1
|
Wang W, Li C, Luo S, Wu ZS. Spherical Nucleic Acid-Mediated Spatial Matching-Guided Nonenzymatic DNA Circuits for the Prediction and Prevention of Malignant Tumor Invasion. Anal Chem 2024; 96:7091-7100. [PMID: 38663871 DOI: 10.1021/acs.analchem.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Detection of intracellular miRNAs, especially sensitive imaging of in vivo miRNAs, is vital to the precise prediction and timely prevention of tumorgenesis but remains a technical challenge in terms of nuclease resistance and signal amplification. Here, we demonstrate a gold nanoparticle-based spherical nucleic acid-mediated spatial matching-guided nonenzymatic DNA circuit (SSDC) for efficient screening of intracellular miRNAs and, in turn, finding cancerous tissues in living organisms before the appearance of clinical symptoms. Due to the substantially enhanced nuclease resistance, the false positive signal is avoided even in a complex biological medium. Target miRNA can straighten out the hairpin DNA probe to be linear, allowing the probe to penetrate into the internal region of a core/shell DNA-functionalized signal nanoampfilier and initiate a strand displacement reaction, generating an amplified fluorescence signal. The detection limit is as low as 17 pM, and miRNA imaging is in good accordance with the gold standard polymerase chain reaction method. The ability to image intracellular miRNAs is substantially superior to that of conventional fluorescence in situ hybridization techniques, making in vivo SSDC-based imaging competent for the precise prediction of tumorigenesis. By intratumoral chemotherapy guided by SSDC-based imaging, tumorigenesis and progression are efficiently controlled before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Weijun Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Congcong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
De Luca F, Di Chio C, Zappalà M, Ettari R. Dihydrochalcones as antitumor agents. Curr Med Chem 2022; 29:5042-5061. [PMID: 35430969 DOI: 10.2174/0929867329666220415113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Dihydrochalcones are a class of secondary metabolites, possessing several biological properties such as antitumor, antioxidant, antibacterial, antidiabetic, estrogenic, anti-inflammatory, antithrombotic, antiviral, neuroprotective and immunomodulator properties; therefore, they are currently considered promising candidates in the drug discovery process. This review intend to debate their pharmacological actions with a particular attention to their antitumor activity against a panel of cancer cell-lines and to the description of the inhibition mechanisms of cell proliferation such as the regulation of angiogenesis, apoptosis, etc etc.
Collapse
Affiliation(s)
- Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| |
Collapse
|
3
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
4
|
A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modelling of magnetic hyperthermia using nanoparticles of ellipsoid tumor shapes has not been studied adequately. To fill this gap, a computational study has been carried out to determine two key treatment parameters: the therapeutic temperature distribution and the extent of thermal damage. Prolate and oblate spheroidal tumors, of various aspect ratios, surrounded by a large healthy tissue region are assumed. Tissue temperatures are determined from the solution of Pennes’ bio-heat transfer equation. The mortality of the tissues is determined by the Arrhenius kinetic model. The computational model is successfully verified against a closed-form solution for a perfectly spherical tumor. The therapeutic temperature and the thermal damage in the tumor center decrease as the aspect ratio increases and it is insensitive to whether tumors of the same aspect ratio are oblate or prolate spheroids. The necrotic tumor area is affected by the tumor prolateness and oblateness. Good comparison is obtained of the present model with three sets of experimental measurements taken from the literature, for animal tumors exhibiting ellipsoid-like geometry. The computational model enables the determination of the therapeutic temperature and tissue thermal damage for magnetic hyperthermia of ellipsoidal tumors. It can be easily reproduced for various treatment scenarios and may be useful for an effective treatment planning of ellipsoidal tumor geometries.
Collapse
|
5
|
Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.
Collapse
|
6
|
Khan MS, Hawlitzki M, Taheri SM, Rose G, Schweizer B, Brensing A. Investigation of Microwave Ablation Process in Sweet Potatoes as Substitute Liver. SENSORS 2021; 21:s21113894. [PMID: 34200011 PMCID: PMC8200201 DOI: 10.3390/s21113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
The microwave ablation technique to destroy cancer tissues in liver is practiced clinically and is the subject of ongoing research, e.g., ablation monitoring. For studies, liver tissue from cattle or pigs is often used as a substitute material. In this work, sweet potato is presented as an alternative material for microwave ablation experiments in liver due to similar material properties. Sweet potatoes as a substitute for liver have the advantages of better handling, easy procurement and stable material properties over time for microwave ablation experiments. The dielectric constant and electrical conductivity of sweet potato are characterized for temperature variation with the help of high-temperature dielectric probe. Furthermore, a test setup is presented for microwave ablation experiments in which a bowtie slot antenna matched to sweet potato is placed on its surface to directly receive the microwave power from a self-developed microwave applicator inserted into a sweet potato 4 cm below the surface antenna. A high-power source was used to excite the microwave powers up to 80 W and a spectrum analyzer was used to measure the signal received by the surface antenna. The experiments were performed in an anechoic chamber for safety reasons. Power at 50 W and 80 W was stimulated for a maximum of 600 s at the 2.45 GHz ISM band in different sweet potato experiments. A correlation is found between the power received by the surface antenna and rise of temperature inside sweet potato; relative received power drops from 1 at 76 ∘C to 0.6 at 88 ∘C (max. temperature) represents a 40% relative change in a 50 W microwave ablation experiment. The received power envelope at the surface antenna is between 10 mW and 32 mW during 50 W microwave ablation. Other important results for 10 min, 80 W microwave ablation include: a maximum ablation zone short axis diameter of 4.5 cm and a maximum ablation temperature reached at 99 ∘C, 3 mm away from the applicator’s slot. The results are compared with the state of the art in microwave ablation in animal liver. The dielectric constant and electrical conductivity evolution of sweet potato with rising temperature is comparable to animal liver in 50–60 ∘C range. The reflection loss of self-developed applicator in sweet potato is below 15 dB which is equal to reflection loss in liver experiments for 600 s. The temperature rise for the first 90 s in sweet potato is 76 ∘C as compared to 73 ∘C in liver with 50 W microwave ablation. Similarly, with 80–75 W microwave ablation, for the first 60 s, the temperature is 98 ∘C in sweet potato as compared to 100 ∘C in liver. The ablation zone short-axis diameter after 600 s is 3.3 cm for 50 W microwave ablation in sweet potato as compared to 3.5 cm for 30 W microwave ablation in liver. The reasons for difference in microwave ablation results in sweet potato and animal liver are discussed. This is the first study to directly receive a signal from microwave applicator during a microwave ablation process with the help of a surface antenna. The work can be extended to multiple array antennas for microwave ablation monitoring.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
- Correspondence:
| | - Michael Hawlitzki
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Shadan Mofrad Taheri
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Georg Rose
- Institute of Medical Engineering and Research Campus STIMULATE, Otto Von Guericke University, 39106 Magdeburg, Germany;
| | - Bernd Schweizer
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| | - Andreas Brensing
- Department of Engineering, RheinMain University of Applied Sciences, 65428 Ruesselsheim, Germany; (M.H.); (S.M.T.); (B.S.); (A.B.)
