E, Minicozzi V, Proux O, Rossi G, Silva KI, Lawless MJ, Stellato F, Saxena S, Morante S. Cu(II)-Zn(II) Cross-Modulation in Amyloid-Beta Peptide Binding: An X-ray Absorption Spectroscopy Study. J Phys Chem B 2015; 119:15813-20. [PMID: 26646533 DOI: 10.1021/acs.jpcb.5b10264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work we analyze at a structural level the mechanism by which Cu(II) and Zn(II) ions compete for binding to the Aβ peptides that is involved in the etiology of Alzheimer's disease. We collected X-ray absorption spectroscopy data on samples containing Aβ with Cu and Zn at different concentration ratios. We show that the order in which metals are added to the peptide solution matters and that, when Zn is added first, it prevents Cu from binding. On the contrary, when Cu is added first, it does not (completely) prevent Zn binding to Aβ peptides. Our analysis suggests that Cu and Zn ions are coordinated to different numbers of histidine residues depending on the [ion]:[peptide] concentration ratio.
Collapse
Affiliation(s)
- Emiliano De Santis
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble , Grenoble 38400, France
| | - Giancarlo Rossi
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy.,Centro Fermi , Rome 00184, Italy
| | - K Ishara Silva
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Matthew J Lawless
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Francesco Stellato
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Silvia Morante
- Department of Physics and INFN, University of Rome , Tor Vergata, Rome 00133, Italy
| |
Collapse
|
27
|
Kim D, Bang JK, Kim SH. Multi-Frequency, Multi-Technique Pulsed EPR Investigation of the Copper Binding Site of Murine Amyloid β Peptide. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Multi-Frequency, Multi-Technique Pulsed EPR Investigation of the Copper Binding Site of Murine Amyloid β Peptide. Angew Chem Int Ed Engl 2014; 54:1561-4. [DOI: 10.1002/anie.201410389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 11/07/2022]
|
29
|
Ji M, Tan L, Jen-Jacobson L, Saxena S. Insights into copper coordination in the EcoRI-DNA complex by ESR spectroscopy. Mol Phys 2014; 112:3173-3182. [PMID: 25750461 PMCID: PMC4350447 DOI: 10.1080/00268976.2014.934313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu2+ binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg2+ -catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI-DNA-(Cu2+ )2 complex. Cu2+ binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu2+ coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu2+ ions.
Collapse
Affiliation(s)
- Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Likun Tan
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Linda Jen-Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Culpepper MA, Cutsail GE, Gunderson WA, Hoffman BM, Rosenzweig AC. Identification of the valence and coordination environment of the particulate methane monooxygenase copper centers by advanced EPR characterization. J Am Chem Soc 2014; 136:11767-75. [PMID: 25059917 PMCID: PMC4140498 DOI: 10.1021/ja5053126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol in methanotrophic bacteria. As a copper-containing enzyme, pMMO has been investigated extensively by electron paramagnetic resonance (EPR) spectroscopy, but the presence of multiple copper centers has precluded correlation of EPR signals with the crystallographically identified monocopper and dicopper centers. A soluble recombinant fragment of the pmoB subunit of pMMO, spmoB, like pMMO itself, contains two distinct copper centers and exhibits methane oxidation activity. The spmoB protein, spmoB variants designed to disrupt one or the other or both copper centers, as well as native pMMO have been investigated by EPR, ENDOR, and ESEEM spectroscopies in combination with metal content analysis. The data are remarkably similar for spmoB and pMMO, validating the use of spmoB as a model system. The results indicate that one EPR-active Cu(II) ion is present per pMMO and that it is associated with the active-site dicopper center in the form of a valence localized Cu(I)Cu(II) pair; the Cu(II), however, is scrambled between the two locations within the dicopper site. The monocopper site observed in the crystal structures of pMMO can be assigned as Cu(I). (14)N ENDOR and ESEEM data are most consistent with one of these dicopper-site signals involving coordination of the Cu(II) ion by residues His137 and His139, the other with Cu(II) coordinated by His33 and the N-terminal amino group. (1)H ENDOR measurements indicate there is no aqua (HxO) ligand bound to the Cu(II), either terminally or as a bridge to Cu(I).
Collapse
Affiliation(s)
- Megen A Culpepper
- Departments of ‡Molecular Biosciences and of §Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | |
Collapse
|
31
|
Gomez-Castro CZ, Vela A, Quintanar L, Grande-Aztatzi R, Mineva T, Goursot A. Insights into the oxygen-based ligand of the low pH component of the Cu(2+)-amyloid-β complex. J Phys Chem B 2014; 118:10052-64. [PMID: 25090035 DOI: 10.1021/jp5047529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In spite of significant experimental effort dedicated to the study of Cu(2+) binding to the amyloid beta (Aβ) peptide, involved in Alzheimer's disease, the nature of the oxygen-based ligand in the low pH component of the Cu(2+)-Aβ(1-16) complex is still under debate. This study reports density-functional-theory-based calculations that explore the potential energy surface of Cu(2+) complexes including N and O ligands at the N-terminus of the Aβ peptide, with a focus on evaluating the role of Asp1 carboxylate in copper coordination. Model conformers including 3, 6, and 17 amino acids have been used to systematically study several aspects of the Cu(2+)-coordination such as the Asp1 side chain conformation, local peptide backbone geometry, electrostatic and/or hydrogen bond interactions, and number and availability of Cu(2+) ligands. Our results show that the Asp1 peptide carbonyl binds to Cu(2+) only if the coordination number is less than four. In contrast, if four ligands are available, the most stable structures include the Asp1 carboxylate in equatorial position instead of the Asp1 carbonyl group. The two lowest energy Cu(2+)-Aβ(1-17) models involve Asp1 COO(-), the N-terminus, and His6 and His14 as equatorial ligands, with either a carbonyl or a water molecule in the axial position. These models are in good agreement with experimental data reported for component I of the Cu(2+)-Aβ(1-16) complex, including EXAFS- and X-ray-derived Cu(2+)-ligand distances, Cu(2+) EPR parameters, and (14)N and (13)C superhyperfine couplings. Our results suggest that at low pH, Cu(2+)-Aβ species with Asp1 carboxylate equatorial coordination coexist with species coordinating the Asp1 carbonyl. Understanding the bonding mechanism in these species is relevant to gain a deeper insight on the molecular processes involving copper-amyloid-β complexes, such as aggregation and redox activity.
