1
|
Nie Q, Fang X, Huang J, Xu T, Li Y, Zhang G, Li Y. The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library. SMALL METHODS 2025:e2401631. [PMID: 39806846 DOI: 10.1002/smtd.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly. First, a foundational overview of structural DNA nanotechnology, including its design strategies and historical development is provided. Subsequently, various approaches are examined to dynamic DNA nanotechnology, from strand displacement reactions to DNA-templated polymer synthesis. Second, how the principle of DNA assembly has facilitated the development of diverse formats of self-assembly-based DEL synthesis, DNA-template reactions (DTS), and DNA template-mediated proximity induction effects are examined. These advancements are all underpinned by the unique property of DNA assembly. Finally, this review summarizes the common principles shared by DNA nanotechnology and DEL in terms of methodology and design. Additionally, the potential synergies are explored between these two technologies, envisioning future applications where they can be combined to create more versatile and exquisite functionalities.
Collapse
Affiliation(s)
- Qigui Nie
- Chongqing Fuling Hospital, Chongqing University, Chongqing, 40800, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 404100, China
| | - Jiale Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Tingting Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
2
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
3
|
Qi F, Zhang M, Yang G, Wang W, Hu Y, Shen Y, Wan J, Li J, Liu G, Deng Y. Identification of TIGAR, a direct proteomic target associated with the hypoglycemic effect of Berberine. Fitoterapia 2025; 180:106332. [PMID: 39638076 DOI: 10.1016/j.fitote.2024.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Diabetes mellitus is a global chronic metabolic disease and the prevalence of diabetes mellitus is increasing dramatically every year. Berberine (BBR) from Coptidis Rhizoma has potent hypoglycemic effects, however, the specific proteins targeted by berberine that contribute to its hypoglycemic action remain to be elucidated. In this work, TIGAR (TP53-induced glycolysis and apoptosis regulator) was identified as a direct target protein for berberine using activity-based protein profiling (ABPP) and other chemical proteomics techniques with active photoaffinity probes as chemical tools. In addition, the study revealed that berberine-targeted TIGAR attenuated the conversion of fructose-2, 6-bisphosphate to fructose-6-phosphate. This study demonstrated an innovative mechanism by which berberine directly targets TIGAR and its hypoglycemic effects. Therefore, TIGAR emerges as a novel target for the treatment of diabetes mellitus, with TIGAR inhibitors offering a new and promising therapeutic strategy for managing the disease.
Collapse
Affiliation(s)
- Famei Qi
- State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Mengjiao Zhang
- Chengdu Food Inspection Institute, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Chengdu 611130, Sichuan, PR China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan.PR China
| | - Wei Wang
- State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China; Chengdu Food Inspection Institute, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Chengdu 611130, Sichuan, PR China
| | - Yunjie Hu
- State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Yurong Shen
- State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China; HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan.PR China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan.PR China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan.PR China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610000, Sichuan.PR China.
| | - Yun Deng
- State Key Laboratory of Southwest Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China.
| |
Collapse
|
4
|
Zhang J, Liu J, Zhang G, He X, Xiong F, Fan X, Li Y, Li Y. Synthesis of Diacylhydrazine Derivatives Based on Tetrazole-Focused DNA-Encoded Library. Org Lett 2024; 26:1094-1099. [PMID: 38277138 DOI: 10.1021/acs.orglett.3c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.
Collapse
Affiliation(s)
- Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jinlu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing 404100, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Wei H, Zhang T, Li Y, Zhang G, Li Y. Covalent Capture and Selection of DNA-Encoded Chemical Libraries via Photo-Activated Lysine-Selective Crosslinkers. Chem Asian J 2023; 18:e202300652. [PMID: 37721712 DOI: 10.1002/asia.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Covalent crosslinking probes have arisen as efficient toolkits to capture and elucidate biomolecular interaction networks. Exploiting the potential of crosslinking in DNA-encoded chemical library (DEL) selection methods significantly boosted bioactive ligand discovery in complex physiological contexts. Herein, we incorporated o-nitrobenzyl alcohol (o-NBA) as a photo-activated lysine-selective crosslinker into divergent DEL formats and achieved covalent capture of ligand-target interactions featuring improved crosslinking efficiency and site-specificity. In addition, covalent DEL selection was realized with the modularly designed o-NBA-functionalized mock libraries.