| |
Collapse
|
7
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
8
|
Kemp JA, Keebaugh A, Edson JA, Chow D, Kleinman MT, Chew YC, McCracken AN, Edinger AL, Kwon YJ. Biocompatible Chemotherapy for Leukemia by Acid-Cleavable, PEGylated FTY720. Bioconjug Chem 2020; 31:673-684. [PMID: 31986014 DOI: 10.1021/acs.bioconjchem.9b00822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeting the inability of cancerous cells to adapt to metabolic stress is a promising alternative to conventional cancer chemotherapy. FTY720 (Gilenya), an FDA-approved drug for the treatment of multiple sclerosis, has recently been shown to inhibit cancer progression through the down-regulation of essential nutrient transport proteins, selectively starving cancer cells to death. However, the clinical use of FTY720 for cancer therapy is prohibited because of its capability of inducing immunosuppression (lymphopenia) and bradycardia when phosphorylated upon administration. A prodrug to specifically prevent phosphorylation during circulation, hence avoiding bradycardia and lymphopenia, was synthesized by capping its hydroxyl groups with polyethylene glycol (PEG) via an acid-cleavable ketal linkage. Improved aqueous solubility was also accomplished by PEGylation. The prodrug reduces to fully potent FTY720 upon cellular uptake and induces metabolic stress in cancer cells. Enhanced release of FTY720 at a mildly acidic endosomal pH and the ability to substantially down-regulate cell-surface nutrient transporter proteins in leukemia cells only by an acid-cleaved drug were confirmed. Importantly, the prodrug demonstrated nearly identical efficacy to FTY720 in an animal model of BCR-Abl-driven leukemia without inducing bradycardia or lymphopenia in vivo, highlighting its potential clinical value. The prodrug formulation of FTY720 demonstrates the utility of precisely engineering a drug to avoid undesirable effects by tackling specific molecular mechanisms as well as a financially favorable alternative to new drug development. A multitude of existing cancer therapeutics may be explored for prodrug formulation to avoid specific side effects and preserve or enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yap Ching Chew
- Zymo Research Corporation, Irvine, California 92604, United States
| | | | | | | |
Collapse
|
9
|
Ruan C, Liu C, Hu H, Guo XL, Jiang BP, Liang H, Shen XC. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 2019; 10:4699-4706. [PMID: 31123581 PMCID: PMC6496981 DOI: 10.1039/c9sc00375d] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents, although its clinical use is limited by severe nephrotoxicity. Multifunctional platform for spatiotemporally controlled delivery of cisplatin and multimodal synergistic therapy is highly desirable in antitumor research. Herein, for the first time, an injectable, NIR-II light-modulated and thermosensitive hydrogel is synthesized through supramolecular self-assembly of a conjugated polymer and α-cyclodextrin. This hydrogel intrinsically features NIR responsive characteristics and thermo-responsive properties. The conjugated polymer (poly(N-phenylglycine)) not only tethers the poly(ethylene glycol) chains to enable the hydrogel formation, but also serves as the NIR-absorbing mediators. Accordingly, one particular benefit of this hydrogel is that its building blocks absorb NIR-II light and mediate the photothermal conversion itself, offering the important advantage of a prolonged retention time and thus permitting repeatable treatment upon a single-injection of this hydrogel. Under NIR-II laser irradiation, the localized photothermal effect not only ablates the highly metastatic triple-negative breast cancer (TNBC), but also triggers the on-demand cisplatin release through the thermo-responsive gel-sol transition, thus resulting in enhanced antitumor activity and reduced off-target toxicity. This work not only provides a novel multifunctional platform for NIR-triggered cisplatin release and chemo-photothermal combination therapy, but also presents a promising strategy for the rational design of NIR light-responsive hydrogels for the intervention of highly aggressive cancers.
Collapse
Affiliation(s)
- Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Chanjuan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Hailu Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Xiao-Lu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin , 541004 , P. R. China . ;
| |
Collapse
|
10
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
11
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer–drug conjugate nanoparticles. J Mater Chem B 2019; 7:415-432. [DOI: 10.1039/c8tb02432d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We put forward an innovative strategy to leverage hyperthermia and a high drug-loading capacity for mild PT-CT, which achieved traceless ablation of solid MCF-7 tumors without recurrence within 50 days.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus
- Shanghai Fengxian Central Hospital
- Shanghai 201400
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
12
|
Large DE, Soucy JR, Hebert J, Auguste DT. Advances in Receptor-Mediated, Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2019; 2:1800091. [PMID: 38699509 PMCID: PMC11064891 DOI: 10.1002/adtp.201800091] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Receptor-mediated drug delivery presents an opportunity to enhance therapeutic efficiency by accumulating drug within the tissue of interest and reducing undesired, off-target effects. In cancer, receptor overexpression is a platform for binding and inhibiting pathways that shape biodistribution, toxicity, cell binding and uptake, and therapeutic function. This review will identify tumor-targeted drug delivery vehicles and receptors that show promise for clinical translation based on quantitative in vitro and in vivo data. The authors describe the rationale to engineer a targeted drug delivery vehicle based on the ligand, chemical conjugation method, and type of drug delivery vehicle. Recent advances in multivalent targeting and ligand organization on tumor accumulation are discussed. Revolutionizing receptor-mediated drug delivery may be leveraged in the therapeutic delivery of chemotherapy, gene editing tools, and epigenetic drugs.