Collapse
Affiliation(s)
- Carlos Z Gomez-Castro
- Departamento de Química, Cinvestav , Avenida Instituto Politécnico Nacional 2508, México D.F. 07360, México
| | | | | | | | | | | |
Collapse
|
32
|
Shen X, Deng X, Pang Y. Self-assembly of Cu(ii) with amyloid β19–20 peptide: relevant to Alzheimer's disease. RSC Adv 2014. [DOI: 10.1039/c4ra02758b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
La Penna G, Hureau C, Andreussi O, Faller P. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease. J Phys Chem B 2013; 117:16455-67. [PMID: 24313818 DOI: 10.1021/jp410046w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to the amyloid cascade hypothesis, amyloid-β peptides (Aβ) play a causative role in Alzheimer's disease (AD), of which oligomeric forms are proposed to be the most neurotoxic by provoking oxidative stress. Copper ions seem to play an important role as they are bound to Aβ in amyloid plaques, a hallmark of AD. Moreover, Cu-Aβ complexes are able to catalyze the production of hydrogen peroxide and hydroxyl radicals, and oligomeric Cu-Aβ was reported to be more reactive. The flexibility of the unstructured Aβ peptide leads to the formation of a multitude of different forms of both Cu(I) and Cu(II) complexes. This raised the question of the structure-function relationship. We address this question for the biologically relevant Fenton-type reaction. Computational models for the Cu-Aβ complex in monomeric and dimeric forms were built, and their redox behavior was analyzed together with their reactivity with peroxide. A set of 16 configurations of Cu-Aβ was studied and the configurations were classified into 3 groups: (A) configurations that evolve into a linearly bound and nonreactive Cu(I) coordination; (B) reactive configurations without large reorganization between the two Cu redox states; and (C) reactive configurations with an open structure in the Cu(I)-Aβ coordination, which have high water accessibility to Cu. All the structures that showed high reactivity with H2O2 (to form HO(•)) fall into class C. This means that within all the possible configurations, only some pools are able to produce efficiently the deleterious HO(•), while the other pools are more inert. The characteristics of highly reactive configurations consist of a N-Cu(I)-N coordination with an angle far from 180° and high water crowding at the open side. This allows the side-on entrance of H2O2 and its cleavage to form a hydroxyl radical. Interestingly, the reactive Cu(I)-Aβ states originated mostly from the dimeric starting models, in agreement with the higher reactivity of oligomers. Our study gives a rationale for the Fenton-type reactivity of Cu-Aβ and how dimeric Cu-Aβ could lead to a higher reactivity. This opens a new therapeutic angle of attack against Cu-Aβ-based reactive oxygen species production.
Collapse
Affiliation(s)
- Giovanni La Penna
- CNR - National Research Council of Italy , ICCOM - Institute for Chemistry of Organo-Metallic Compounds, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | | | |
Collapse
|
34
|
Faller P, Hureau C, Berthoumieu O. Role of metal ions in the self-assembly of the Alzheimer's amyloid-β peptide. Inorg Chem 2013; 52:12193-206. [PMID: 23607830 DOI: 10.1021/ic4003059] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aggregation of amyloid-β (Aβ) by self-assembly into oligomers or amyloids is a central event in Alzheimer's disease. Coordination of transition-metal ions, mainly copper and zinc, to Aβ occurs in vivo and modulates the aggregation process. A survey of the impact of Cu(II) and Zn(II) on the aggregation of Aβ reveals some general trends: (i) Zn(II) and Cu(II) at high micromolar concentrations and/or in a large superstoichiometric ratio compared to Aβ have a tendency to promote amorphous aggregations (precipitation) over the ordered formation of fibrillar amyloids by self-assembly; (ii) metal ions affect the kinetics of Aβ aggregations, with the most significant impact on the nucleation phase; (iii) the impact is metal-specific; (iv) Cu(II) and Zn(II) affect the concentrations and/or the types of aggregation intermediates formed; (v) the binding of metal ions changes both the structure and the charge of Aβ. The decrease in the overall charge at physiological pH increases the overall driving force for aggregation but may favor more precipitation over fibrillation, whereas the induced structural changes seem more relevant for the amyloid formation.
Collapse
Affiliation(s)
- Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
| | | | | |
Collapse
|
35
|
Blundell KLIM, Wilson MT, Vijgenboom E, Worrall JAR. The role of the Cys-X-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein. Dalton Trans 2013; 42:10608-16. [DOI: 10.1039/c3dt50540e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|