Collapse
Affiliation(s)
- Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Winer L, Motiei L, Margulies D. Fluorescent Investigation of Proteins Using DNA-Synthetic Ligand Conjugates. Bioconjug Chem 2023; 34:1509-1522. [PMID: 37556353 PMCID: PMC10515487 DOI: 10.1021/acs.bioconjchem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Indexed: 08/11/2023]
Abstract
The unfathomable role that fluorescence detection plays in the life sciences has prompted the development of countless fluorescent labels, sensors, and analytical techniques that can be used to detect and image proteins or investigate their properties. Motivated by the demand for simple-to-produce, modular, and versatile fluorescent tools to study proteins, many research groups have harnessed the advantages of oligodeoxynucleotides (ODNs) for scaffolding such probes. Tight control over the valency and position of protein binders and fluorescent dyes decorating the polynucleotide chain and the ability to predict molecular architectures through self-assembly, inherent solubility, and stability are, in a nutshell, the important properties of DNA probes. This paper reviews the progress in developing DNA-based, fluorescent sensors or labels that navigate toward their protein targets through small-molecule (SM) or peptide ligands. By describing the design, operating principles, and applications of such systems, we aim to highlight the versatility and modularity of this approach and the ability to use ODN-SM or ODN-peptide conjugates for various applications such as protein modification, labeling, and imaging, as well as for biomarker detection, protein surface characterization, and the investigation of multivalency.
Collapse
Affiliation(s)
- Lulu Winer
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - Leila Motiei
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| | - David Margulies
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot, 76100, Israel
| |
Collapse
|
7
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
8
|
Li X, Zhang J, Liu C, Sun J, Li Y, Zhang G, Li Y. Aryl diazonium intermediates enable mild DNA-compatible C-C bond formation for medicinally relevant combinatorial library synthesis. Chem Sci 2022; 13:13100-13109. [PMID: 36425486 PMCID: PMC9667928 DOI: 10.1039/d2sc04482j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 08/24/2023] Open
Abstract
Forging carbon-carbon (C-C) linkage in DNA-encoded combinatorial library synthesis represents a fundamental task for drug discovery, especially with broad substrate scope and exquisite functional group tolerance. Here we reported the palladium-catalyzed Suzuki-Miyaura, Heck and Hiyama type cross-coupling via DNA-conjugated aryl diazonium intermediates for DNA-encoded chemical library (DEL) synthesis. Starting from commodity arylamines, this synthetic route facilely delivers vast chemical diversity at a mild temperature and pH, thus circumventing damage to fragile functional groups. Given its orthogonality with traditional aryl halide-based cross-coupling, the aryl diazonium-centered strategy expands the compatible synthesis of complex C-C bond-connected scaffolds. In addition, DNA-tethered pharmaceutical compounds (e.g., HDAC inhibitor) are constructed without decomposition of susceptible bioactive warheads (e.g., hydroxamic acid), emphasizing the superiority of the aryl diazonium-based approach. Together with the convenient transformation into an aryl azide photo-crosslinker, aryl diazonium's DNA-compatible diversification synergistically demonstrated its competence to create medicinally relevant combinatorial libraries and investigate protein-ligand interactions in pharmaceutical research.
Collapse
Affiliation(s)
- Xianfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Jie Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University 401331 Chongqing P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
9
|
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022; 12:biom12101523. [PMID: 36291732 PMCID: PMC9599799 DOI: 10.3390/biom12101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (E.E.W.); (N.W.)
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, CH-1205 Geneva, Switzerland
- Correspondence: (E.E.W.); (N.W.)
| |
Collapse
|
10
|
Wu X, Chen Y, Lu W, Jin R, Lu X. Quantitative Validation and Application of the Photo-Cross-Linking Selection for Double-Stranded DNA-Encoded Libraries. Bioconjug Chem 2022; 33:1818-1824. [PMID: 36197318 DOI: 10.1021/acs.bioconjchem.2c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA-encoded compound library (DEL) technology has accelerated the target hits discovery in new drug development. While affinity-based DEL selection can distinguish high-affinity ligands, moderate-affinity ligands are also potential drug candidates with further modifications. Herein, we designed a photo-cross-linking selection method for DELs with double-stranded DNA (dsDELs) to screen moderate-affinity ligands. We constructed two photo-cross-linking libraries with linkers of different lengths that connect a diazirine group to the DNA encoded compound. The diazirine group can be activated by UV irradiation and thus bond with the target protein in a reachable distance. In the model selection, the feasibility of the photo-cross-linking screening system was verified by qPCR and NGS technology. Both high-affinity and moderate-affinity ligands were successfully selected from the libraries.