Collapse
Affiliation(s)
- Danielle E Large
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Jacob Hebert
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Debra T Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
13
|
Sun X, Jin Y, Wang H, Feng N, Li Z, Liu D, Ge K, Liu H, Zhang J, Yang X. A NIR-light activated nanoplatform for sensitizing triple negative breast cancer against therapeutic resistance to enhance the treatment effect. J Mater Chem B 2018; 6:6950-6956. [PMID: 32254579 DOI: 10.1039/c8tb01723a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current therapeutic strategies against triple negative breast cancer (TNBC) are limited by unconquered therapeutic resistance that shields TNBC cells from treatments such as chemotherapy and radiotherapy. Therefore, the construction of therapeutics capable of sensitizing TNBC cells towards conventional therapeutic strategies remains a formidable challenge in phymatology. Here, a NIR-light activated combination therapeutic nanoplatform is reported to cure TNBC by gene-silencing based sensitization of cancer cells toward treatment using mesoporous silica-coated gold nanorods (Au@MSNs) modified with DNAzyme, which can catalytically cleave survivin mRNA. The survivin DNAzyme is chemically modified on the surface of Au@MSNs using a thermally sensitive small molecule. Upon NIR light irradiation, the absorbed NIR light by gold nanorods is converted into heat to trigger bond breaking, releasing DNAzyme to silence survivin mRNA and sensitize TNBC. In vitro and in vivo results reveal the excellent therapeutic effects of this multifunctional nanocomposite against TNBC.
Collapse
Affiliation(s)
- Xiaojing Sun
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, No. 180 Wusidong Road, Baoding 071002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li X, Kono K. Functional dendrimer-gold nanoparticle hybrids for biomedical applications. POLYM INT 2018. [DOI: 10.1002/pi.5583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education; School of Chemical and Material Engineering, Jiangnan University; Wuxi China
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University; Osaka Japan
| |
Collapse
|
15
|
Payne JN, Badwaik VD, Waghwani HK, Moolani HV, Tockstein S, Thompson DH, Dakshinamurthy R. Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity. Int J Nanomedicine 2018; 13:1917-1926. [PMID: 29636609 PMCID: PMC5880570 DOI: 10.2147/ijn.s143506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Phloridzin, an antidiabetic and antineoplastic agent usually found in fruit trees, is a dihydrochalcone constituent that has a clinical/pharmaceutical significance as a sodium-glucose linked transport 2 (SGLT2) inhibitor. While the aglycone metabolite of phloridzin, phloretin, displays a reduced capacity of SGLT2 inhibition, this nutraceutical displays enhanced antineoplastic activity in comparison to phloridzin. Purpose The objective of this study was to develop gold nanoparticle (AuNP) mediated delivery of phloridzin and phloretin and explore their anticancer mechanism through conjugation of the dihydrochalcones and the AuNP cores. Methods Phloridzin and phloretin conjugated AuNPs (Phl-AuNP and Pht-AuNP) were synthesized in single-step, rapid, biofriendly processes. The synthesized AuNPs morphology was characterized via transmission electron microscopy and ultraviolet-visible spectroscopy. The presence of phloridzin or phloretin was confirmed using scanning electron microscopy-energy dispersive x-ray spectroscopy. The percentage of organic component (phloridzin/phloretin) onto AuNPs surface was characterized using thermogravimetric analysis. Assessment of the antineoplastic potency of the dihydrochalcones conjugated AuNPs against cancerous cell lines (HeLa) was accomplished through monitoring via flow cytometry. Results The functionalized AuNPs were synthesized via a single-step method that relied only upon the redox potential of the conjugate itself and required no toxic chemicals. The synthesized Phl-AuNPs were found to be in the size range of 15±5 nm, whereas the Pht-AuNP were found to be 8±3 nm, placing both conjugated AuNPs well within the size range necessary for successful pharmaceutical applications. These assays demonstrate a significant increase in the cancerous cell toxicities as a result of the conjugation of the drugs to AuNPs, as indicated by the 17.45-fold increase in the efficacy of Pht-AuNPs over pure phloretin, and the 4.49-fold increase in efficacy of Phl-AuNP over pure phloridzin. Conclusion We report a simple, biofriendly process using the reducing and capping potential of the dihydrochalcones, phloridzin and phloretin, to synthesize stable AuNPs that have promising futures as potential antineoplastic agents.
Collapse
Affiliation(s)
- Jason N Payne
- Department of Chemistry, Austin Peay State University, Clarksville, TN, USA.,Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Vivek D Badwaik
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, West Lafayette, IN, USA
| | - Hitesh K Waghwani
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Harsh V Moolani
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Sarah Tockstein
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - David H Thompson
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, West Lafayette, IN, USA
| | | |
Collapse
|
16
|
Yang W, Noh J, Park H, Gwon S, Singh B, Song C, Lee D. Near infrared dye-conjugated oxidative stress amplifying polymer micelles for dual imaging and synergistic anticancer phototherapy. Biomaterials 2018; 154:48-59. [DOI: 10.1016/j.biomaterials.2017.10.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/24/2022]
|
17
|
Zhang Y, Xu J. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170986. [PMID: 29410811 PMCID: PMC5792888 DOI: 10.1098/rsos.170986] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 05/21/2023]
Abstract
This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was grafted onto the MSNs to form a capping layer via glutaraldehyde-mediated cross-linking. To shield against unspecific uptake of cells and prolong circulation time, the nanoparticles were further decorated with poly(ethylene glycol) polymers (PEG) to obtain MSN@HA-gelatin-PEG (MHGP). Doxorubicin (DOX), as a model drug, was loaded into PEMSN to assess the breast cancer cell targeting and drug release behaviours. In vitro study revealed that PEG chains protect the targeting ligand and shield against normal cells. After reaching the breast cancer cells, MMP-2 overpressed by cells hydrolyses gelatin layer to deshield PEG and switch on the function of HA. As a result, DOX-loaded MHGP was selectively trapped by cancer cells through HA receptor-mediated endocytosis and subsequently release DOX due to Hyal-catalysed degradation of HA. This system presents successful bienzyme-responsive targeting drug delivery in an optimal fashion and provides potential applications for targeted cancer therapy.
Collapse
Affiliation(s)
| | - Juan Xu
- Department of Obstetrics and Gynecology, Tengzhou Central People's Hospital, No. 181 Xingtan Road, Shandong 277599, People's Republic of China
| |
Collapse
|
18
|
Du C, Qian J, Zhou L, Su Y, Zhang R, Dong CM. Biopolymer-Drug Conjugate Nanotheranostics for Multimodal Imaging-Guided Synergistic Cancer Photothermal-Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31576-31588. [PMID: 28838236 DOI: 10.1021/acsami.7b10163] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some of the biomedical polymer-drug conjugates are being translated into clinical trials; however, they intrinsically lack photothermal and multi-imaging capabilities, hindering them from imaging-guided precision cancer therapy and complete tumor regression. We introduce a new concept of all-in-one biopolymer-drug conjugate nanotheranostics and prepare a kind of intracellular pH-sensitive polydopamine-doxorubicin (DOX) conjugate nanoparticles (PDCNs) under mild conditions. Significantly, this strategy integrates polymeric prodrug-induced chemotherapy (CT), near-infrared (NIR) light-mediated photothermal therapy (PT), and triple modalities including DOX self-fluorescence, photothermal, and photoacoustic (PA) imaging into one conjugate nanoparticle. The PDCNs present excellent photothermal property, dual stimuli-triggered drug release behavior, and about 12.4-fold blood circulation time compared to free DOX. Small animal fluorescent imaging technique confirms that PDCNs have preferential tumor accumulation effect in vivo, giving a 12.8-fold DOX higher than the control at 12 h postinjection. Upon NIR laser irradiation (5 min, 808 nm, and 2 W·cm-2), the PDCN-mediated photothermal effect can quickly elevate the tumor over 50 °C, exhibiting good photothermal and PA imaging functions, of which the PA amplitude is 3.6-fold greater than the control. In vitro and in vivo assays persuasively verify that intravenous photothermal-CT of PDCNs produces synergistic antitumor activity compared to single PT or CT, achieving complete tumor ablation during the evaluation period.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Fengxian Hospital, Southern Medical University , Shanghai 201400, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital , South Campus, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Guo X, You J. Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0321-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Tian W, Su Y, Tian Y, Wang S, Su X, Liu Y, Zhang Y, Tang Y, Ni Q, Liu W, Dang M, Wang C, Zhang J, Teng Z, Lu G. Periodic Mesoporous Organosilica Coated Prussian Blue for MR/PA Dual-Modal Imaging-Guided Photothermal-Chemotherapy of Triple Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600356. [PMID: 28331788 PMCID: PMC5357980 DOI: 10.1002/advs.201600356] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/12/2016] [Indexed: 05/26/2023]
Abstract
Complete eradication of highly aggressive triple negative breast cancer (TNBC) remains a notable challenge today. In this work, an imaging-guided photothermal-chemotherapy strategy for TNBC is developed for the first time based on a periodic mesoporous organosilica (PMO) coated Prussian blue (PB@PMO) nanoplatform. The PB@PMOs have organic-inorganic hybrid frameworks, uniform diameter (125 nm), high surface area (866 m2 g-1), large pore size (3.2 nm), excellent photothermal conversion capability, high drug loading capacity (260 µg mg-1), and magnetic resonance (MR) and photoacoustic (PA) imaging abilities. The MR and PA properties of the PB@PMOs are helpful for imaging the tumor and showing the accumulation of the nanoplatform in the tumor region. The bioluminescence intensity and tumor volume of the MDA-MB-231-Luc tumor-bearing mouse model demonstrate that TNBC can be effectively inhibited by the combined photothermal-chemotherapy than monotherapy strategy. Histopathological analysis further reveals that the combination therapy results in most extensive apoptotic and necrotic cells in the tumor without inducing obvious side effect to major organs.
Collapse
Affiliation(s)
- Wei Tian
- Department of Medical ImagingJinling HospitalNanjing Clinical SchoolSouthern Medical University (Guangzhou)Nanjing210002JiangsuP. R. China
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Yunyan Su
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Ying Tian
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Shouju Wang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjing210046JiangsuP. R. China
| | - Ying Liu
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Yunlei Zhang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Yuxia Tang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Qianqian Ni
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Wenfei Liu
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Meng Dang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Chunyan Wang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Junjie Zhang
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
| | - Zhaogang Teng
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093JiangsuP. R. China
| | - Guangming Lu
- Department of Medical ImagingJinling HospitalNanjing Clinical SchoolSouthern Medical University (Guangzhou)Nanjing210002JiangsuP. R. China
- Department of Medical ImagingJinling HospitalSchool of MedicineNanjing UniversityNanjing210002JiangsuP. R. China
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093JiangsuP. R. China
| |
Collapse
|
21
|
Tao Y, Li M, Kim B, Auguste DT. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Am J Cancer Res 2017; 7:899-911. [PMID: 28382162 PMCID: PMC5381252 DOI: 10.7150/thno.17927] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/03/2016] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. Successful development of sensitive nanoprobes for breast cancer cell detection is of great importance for breast cancer diagnosis and symptomatic treatment. Herein, inspired by the intrinsic peroxidase property of gold nanoclusters, high loading, and targeting ability of ErbB2/Her2 antibody functionalized liposomes, we report that gold nanoclusters-loaded, target-directed, functionalized liposomes can serve as a robust sensing platform for amplified colorimetric detection of HER2-positive breast cancer cells. This approach allows HER2-positive breast cancer cell identification at high sensitivity with high selectivity. In addition, the colorimetric “readout” offers extra advantages in terms of low-cost, portability, and easy-to-use applications. The practicality of this platform was further proved by successful detection of HER2-positive breast cancer cells in human serum samples and in breast cancer tissue, which indicated our proposed method has potential for application in cancer theranostics.
Collapse
|
22
|
Zolata H, Afarideh H, Davani FA. Triple Therapy of HER2+ Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field. Cancer Biother Radiopharm 2016; 31:324-329. [DOI: 10.1089/cbr.2016.2068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hamidreza Zolata
- Energy Engineering and Physics Faculty, AmirKabir University of Technology, Tehran, Iran
| | - Hossein Afarideh
- Energy Engineering and Physics Faculty, AmirKabir University of Technology, Tehran, Iran
| | | |
Collapse
|
23
|
Abdou Mohamed MA, Raeesi V, Turner PV, Rebbapragada A, Banks K, Chan WC. A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria. Biomaterials 2016; 97:154-63. [DOI: 10.1016/j.biomaterials.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 01/16/2023]
|
24
|
Tao Y, Auguste DT. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes. Biosens Bioelectron 2016; 81:431-437. [DOI: 10.1016/j.bios.2016.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
|
25
|
Wu X, Zhou L, Su Y, Dong CM. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy. Biomacromolecules 2016; 17:2489-501. [PMID: 27310705 DOI: 10.1021/acs.biomac.6b00721] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To integrate cocktail chemotherapy with photothermal therapy into one biocompatible and biodegradable nanocarrier, the plasmonic, lactose-targeted, and dual anticancer drugs-loaded polypeptide composite nanoparticles were for the first time fabricated under mild conditions. The glyco-PEGylated polypeptide micelles that self-assembled from the lactose (LAC) and PEG grafted polycysteine terpolymer were used as templates to generate the plasmonic composite nanoparticles, as mainly characterized by DLS, TEM, SEM, and XPS. These composite nanoparticles showed a broad and strong near-infrared (NIR) absorption at 650-1100 nm and increased the temperature of phosphate buffer solution by 30.1 °C upon a continuous-wave laser irradiation (808 nm, 5 min, 2 W·cm(-2)), while the same dose of NIR-mediated heating completely killed HepG2 cancer cells in vitro, presenting excellent photothermal properties. Two anticancer drugs, doxorubicin (DOX) and 6-mercaptopurine (6-MP), were loaded into the composite nanoparticles through physical interactions and Au-S bond, respectively. The dual drugs-loaded composite nanoparticles exhibited reduction-sensitive and NIR-triggered cocktail drugs release profiles and trigger-enhanced cytotoxicity. As evidenced by flow cytometry, fluorescence microscopy, and MTT assay, the LAC-coated composite nanoparticles were more internalized by the HepG2 than the HeLa cell line, demonstrating a LAC-targeting enhanced cytotoxicity toward HepG2. The combination cocktail chemo-photothermal therapy produced a lower half maximal inhibitory concentration than cocktail chemotherapy or photothermal therapy alone, displaying a good synergistic antitumor effect.