Collapse
Affiliation(s)
- Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Fang X, Wang Y, He P, Liao H, Zhang G, Li Y, Li Y. Visible Light-Promoted Divergent Benzoheterocyclization from Aldehydes for DNA-Encoded Chemical Libraries. Org Lett 2022; 24:3291-3296. [PMID: 35467894 DOI: 10.1021/acs.orglett.2c01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Benzoheterocyclics have been widely adopted as drug-like core scaffolds that can be incorporated into DNA-encoded chemical library technology for high-throughput hit discovery. Here, we present a visible light-promoted divergent synthesis of on-DNA benzoheterocycles from aldehydes. Four types of DNA-conjugated benzoheterocyclics were obtained under mild conditions with a broad substrate scope. A cross substrate scope study, together with enzymatic ligation and subsequent chemical diversifications, were conducted, demonstrating the feasibility of this approach in DNA-encoded chemical library construction.
Collapse
Affiliation(s)
- Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Pengyang He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China.,Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
13
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
14
|
Bhatt M, Shende P. Surface patterning techniques for proteins on nano- and micro-systems: a modulated aspect in hierarchical structures. J Mater Chem B 2022; 10:1176-1195. [PMID: 35119060 DOI: 10.1039/d1tb02455h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The surface patterning of protein using fabrication or the external functionalization of structures demonstrates various applications in the biomedical field for bioengineering, biosensing and antifouling. This review article offers an outline of the existing advances in protein patterning technology with a special emphasis on the current physical and physicochemical methods, including stencil patterning, trap- and droplet-based microfluidics, and chemical modification of surfaces via photolithography, microcontact printing and scanning probe nanolithography. Different approaches are applied for the biological studies of recent trends for single-protein patterning technology, such as robotic printing, stencil printing and colloidal lithography, wherein the concepts of physical confinement, electrostatic and capillary forces, as well as dielectrophoretics, are summarised to understand the design approaches. Photochemical alterations with diazirine, nitrobenzyl and aryl azide functional groups for the implication of modified substrates, such as self-assembled monolayers functionalized with amino silanes, organosilanes and alkanethiols on gold surfaces, as well as topographical effects of patterning techniques for protein functionalization and orientation, are discussed. Analytical methods for the evaluation of protein functionality are also mentioned. Regarding their selectivity, protein pattering methods will be readily used to fabricate modified surfaces and target-specific delivery systems for the transportation of macromolecules such as streptavidin, and albumin. Future applications of patterning techniques include high-throughput screening, the evaluation of intracellular interactions, accurate screening and personalized treatments.
Collapse
Affiliation(s)
- Maitri Bhatt
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
15
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 400044 Chongqing P. R. China
| |
Collapse
|
16
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
17
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
18
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
19
|
Kim H, Lee S, Yoon J, Song J, Park HG. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens Bioelectron 2021; 194:113587. [PMID: 34455224 DOI: 10.1016/j.bios.2021.113587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
To realize the full potential of the CRISPR/Cas system and expand its applicability up to the detection of molecular interactions, we herein describe a novel method to identify protein/small molecule interactions by utilizing the CRISPR/Cas12a collateral cleavage activity. This technique employs a single-stranded activator DNA modified with a specific small molecule, which would switch on the CRISPR/Cas12a collateral cleavage activity upon binding to crRNA within the CRISPR/Cas12a system. When the target protein binds to the small molecule on the activator DNA, the bound protein sterically hinders the access of the activator DNA to crRNA, thereby promoting less collateral cleavage activity of CRISPR/Cas12a. As a consequence, fewer reporter probes nearby are cleaved to produce accordingly reduced fluorescence signals in response to target protein. Based on this unique design principle, the two model protein/small molecule interactions, streptavidin/biotin and anti-digoxigenin/digoxigenin, were successfully determined down to 0.03 nM and 0.09 nM, respectively, with a fast and simple detection workflow (11 min). The practical applicability of this method was also verified by reliably detecting target streptavidin spiked in heterogeneous human serum. This work would provide great insight to construct novel strategies to identify protein/small molecule interaction by making the most of the CRISPR/Cas12a system beyond its superior capabilities in genome editing and molecular diagnostics.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double- and Single-Stranded DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2021; 61:e202115157. [PMID: 34904335 DOI: 10.1002/anie.202115157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 02/03/2023]
Abstract
The use of a proper encoding methodology is one of the most important aspects when practicing DEL technology. A "headpiece"-based double-stranded DEL encoding method is currently the most widely used for productive DEL. However, the robustness of double-stranded DEL construction conflicts with the versatility presented by single-stranded DEL applications. We here report a novel encoding method, which is based on a "reversible covalent headpiece (RCHP)". The RCHP allows reversible interconversion between double- and single-stranded DNA formats, providing an avenue to robust synthesis and allowing for the applications in distinct setups. We have validated the versatility of this encoding method with encoded self-assembled chemical library and DNA-encoded dynamic library technology. Notably, based on the RCHP-settled library construction, a unique "ternary covalent complex" mediating ligand isolation methodology against non-immobilized targets was developed.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
21
|
Huang Y, Bai X, Guo Z, Dong H, Fu Y, Zhang H, Zhai G, Tian S, Wang Y, Zhang K. DNA-guided photoactivatable probe-based chemical proteomics reveals the reader protein of mRNA methylation. iScience 2021; 24:103046. [PMID: 34553132 PMCID: PMC8441146 DOI: 10.1016/j.isci.2021.103046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023] Open
Abstract
Chemical modification on mRNA can recruit specific binding proteins (readers/partners) to determine post-transcriptional gene regulation. However, the identification of the reader is extremely limited owing to the rather weak and highly dynamic non-covalent interactions between mRNA modification and reader, and therefore the sensitive and robust approaches are desirable. Here, we report a DNA-guided photoactivatable-based chemical proteomic approach for profiling the readers of mRNA methylation. By use of N6-methyladenosine (m6A), we illustrated that this method can be successfully utilized for labelling and enriching the readers of mRNA modification, as well as for the discovery of new partners. Thus we applied this strategy to a new modification 2'-O-methyladenosine. As a result, DDX1 was identified and verified as a potential binding protein. Our study therefore provides a powerful chemical proteomics tool for identifying the binding factors of mRNA modification and reveals the underlying function of mRNA modification.