Collapse
Affiliation(s)
- Xingjie Wu
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Linzhu Zhou
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Yue Su
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, P. R. China.,Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University , Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Jeong K, Kang CS, Kim Y, Lee YD, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett 2016; 374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
27
|
Tian DY, Wang WY, Li SP, Li XD, Sha ZL. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy. Int J Pharm 2016; 505:96-106. [PMID: 26997424 DOI: 10.1016/j.ijpharm.2016.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022]
Abstract
A novel platform making up of methotrexate intercalated layered double hydroxide (MTX/LDH) hybrid doped with gold nanoparticles (NPs) may have great potential both in chemo-photothermal therapy and the simultaneous drug delivery. In this paper, a promising platform of Au@PDDA-MTX/LDH was developed for anti-tumor drug delivery and synergistic therapy. Firstly, Au NPs were coated using Layer-by-Layer (LbL) technology by alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and MTX molecules, and then the resulting core-shell structures (named as Au@PDDA-MTX) were directly conjugated onto the surface of MTX/LDH hybrid by electrostatic attraction to afford Au@PDDA-MTX/LDH NPs. Here MTX was used as both the agent for surface modification and the anti-tumor drug for chemotherapy. The platform of Au@PDDA-MTX/LDH NPs not only had a high drug-loading capacity, but also showed excellent colloidal stability and interesting pH-responsive release profile. In vitro drug release studies demonstrated that MTX released from Au@PDDA-MTX/LDH was relatively slow under normal physiological pH, but it was enhanced significantly at a weak acidic pH value. Furthermore, the combined treatment of cancer cells by using Au@PDDA-MTX/LDH for synergistic hyperthermia ablation and chemotherapy was demonstrated to exhibit higher therapeutic efficacy than either single treatment alone, underscoring the great potential of the platform for cancer therapy.
Collapse
Affiliation(s)
- De-Ying Tian
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei-Yuan Wang
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - Shu-Ping Li
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Xiao-Dong Li
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhao-Lin Sha
- Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
28
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
29
|
Zhou SM, Ma DK, Zhang SH, Wang W, Chen W, Huang SM, Yu K. PEGylated Cu3BiS3 hollow nanospheres as a new photothermal agent for 980 nm-laser-driven photothermochemotherapy and a contrast agent for X-ray computed tomography imaging. NANOSCALE 2016; 8:1374-1382. [PMID: 26488908 DOI: 10.1039/c5nr06041a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Developing multifunctional near-infrared (NIR) light-driven photothermal agents is in high demand for efficient cancer therapy. Herein, PEGylated Cu3BiS3 hollow nanospheres (HNSs) with an average diameter of 80 nm were synthesized through a facile ethylene glycol-mediated solvothermal route. The obtained PEGylated Cu3BiS3 HNSs exhibited strong NIR optical absorption with a large molar extinction coefficient of 4.1 × 10(9) cm(-1) M(-1) at 980 nm. Under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm(-2), Cu3BiS3 HNSs produced significant photothermal heating with a photothermal transduction efficiency of 27.5%. The Cu3BiS3 HNSs also showed a good antitumoral drug doxorubicin (DOX) loading capacity and pH- and NIR-responsive DOX release behaviors. At a low dosage of 10 μg mL(-1), HeLa cells could be efficiently killed through a synergistic effect of chemo- and photothermo-therapy respectively based on the DOX release and the photothermal effect of Cu3BiS3 HNSs. In addition, Cu3BiS3 HNSs displayed a good X-ray computed tomography (CT) imaging capability. Furthermore, Cu3BiS3 HNSs could be used for efficient in vivo photothermochemotherapy and X-ray CT imaging of mice bearing melanoma skin cancer. This multifunctional theranostic nanomaterial shows potential promise for cancer therapy.
Collapse
Affiliation(s)
- Shu-Mei Zhou
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - De-Kun Ma
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Sheng-Hui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P. R. China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P. R. China
| | - Wei Chen
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Shao-Ming Huang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P. R. China
| |
Collapse
|
30
|
Aguirre G, Villar-Alvarez E, González A, Ramos J, Taboada P, Forcada J. Biocompatible stimuli-responsive nanogels for controlled antitumor drug delivery. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Garbiñe Aguirre
- POLYMAT, Bionanoparticles Group, Department of Applied Chemistry, UFI 11/56, Faculty of Chemistry; University of the Basque Country UPV/EHU; Apdo. 1072 Donostia-San Sebastián 20080 Spain
| | - Eva Villar-Alvarez
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Adrián González
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Jose Ramos
- POLYMAT, Bionanoparticles Group, Department of Applied Chemistry, UFI 11/56, Faculty of Chemistry; University of the Basque Country UPV/EHU; Apdo. 1072 Donostia-San Sebastián 20080 Spain
| | - Pablo Taboada
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur; Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - Jacqueline Forcada
- POLYMAT, Bionanoparticles Group, Department of Applied Chemistry, UFI 11/56, Faculty of Chemistry; University of the Basque Country UPV/EHU; Apdo. 1072 Donostia-San Sebastián 20080 Spain
| |
Collapse
|
31
|
Wu X, Zhou L, Su Y, Dong CM. An autoreduction method to prepare plasmonic gold-embedded polypeptide micelles for synergistic chemo-photothermal therapy. J Mater Chem B 2016; 4:2142-2152. [DOI: 10.1039/c6tb00198j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An autoreduction method was introduced to prepare plasmonic gold-embedded polypeptide micelles, opening up a new avenue for the development of anticancer nanotherapeutics with synergistic chemo-photothermal effects.
Collapse
Affiliation(s)
- Xingjie Wu
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Linzhu Zhou
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Su
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
32
|
Gharatape A, Davaran S, Salehi R, Hamishehkar H. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 2016. [DOI: 10.1039/c6ra18760a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticle mediated photothermal therapy in future medicine.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Soodabeh Davaran
- Drug Applied Research Center and Department of Medicinal Chemistry
- Faculty of Pharmacy
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Roya Salehi
- Research Center for Pharmaceutical Nanotechnology and Department of Medical Nanotechnology
- School of Advanced Medical Science
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Science
- Tabriz
- Iran
| |
Collapse
|
33
|
Zhang J, Liang YC, Lin X, Zhu X, Yan L, Li S, Yang X, Zhu G, Rogach AL, Yu PKN, Shi P, Tu LC, Chang CC, Zhang X, Chen X, Zhang W, Lee CS. Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy in Vitro and in Vivo. ACS NANO 2015; 9:9741-9756. [PMID: 26390118 DOI: 10.1021/acsnano.5b02513] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. Herein, a self-monitored and self-delivered photosensitizer-doped FRET nanoparticle (NP) drug delivery system (DDS) is designed for this purpose. During preparation, a donor/acceptor pair of perylene and 5,10,15,20-tetro (4-pyridyl) porphyrin (H2TPyP) is co-doped into a chemotherapeutic anticancer drug curcumin (Cur) matrix. In the system, Cur works as a chemotherapeutic agent. In the meantime, the green fluorescence of Cur molecules is quenched (OFF) in the form of NPs and can be subsequently recovered (ON) upon release in tumor cells, which enables additional imaging and real-time self-monitoring capabilities. H2TPyP is employed as a photodynamic therapeutic drug, but it also emits efficient NIR fluorescence for diagnosis via FRET from perylene. By exploiting the emission characteristics of these two emitters, the combinatorial drugs provide a real-time dual-fluorescent imaging/tracking system in vitro and in vivo, and this has not been reported before in self-delivered DDS which simultaneously shows a high drug loading capacity (77.6%Cur). Overall, our carrier-free DDS is able to achieve chemotherapy (Cur), photodynamic therapy (H2TPyP), and real-time self-monitoring of the release and distribution of the nanomedicine (Cur and H2TPyP). More importantly, the as-prepared NPs show high cancer therapeutic efficiency both in vitro and in vivo. We expect that the present real-time self-monitored and self-delivered DDS with multiple-therapeutic and multiple-fluorescent ability will have broad applications in future cancer therapy.
Collapse
Affiliation(s)
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica , Taipei, 115, Taiwan
| | | | | | | | - Shengliang Li
- Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | | | | - Lung-Chen Tu
- Department of Plastic Surgery, Mackay Memorial Hospital , Taipei, 10449, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan and Institute of Physics, Academia Sinica , Taipei, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan and Institute of Physics, Academia Sinica , Taipei, Taiwan
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China
| | - Xianfeng Chen
- School of Chemistry and Forensic Sciences, Faculty of Life Sciences, University of Bradford , Bradford, BD7 1DP, U.K
| | | | | |
Collapse
|
34
|
Li WM, Chiang CS, Huang WC, Su CW, Chiang MY, Chen JY, Chen SY. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J Control Release 2015; 220:107-118. [PMID: 26478017 DOI: 10.1016/j.jconrel.2015.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023]
Abstract
We developed a surfactant-free method utilizing amifostine to stably link a targeting ligand (Herceptin) to amphiphilic gelatin (AG)-iron oxide@calcium phosphate (CaP) nanoparticles with hydrophobic curcumin (CUR) and hydrophilic doxorubicin (DOX) encapsulated in the AG core and CaP shell (AGIO@CaP-CD), respectively. This multi-functional nanoparticle system has a pH-sensitive CaP shell and degradable amphiphilic gelatin (AG) core, which enables controllable sequential release of the two drugs. The dual-targeting system of AGIO@CaP-CD (HER-AGIO@CaP-CD) with a bioligand and magnetic targeting resulted in significantly elevated cellular uptake in HER2-overexpressing SKBr3 cells and more efficacious therapy than delivery of targeting ligand alone due to the synergistic cell multi-drug resistance/apoptosis-inducing effect of the CUR and DOX combination. This nanoparticle combined with Herceptin and iron oxide nanoparticles not only provided a dual-targeting functionality, but also encapsulated CUR and DOX as a dual-drug delivery system for the combination therapy. This study further demonstrated that the therapeutic efficacy of this dual-targeting co-delivery system can be improved by modifying the application duration of magnetic targeting, which makes this combination therapy system a powerful new tool for in vitro/in vivo cancer therapy, especially for HER2-positive cancers.
Collapse
Affiliation(s)
- Wei-Ming Li
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chih-Sheng Chiang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wei-Chen Huang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Wei Su
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Yu Chiang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jian-Yi Chen
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - San-Yuan Chen
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
35
|
Zhang M, Wang T, Zhang L, Li L, Wang C. Near‐Infrared Light and pH‐Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo‐Photothermal Cancer Therapy. Chemistry 2015; 21:16162-71. [DOI: 10.1002/chem.201502177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Manjie Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022 (P.R. China)
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| |
Collapse
|
36
|
Lv L, Guo Y, Shen Y, Liu J, Zhang W, Zhou D, Guo S. Intracellularly Degradable, Self-Assembled Amphiphilic Block Copolycurcumin Nanoparticles for Efficient In Vivo Cancer Chemotherapy. Adv Healthc Mater 2015; 4:1496-501, 1423. [PMID: 26033838 DOI: 10.1002/adhm.201500075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Indexed: 11/10/2022]
Abstract
Intracellularly degradable, self-assembled amphiphilic biotin-poly(ethylene glycol)-b-poly(curcumin-dithiodipropionic acid) nanoparticles are developed. They display excellent in vivo anticancer efficacy, benefitted from their high tumor-targeted accumulation and stimuli-triggered intracellular drug release. They can be loaded with other anticancer drugs (e.g., doxorubicin) to exploit the synergy of combinational dual-drug therapy to further enhance in vivo anticancer efficacy.