Collapse
Affiliation(s)
- Yepei Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhenchang Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yun Fu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ye Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
22
|
Yang W, Nan H, Xu Z, Huang Z, Chen S, Li J, Li J, Yang H. DNA-Templated Glycan Labeling for Monitoring Receptor Spatial Distribution in Living Cells. Anal Chem 2021; 93:12265-12272. [PMID: 34474560 DOI: 10.1021/acs.analchem.1c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tracking the spatial distribution of receptor tyrosine kinases in their native environment contributes to understanding the homeostatic or pathological states at a molecular level. Conjugation of DNA tags to a specific receptor is a powerful tool for monitoring receptor spatial distribution. However, long-term stable trafficking in live cells without interfering with the intrinsic receptor function remains a challenge. Here, we report a general DNA-templated glycan labeling strategy to track spatial distribution of a specific receptor in living cells. Different from existing target-selective covalent methods, the DNA tags were incorporated in glycan of a specific receptor via aptamer-assisted metabolic glycan labeling, thus resulting in minimal perturbation to the receptor's biological function. As proof of concept, covalent tagging of MET, HER2, and EGFR was achieved, and then the spatial distribution was successfully monitored, including homo-/heterodimerization and internalization. Overall, the proposed strategy will greatly aid in investigating receptor dynamics and is conducive to understanding their biological function in the native environment.
Collapse
Affiliation(s)
- Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexin Nan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shan Chen
- Institute of Oceanography, Minjiang University, Fuzhou350108, Fujian, People's Republic of China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
23
|
Abstract
In the past two decades, a DNA-encoded chemical library (DEL or DECL) has emerged and has become a major technology platform for ligand discovery in drug discovery as well as in chemical biology research. Although based on a simple concept, i.e., encoding each compound with a unique DNA tag in a combinatorial chemical library, DEL has been proven to be a powerful tool for interrogating biological targets by accessing vast chemical space at a fraction of the cost of traditional high-throughput screening (HTS). Moreover, the recent technological advances and rapid developments of DEL-compatible reactions have greatly enhanced the chemical diversity of DELs. Today, DELs have been adopted by nearly all major pharmaceutical companies and are also gaining momentum in academia. However, this field is heavily biased toward library encoding and synthesis, and an underexplored aspect of DEL research is the selection methods. Generally, DEL selection is considered to be a massive binding assay conducted over an immobilized protein to identify the physical binders using the typical bind-wash-elute procedure. In recent years, we and other research groups have developed new approaches that can perform DEL selections in the solution phase, which has enabled the selection against complex biological targets beyond purified proteins. On the one hand, these methods have significantly widened the target scope of DELs; on the other hand, they have enabled the functional and potentially phenotypic assays of DELs beyond simple binding. An overview of these methods is provided in this Account.Our laboratory has been using DNA-programmed affinity labeling (DPAL) as the main strategy to develop new DEL selection methods. DPAL is based on DNA-templated synthesis; by using a known ligand to guide the target binding, DPAL is able to specifically establish a stable linkage between the target protein and the ligand. The DNA tag of the target-ligand conjugates serves as a programmable handle for protein characterization or hit compound decoding in the case of DEL selections. DPAL also takes advantage of the fast reaction kinetics of photo-cross-linking to achieve high labeling specificity and fidelity, especially in the selection of DNA-encoded dynamic libraries (DEDLs). DPAL has enabled DEL selections not only in buffer and cell lysates but also with complex biological systems, such as large protein complexes and live cells. Moreover, this strategy has also been employed in other biological applications, such as site-specific protein labeling, protein detection, protein profiling, and target identification. In the Account, we describe these methods, highlight their underlying principles, and conclude with perspectives of the development of the DEL technology.
Collapse
Affiliation(s)
- Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F, Building 17W, Hong Kong Science and Technology Parks, New
Territories, Hong Kong SAR, China
| |
Collapse
|
24
|
Daguer JP, Gonse A, Shchukin Y, Farrera-Soler L, Barluenga S, Winssinger N. Dual Bcl-X L /Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorg Med Chem 2021; 44:116282. [PMID: 34216984 DOI: 10.1016/j.bmc.2021.116282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.
Collapse
Affiliation(s)
- Jean-Pierre Daguer
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Arthur Gonse
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yevhenii Shchukin
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
25
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
26
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
27
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Onda Y, Bassi G, Elsayed A, Ulrich F, Oehler S, Plais L, Scheuermann J, Neri D. A DNA-Encoded Chemical Library Based on Peptide Macrocycles. Chemistry 2021; 27:7160-7167. [PMID: 33586277 DOI: 10.1002/chem.202005423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of a novel DNA-encoded library of macrocyclic peptide derivatives are described; the macrocycles are based on three sets of proteinogenic and non-proteinogenic amino acid building blocks and featuring the use of copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction for ring closure. The library (termed YO-DEL) which contains 1 254 838 compounds, was encoded with DNA in single-stranded format and was screened against target proteins of interest using affinity capture procedures and photocrosslinking. YO-DEL selections yielded specific binders against serum albumins, carbonic anhydrases and NKp46, a marker of activated Natural Killer cells.
Collapse
Affiliation(s)
- Yuichi Onda
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Abdullah Elsayed
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Ulrich
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| |
Collapse
|
29
|
Liu S, Qi J, Lu W, Wang X, Lu X. Synthetic Studies toward DNA-Encoded Heterocycles Based on the On-DNA Formation of α,β-Unsaturated Ketones. Org Lett 2021; 23:908-913. [PMID: 33444029 DOI: 10.1021/acs.orglett.0c04118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taking advantage of the diversity-oriented synthesis strategy with α,β-unsaturated carbonyl compounds, we have successfully established the DNA-compatible transformations for various heterocyclic scaffolds. The ring-closure reactions for pyrrole, pyrrolidine, pyrazole, pyrazoline, isoxazoline, pyridine, piperidine, cyclohexenone, and 5,8-dihydroimidazo[1,2-a]pyrimidine were elegantly demonstrated in a DNA-compatible format. These efforts paved the way for preparing DNA-encoded libraries with more extensive chemical space.
Collapse
Affiliation(s)
- Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
30
|
Huang Y, Deng Y, Zhang J, Meng L, Li X. Direct ligand screening against membrane proteins on live cells enabled by DNA-programmed affinity labelling. Chem Commun (Camb) 2021; 57:3769-3772. [DOI: 10.1039/d1cc00961c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA-programmed affinity labelling (DPAL) enables the screening of chemical compounds against membrane proteins directly on live cells.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Jianfu Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Pokfulam Road
- Hong Kong SAR
- China
| |
Collapse
|
31
|
Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem 2020; 13:77-88. [PMID: 33349694 DOI: 10.1038/s41557-020-00605-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaomeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cen Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, Hong Kong SAR, China.
| |
Collapse
|
32
|
Bassi G, Favalli N, Vuk M, Catalano M, Martinelli A, Trenner A, Porro A, Yang S, Tham CL, Moroglu M, Yue WW, Conway SJ, Vogt PK, Sartori AA, Scheuermann J, Neri D. A Single-Stranded DNA-Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001970. [PMID: 33240760 PMCID: PMC7675038 DOI: 10.1002/advs.202001970] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Miriam Vuk
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Anika Trenner
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Su Yang
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | - Chuin Lean Tham
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Wyatt W. Yue
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Peter K. Vogt
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| |
Collapse
|
33
|
Chowdhury R, Yu Z, Tong ML, Kohlhepp SV, Yin X, Mendoza A. Decarboxylative Alkyl Coupling Promoted by NADH and Blue Light. J Am Chem Soc 2020; 142:20143-20151. [PMID: 33125842 PMCID: PMC7705967 DOI: 10.1021/jacs.0c09678] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photoexcited dihydronicotinamides like NADH and analogues have been found to generate alkyl radicals upon reductive decarboxylation of redox-active esters without auxiliary photocatalysts. This principle allowed aliphatic photocoupling between redox-active carboxylate derivatives and electron-poor olefins, displaying surprising water and air-tolerance and unusually high coupling rates in dilute conditions. The orthogonality of the reaction in the presence of other carboxylic acids and its utility in the functionalization of DNA is presented, notably using visible light in combination with NADH, the ubiquitous reductant of life.