Collapse
Affiliation(s)
- Li Lv
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yuan Guo
- School of Chemistry and Astbury Centre for Structural, Molecular Biology; University of Leeds; Leeds LS2 9JT UK
| | - Yuanyuan Shen
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Jieying Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Wenjun Zhang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural, Molecular Biology; University of Leeds; Leeds LS2 9JT UK
| | - Shengrong Guo
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai 200240 China
- School of Chemistry and Astbury Centre for Structural, Molecular Biology; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
37
|
Zou Z, He X, He D, Wang K, Qing Z, Yang X, Wen L, Xiong J, Li L, Cai L. Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials 2015; 58:35-45. [PMID: 25941780 DOI: 10.1016/j.biomaterials.2015.04.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 02/07/2023]
Abstract
The development of multifunctional nanocarrier with each unit functioning at the correct time and location is a challenge for clinical applications. With this in mind, a type of intelligent mesoporous silica nanocarrier (PGFMSN) is proposed for matrix metalloprotease 2 (MMP 2)-triggered tumor targeting and release by integrating programmed packing and MMP 2-degradable gelatin. Mesoporous silica nanoparticles (MSN) are first functionalized with folic acid (FA) as a target ligand to improve cell uptake. Then gelatin is introduced onto FA-MSN via temperature-induced gelation, where gelatin layer blocks drugs inside the mesopores and protects the targeting ligand. To prolong blood-circulation lifetime, PEG is further decorated to obtain PGFMSN. All units are programmatically incorporated in a simple way and coordinated in an optimal fashion. Cells, multicellular spheroids and in vivo results demonstrate that PGFMSN is shielded against nonspecific uptake. After circulating to tumor tissue, the up-regulated MMP-2 hydrolyzes gelatin layer to deshield PEG and switch on the function of FA, which facilitate the selective uptake by tumor cells through folate-receptor-mediated endocytosis. Meanwhile, the packaged drug is released due to the shedding of gelatin layer. It is shown that doxorubicin (DOX)-loaded exhibits superior tumor targeting, drug internalization, cytotoxicity, and antitumor efficacy over free DOX, non-PEGylated and non-targeted nanoparticles, which provides potential applications for targeted cancer therapy.
Collapse
Affiliation(s)
- Zhen Zou
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Dinggeng He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zhihe Qing
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xue Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Li Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Xiong
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liling Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Linli Cai
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Li M, Tang Z, Zhang D, Sun H, Liu H, Zhang Y, Zhang Y, Chen X. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials 2015; 51:161-172. [DOI: 10.1016/j.biomaterials.2015.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 01/22/2023]
|
39
|
Gao Y, Wu X, Zhou L, Su Y, Dong CM. A sweet polydopamine nanoplatform for synergistic combination of targeted chemo-photothermal therapy. Macromol Rapid Commun 2015; 36:916-22. [PMID: 25833346 DOI: 10.1002/marc.201500090] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/04/2015] [Indexed: 11/06/2022]
Abstract
Inspired by sweet or sugar-coated bullets that are used for medications in clinics and the structure and function of biological melanin, a novel kind of sweet polydopamine nanoparticles and their anticancer drug doxorubicin loaded counterparts are prepared, which integrate an active targeting function, photothermal therapy, and chemotherapy into one polymeric nanocarrier. The oxidative polymerization of lactosylated dopamine and/or with dopamine are performed under mild conditions and the resulting sweet nanoparticles are thoroughly characterized. When exposed to an 808 nm continuous-wave diode laser, the magnitude of temperature elevation not only increases with the concentration of nanoparticles, but can also be tuned by the laser power density. The nanoparticles possess strong near infrared light absorption, high photothermal conversion efficiency, and good photostability. The nanoparticles present tunable binding with RCA120 lectin and a targeting effect to HepG2 cells, confirmed by dynamic light scattering, turbidity analysis, MTT assay, and flow cytometry. Importantly, the sweet nanoparticles give the lowest IC50 value of 11.67 μg mL(-1) for chemo-photothermal therapy compared with 43.19 μg mL(-1) for single chemotherapy and 67.38 μg mL(-1) for photothermal therapy alone, demonstrating a good synergistic effect for the combination therapy.
Collapse
Affiliation(s)
- Yanqin Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingjie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linzhu Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Su
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang-Ming Dong
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
40
|
Sasidharan A, Monteiro-Riviere NA. Biomedical applications of gold nanomaterials: opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:779-96. [PMID: 25808787 DOI: 10.1002/wnan.1341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 01/26/2023]
Abstract
In the past few years, there has been an unprecedented development of gold nanomaterials (AuNMs) for potential clinical applications. Owing to their advantageous physical, chemical, and biological properties, AuNMs have attracted great attention in the nanomedicine arena for applications in biological sensing, biomedical imaging, drug delivery, and photothermal therapy. Their tunable size, shape, and surface characteristics coupled with excellent biocompatibility render them ideal candidates for translation from bench-top to bedside. This review summarizes the recent research on the applications of AuNM with a focus on biomedical diagnostics and therapeutics. The bio-interaction of these NM with cells and their in vivo responses are presented. After reviewing these potential applications, future challenges and prospects are discussed and the suitability of how AuNMs are used as effective tools in clinical medicine is assessed.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
41
|
Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater Sci 2015. [PMID: 26221933 DOI: 10.1039/c5bm00002e] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional chemotherapy for the treatment of cancer has limited specificity when administered systemically and is often associated with toxicity issues. Enhanced accumulation of polymeric nanocarriers at a tumor site may be achieved by passive and active targeting. Incorporation of trigger responsiveness into these polymeric nanocarriers improves the anticancer efficacy of such systems by modulating the release of the drug according to the tumor environment. Triggers used for tumor targeting include internal triggers such as pH, redox and enzymes and external triggers such as temperature, magnetic field, ultrasound and light. While internal triggers are specific cues of the tumor microenvironment, external triggers are those which are applied externally to control the release. This review highlights the various strategies employed for the preparation of such trigger responsive polymeric nanocarriers for cancer therapy and provides an overview of the state of the art in this field.
Collapse
Affiliation(s)
- Shahdeep Kaur
- Nanomedicine Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India.
| | | | | | | |
Collapse
|
42
|
Yuan Y, Wang Z, Cai P, Liu J, Liao LD, Hong M, Chen X, Thakor N, Liu B. Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release. NANOSCALE 2015; 7:3067-3076. [PMID: 25608113 DOI: 10.1039/c4nr06420h] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL(-1), while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL(-1) and 36.2 μg mL(-1), respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.
Collapse
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Song WC, Shin SW, Park KS, Jang MS, Choi JH, Oh BK, Um SH. Self-illuminative cascade-reaction-driven anticancer therapeutic cassettes made of cooperatively interactive nanocomplexes. Colloids Surf B Biointerfaces 2014; 126:580-4. [PMID: 25537832 DOI: 10.1016/j.colsurfb.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Therapeutic options based on near-infrared (NIR) wavelengths have attracted attention owing to in vivo lowest-background interventions and the development of several nano-architectures with localized surface plasmon resonance. Because of their limited tissue penetration, the clinical use of NIR light-driven treatments is not widespread; this technology is inapplicable to infection sites in the deeper areas of internal tissues. In this study, we demonstrate a self-illuminative therapeutic cassette able to exert anticancer effects via a series of enzymatic, chemical, and optical cooperative cascade reactions. It consists of (1) NIR-illuminative nanocomplexes and (2) NIR-sensitive therapeutic cassettes, which demonstrate a 60% chemically-induced killing effect in a prostate cancer model without external NIR irradiation. This technology can also be actively exploited as an imaging agent due to adaptation of a self-illuminating nanocomplex. Consequently, these novel therapeutic cassettes, which work not only as a powerful internal NIR stimulant, but also as a biological imaging platform, provide a new rational design concept for biomedical use.
Collapse
Affiliation(s)
- Woo Chul Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Kyung Soo Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Min Su Jang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-Ro, Mapo-gu, Seoul 121-742, South Korea
| | - Byung-Keun Oh
- Department of Chemical & Biomolecular Engineering and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeom-Ro, Mapo-gu, Seoul 121-742, South Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea.
| |
Collapse
|
44
|
Cai TT, Lei Q, Yang B, Jia HZ, Cheng H, Liu LH, Zeng X, Feng J, Zhuo RX, Zhang XZ. Utilization of H-bond interaction of nucleobase Uralic with antitumor methotrexate to design drug carrier with ultrahigh loading efficiency and pH-responsive drug release. Regen Biomater 2014; 1:27-35. [PMID: 26816622 PMCID: PMC4669001 DOI: 10.1093/rb/rbu010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023] Open
Abstract
A novel Uralic (U)-rich linear-hyperbranched mono-methoxy poly (ethylene glycol)-hyperbranched polyglycerol-graft-Uralic (mPEG-HPG-g-U) nanoparticle (NP) was prepared as drug carrier for antitumor methotrexate (MTX). Due to the H-bond interaction of U with MTX and hydrophobic interaction, this NP exhibited high drug loading efficiency of up to 40%, which was significantly higher than that of traditional NPs based on U-absent copolymers (<15%). In addition, MTX-loaded mPEG-HPG-g-U NPs also demonstrated an acidity-accelerated drug release behavior.
Collapse
Affiliation(s)
- Teng-Teng Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Hong Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Li-Han Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional Nanomaterials for Phototherapies of Cancer. Chem Rev 2014; 114:10869-939. [DOI: 10.1021/cr400532z] [Citation(s) in RCA: 1846] [Impact Index Per Article: 184.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Kai Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
46
|
PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials 2014; 35:6576-84. [DOI: 10.1016/j.biomaterials.2014.04.043] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
|
47
|
Momtazi L, Bagherifam S, Singh G, Hofgaard A, Hakkarainen M, Glomm WR, Roos N, Mælandsmo GM, Griffiths G, Nyström B. Synthesis, characterization, and cellular uptake of magnetic nanocarriers for cancer drug delivery. J Colloid Interface Sci 2014; 433:76-85. [PMID: 25112915 DOI: 10.1016/j.jcis.2014.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/22/2023]
Abstract
HYPOTHESIS The absence of targetability is the primary inadequacy of conventional chemotherapy. Targeted drug delivery systems are conceptualized to overcome this challenge. We have designed a targetable magnetic nanocarrier consisting of a superparamagnetic iron oxide (SPIO) core and biocompatible and biodegradable poly(sebacic anhydride)-block-methyl ether poly(ethylene glycol) (PSA-mPEG) polymer shell. The idea is that this type of carriers should facilitate the targeting of cancer cells. EXPERIMENTS PSA-mPEG was synthesized with poly-condensation and the in vitro degradation rate of the polymer was monitored by gel permeation chromatography (GPC). The magnetic nanocarriers were fabricated devoid of any surfactants and were capable of carrying high payload of hydrophobic dye. The successful encapsulation of SPIO within the polymer shell was confirmed by TEM. The results we obtained from measuring the size of SPIO loaded in polymeric NPs (SPIO-PNP) by dynamic light scattering (DLS) and iron content measurement of these particles by ICP-MS, indicate that SPIO is the most suitable carrier for cancer drug delivery applications. FINDINGS Measuring the hydrodynamic radii of SPIO-PNPs by DLS over one month revealed the high stability of these particles at both body and room temperature. We further investigated the cell viability and cellular uptake of SPIO-PNPs in vitro with MDA-MB-231 breast cancer cells. We found that SPIO-PNPs induce negligible toxicity within a concentration range of 1-2μg/ml. The TEM micrographs of thin cross-sectioned MDA-MBA-231 cells showed internalization of SPIO-PNPs within size range of 150-200nm after 24h. This study has provided a foundation for eventually loading these nanoparticles with anti-cancer drugs for targeted cancer therapy using an external magnetic field.
Collapse
Affiliation(s)
- Leva Momtazi
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| | - Shahla Bagherifam
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway; Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gurvinder Singh
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Antje Hofgaard
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Minna Hakkarainen
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 10044 Stockholm, Sweden.
| | - Wilhelm R Glomm
- Biotechnology and Nanomedicine Sector, SINTEF Materials and Chemistry, Sem Sælands vei 2A, N-7034 Trondheim, Norway.
| | - Norbert Roos
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Gareth Griffiths
- Department of Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway.
| |
Collapse
|
48
|
Zhou Q, Jiang H, Chen R, Qiu F, Dai G, Han D. A triply-responsive pillar[6]arene-based supramolecular amphiphile for tunable formation of vesicles and controlled release. Chem Commun (Camb) 2014; 50:10658-60. [DOI: 10.1039/c4cc05031b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
|
50
|
Chiang WH, Huang WC, Chang YJ, Shen MY, Chen HH, Chern CS, Chiu HC. Doxorubicin-Loaded Nanogel Assemblies with pH/Thermo-triggered Payload Release for Intracellular Drug Delivery. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Hsuan Chiang
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Wen-Chia Huang
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yu-Jen Chang
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Ming-Yin Shen
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu 30013 Taiwan
- Department of Surgery; National Taiwan University Hospital-Hsinchu Branch; Hsinchu 30013 Taiwan
| | - Hsin-Hung Chen
- Department of Chemical Engineering; National Chung Hsing University; Taichung 402 Taiwan
| | - Chorng-Shyan Chern
- Department of Chemical Engineering; National Taiwan University of Science and Technology; Taipei 106 Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|