Collapse
Affiliation(s)
- Rajdip Chowdhury
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| | - Zhunzhun Yu
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| | - My Linh Tong
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| | - Stefanie V Kohlhepp
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| | - Xiang Yin
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| | - Abraham Mendoza
- Department of Organic Chemistry, Arrhenius laboratory, Stockholm University, 10691 Stockholm Sweden
| |
Collapse
|
34
|
Dai SY, Yang D. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells. J Am Chem Soc 2020; 142:17156-17166. [PMID: 32870680 DOI: 10.1021/jacs.0c08068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical modification of proteins in living cells permits valuable glimpses into the molecular interactions that underpin dynamic cellular events. While genetic engineering methods are often preferred, selective labeling of endogenous proteins in a complex intracellular milieu with chemical approaches represents a significant challenge. In this study, we report novel diazocoumarin compounds that can be photoactivated by visible (430-490 nm) and near-infrared light (800 nm) irradiation to photo-uncage reactive carbene intermediates, which could subsequently undergo an insertion reaction with concomitant fluorescence "turned on". With these new molecules in hand, we have developed a new approach for rapid, selective, and fluorogenic labeling of endogenous protein in living cells. By using CA-II and eDHFR as model proteins, we demonstrated that subcellular localization of proteins can be precisely visualized by live-cell imaging and protein levels can be reliably quantified in multiple cell types using flow cytometry. Dynamic protein regulations such as hypoxia-induced CA-IX accumulation can also be detected. In addition, by two-photon excitation with an 800 nm laser, cell-selective labeling can also be achieved with spatially controlled irradiation. Our method circumvents the cytotoxicity of UV light and obviates the need for introducing external reporters with "click chemistries". We believe that this approach of fluorescence labeling of endogenous protein by bioorthogonal photoirradiation opens up exciting opportunities for discoveries and mechanistic interrogation in chemical biology.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
35
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020; 59:17525-17532. [DOI: 10.1002/anie.202001205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/14/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
36
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
37
|
Yang L, Bui L, Hanjaya-Putra D, Bruening ML. Membrane-Based Affinity Purification to Identify Target Proteins of a Small-Molecule Drug. Anal Chem 2020; 92:11912-11920. [DOI: 10.1021/acs.analchem.0c02316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Bassi G, Favalli N, Oehler S, Martinelli A, Catalano M, Scheuermann J, Neri D. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem Biophys Res Commun 2020; 533:223-229. [PMID: 32386812 DOI: 10.1016/j.bbrc.2020.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
DNA-encoded chemical libraries (DEL) are increasingly being used for the discovery and optimization of small organic ligands to proteins of biological or pharmaceutical interest. The DNA fragments, that serve as amplifiable identification barcodes for individual compounds in the library, are typically used in double-stranded DNA format. To the best of our knowledge, a direct comparison of DEL selections featuring DNA in either single- or double-stranded DNA format has not yet been reported. In this article, we describe a comparative evaluation of selections with two DEL libraries (named GB-DEL and NF-DEL), based on different chemical designs and produced in both single- and double-stranded DNA format. The libraries were selected in identical conditions against multiple protein targets, revealing comparable and reproducible fingerprints for both types of DNA formats. Surprisingly, selections performed with single-stranded DNA barcodes exhibited improved enrichment factors compared to double-stranded DNA. Using high-affinity ligands to carbonic anhydrase IX as benchmarks for selection performance, we observed an improved selectivity for the NF-DEL library (on average 2-fold higher enrichment factors) in favor of single-stranded DNA. The enrichment factors were even higher for the GB-DEL selections (approximately 5-fold), compared to the same library in double-stranded DNA format. Collectively, these results indicate that DEL libraries can conveniently be synthesized and screened in both single- and double-stranded DNA format, but single-stranded DNA barcodes typically yield enhanced enrichment factors.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
39
|
Madsen D, Azevedo C, Micco I, Petersen LK, Hansen NJV. An overview of DNA-encoded libraries: A versatile tool for drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:181-249. [PMID: 32362328 DOI: 10.1016/bs.pmch.2020.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA-encoded libraries (DELs) are collections of small molecules covalently attached to amplifiable DNA tags carrying unique information about the structure of each library member. A combinatorial approach is used to construct the libraries with iterative DNA encoding steps, facilitating tracking of the synthetic history of the attached compounds by DNA sequencing. Various screening protocols have been developed which allow protein target binders to be selected out of pools containing up to billions of different small molecules. The versatile methodology has allowed identification of numerous biologically active compounds and is now increasingly being adopted as a tool for lead discovery campaigns and identification of chemical probes. A great focus in recent years has been on developing DNA compatible chemistries that expand the structural diversity of the small molecule library members in DELs. This chapter provides an overview of the challenges and accomplishments in DEL technology, reviewing the technological aspects of producing and screening DELs with a perspective on opportunities, limitations, and future directions.
Collapse
|
40
|
Sannino A, Gironda-Martínez A, Gorre ÉMD, Prati L, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections. ACS COMBINATORIAL SCIENCE 2020; 22:204-212. [PMID: 32109359 DOI: 10.1021/acscombsci.0c00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The growing importance of DNA-encoded chemical libraries (DECLs) as tools for the discovery of protein binders has sparked an interest for the development of efficient screening methodologies, capable of discriminating between high- and medium-affinity ligands. Here, we present a systematic investigation of selection methodologies, featuring a library displayed on single-stranded DNA, which could be hybridized to a complementary oligonucleotide carrying a diazirine photoreactive group. Model experiments, performed using ligands of different affinity to carbonic anhydrase IX, revealed a recovery of preferential binders up to 10%, which was mainly limited by the highly reactive nature of carbene intermediates generated during the photo-cross-linking process. Ligands featuring acetazolamide or p-phenylsulfonamide exhibited a higher recovery compared to their counterparts based on 3-sulfamoyl benzoic acid, which had a lower affinity toward the target. A systematic evaluation of experimental parameters revealed conditions that were ideally suited for library screening, which were used for the screening of a combinatorial DECL library, featuring 669 240 combinations of two sets of building blocks. Compared to conventional affinity capture procedures on protein immobilized on solid supports, photo-cross-linking provided a better discrimination of low-affinity CAIX ligands over the background signal and therefore can be used as a tandem methodology with the affinity capture procedures.
Collapse
Affiliation(s)
| | | | | | - Luca Prati
- Philochem AG, 8112 Otelfingen, Switzerland
| | | | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
41
|
Terai T, Koike T, Nemoto N. Photocrosslinking of cDNA Display Molecules with Their Target Proteins as a New Strategy for Peptide Selection. Molecules 2020; 25:molecules25061472. [PMID: 32214008 PMCID: PMC7146492 DOI: 10.3390/molecules25061472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Binding peptides for given target molecules are often selected in vitro during drug discovery and chemical biology research. Among several display technologies for this purpose, complementary DNA (cDNA) display (a covalent complex of a peptide and its encoding cDNA linked via a specially designed puromycin-conjugated DNA) is unique in terms of library size, chemical stability, and flexibility of modification. However, selection of cDNA display libraries often suffers from false positives derived from non-specific binding. Although rigorous washing is a straightforward solution, this also leads to the loss of specific binders with moderate affinity because the interaction is non-covalent. To address this issue, herein, we propose a method to covalently link cDNA display molecules with their target proteins using light irradiation. We designed a new puromycin DNA linker that contains a photocrosslinking nucleic acid and prepared cDNA display molecules using the linker. Target proteins were also labeled with a short single-stranded DNA that should transiently hybridize with the linker. Upon ultraviolet (UV) light irradiation, cDNA display molecules encoding correct peptide aptamers made stable crosslinked products with the target proteins in solution, while display molecules encoding control peptides did not. Although further optimization and improvement is necessary, the results pave the way for efficient selection of peptide aptamers in multimolecular crowding biosystems.
Collapse
Affiliation(s)
- Takuya Terai
- Correspondence: (T.T.); or (N.N); Tel.: +81-48-858-3534 (T.T.); +81-48-858-3531 (N.N.)
| | | | - Naoto Nemoto
- Correspondence: (T.T.); or (N.N); Tel.: +81-48-858-3534 (T.T.); +81-48-858-3531 (N.N.)
| |
Collapse
|
42
|
|
43
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
44
|
Cai B, Kim D, Akhand S, Sun Y, Cassell RJ, Alpsoy A, Dykhuizen EC, Van Rijn RM, Wendt MK, Krusemark CJ. Selection of DNA-Encoded Libraries to Protein Targets within and on Living Cells. J Am Chem Soc 2019; 141:17057-17061. [PMID: 31613623 DOI: 10.1021/jacs.9b08085] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the selection of DNA-encoded small molecule libraries against protein targets within the cytosol and on the surface of live cells. The approach relies on generation of a covalent linkage of the DNA to protein targets by affinity labeling. This cross-linking event enables subsequent copurification by a tag on the recombinant protein. To access targets within cells, a cyclic cell-penetrating peptide is appended to DNA-encoded libraries for delivery across the cell membrane. As this approach assesses binding of DELs to targets in live cells, it provides a strategy for selection of DELs against challenging targets that cannot be expressed and purified as active.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Saeed Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Richard M Van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
45
|
Skovsgaard MB, Mortensen MR, Palmfeldt J, Gothelf KV. Aptamer-Directed Conjugation of DNA to Therapeutic Antibodies. Bioconjug Chem 2019; 30:2127-2135. [PMID: 31247138 DOI: 10.1021/acs.bioconjchem.9b00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A method for aptamer directed conjugation of DNA to therapeutic antibodies has been developed. In the method, an antibody selective aptamer binds to a specific site in the constant domain of human IgG1 antibodies and is used for both templated and direct conjugation to the antibodies. Through optimization of the design and reaction conditions, the antibody-DNA conjugates could be produced efficiently using equal stoichiometry of protein and DNA. Three different antibodies were evaluated, and the conjugates were characterized by anion exchange chromatography and SDS-PAGE. The conjugation sites for one of the antibodies were determined by MS/MS analysis of the digested conjugate. The antibody-DNA conjugate was also tested for receptor binding on cell surfaces showing retained binding.
Collapse
Affiliation(s)
- Mikkel B Skovsgaard
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Michael R Mortensen
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine , Aarhus University , Palle Juul-Jensens Boulevard 99 , DK-8200 Aarhus N, Denmark
| | - Kurt V Gothelf
- iNANO, Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
46
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
47
|
Shi B, Deng Y, Li X. Polymerase-Extension-Based Selection Method for DNA-Encoded Chemical Libraries against Nonimmobilized Protein Targets. ACS COMBINATORIAL SCIENCE 2019; 21:345-349. [PMID: 30920794 DOI: 10.1021/acscombsci.9b00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) have become an important ligand discovery technology in biomedical research and drug discovery. DELs can be comprised of hundreds of millions to billions of candidate molecules and provide outstanding chemical diversity for discovering novel ligands and inhibitors for a large variety of biological targets. However, in most cases, DELs are selected against purified and immobilized proteins based on binding affinity. The development and application of DELs to more complex biological targets requires selection methods compatible with nonimmobilized and unpurified proteins. Here, we describe an approach using polymerase-based extension and target-directed photo-cross-linking and its application to the interrogation of a solution-phase protein target, carbonic anhydrase II.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Food Science, Tibet Agriculture and Animal Husbandry University, 100 Yucai Road West, Nyingchi, China 860000
| | - Yuqing Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
48
|
Nicholas F, Bassi G, Zanetti T, Scheuermann J, Neri D. Screening of copper and palladium-mediated reactions compatible with DNA-encoded chemical libraries. Helv Chim Acta 2019; 102. [PMID: 32292208 DOI: 10.1002/hlca.201900033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The construction of DNA-encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA-compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium-catalyzed reactions (Suzuki cross-coupling, Sonogashira cross-coupling and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.
Collapse
Affiliation(s)
- Favalli Nicholas
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Gabriele Bassi
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Tania Zanetti
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093 Zürich (Switzerland)
| |
Collapse
|
49
|
Liszczak G, Muir TW. Barcoding mit Nukleinsäuren: Anwendung der DNA‐Sequenzierung als molekulares Zählwerk. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Glen Liszczak
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
- Aktuelle Adresse: Department of BiochemistryUT Southwestern Medical Center Dallas TX 75390 USA
| | - Tom W. Muir
- Department of ChemistryPrinceton University Princeton NJ 08544 USA
| |
Collapse
|
50
|
Liszczak G, Muir TW. Nucleic Acid-Barcoding Technologies: Converting DNA Sequencing into a Broad-Spectrum Molecular Counter. Angew Chem Int Ed Engl 2019; 58:4144-4162. [PMID: 30153374 DOI: 10.1002/anie.201808956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/17/2022]
Abstract
The emergence of high-throughput DNA sequencing technologies sparked a revolution in the field of genomics that has rippled into many branches of the life and physical sciences. The remarkable sensitivity, specificity, throughput, and multiplexing capacity that are inherent to parallel DNA sequencing have since motivated its use as a broad-spectrum molecular counter. A key aspect of extrapolating DNA sequencing to non-traditional applications is the need to append nucleic-acid barcodes to entities of interest. In this review, we describe the chemical and biochemical approaches that have enabled nucleic-acid barcoding of proteinaceous and non-proteinaceous materials and provide examples of downstream technologies that have been made possible by DNA-encoded molecules. As commercially available high-throughput sequencers were first released less than 15 years ago, we believe related applications will continue to mature and close by proposing new frontiers to support this assertion.
Collapse
Affiliation(s)
- Glen Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Present address: Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|