1
|
Das S, Datta T, Sk MA, Roy B, Nandi RK. Isoxazole group directed Rh(III)-catalyzed alkynylation using TIPS-EBX. Org Biomol Chem 2024; 22:6922-6927. [PMID: 38978484 DOI: 10.1039/d4ob00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A highly effective isoxazole directed ortho C-H alkynylation has been developed. Rhodium(III) catalyzed direct di-(and/or mono) alkynylation using a hypervalent iodine reagent (TIPS-EBX) is reported. The reaction proceeds with a wide substrate scope under benign conditions. Preliminary mechanistic studies support this chelation assisted C-H alkynylation.
Collapse
Affiliation(s)
- Sukanya Das
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Tanmoy Datta
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Md Abbasuddin Sk
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Brindaban Roy
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Raj K Nandi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
2
|
Font P, Valdés H, Ribas X. Consolidation of the Oxidant-Free Au(I)/Au(III) Catalysis Enabled by the Hemilabile Ligand Strategy. Angew Chem Int Ed Engl 2024; 63:e202405824. [PMID: 38687322 DOI: 10.1002/anie.202405824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.
Collapse
Affiliation(s)
- Pau Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| | - Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
- Current address: Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| |
Collapse
|
3
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
4
|
Shiri F, Ho CC, Bissember AC, Ariafard A. Advancing Gold Redox Catalysis: Mechanistic Insights, Nucleophilicity-Guided Transmetalation, and Predictive Frameworks for the Oxidation of Aryl Gold(I) Complexes. Chemistry 2024; 30:e202302990. [PMID: 37967304 DOI: 10.1002/chem.202302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Liu XY, Cai W, Ronceray N, Radenovic A, Fierz B, Waser J. Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization. J Am Chem Soc 2023; 145:26525-26531. [PMID: 38035635 PMCID: PMC10722513 DOI: 10.1021/jacs.3c09261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Rapid and efficient cyclization methods that form structurally novel peptidic macrocycles are of high importance for medicinal chemistry. Herein, we report the first gold(I)-catalyzed macrocyclization of peptide-EBXs (ethynylbenziodoxolones) via C2-Trp C-H activation. This reaction was carried out in the presence of protecting group free peptide sequences and is enabled by a simple commercial gold catalyst (AuCl·Me2S). The method displayed a rapid reaction rate (within 10 min), wide functional group tolerance (27 unprotected peptides were cyclized), and up to 86% isolated yield. The obtained highly conjugated cyclic peptide linker, formed through C-H alkynylation, can be directly applied to live-cell imaging as a fluorescent probe without further attachment of fluorophores.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| | - Wei Cai
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Wang L, Ma R, Xia J, Liu X, Sun J, Zheng G, Zhang Q. DBU-Mediated Isomerization/6-π Electro-Cyclization/Oxidation Cascade of Sulfonyl-Substituted Allenyl Ketones for the Construction of Hetero-1,3,5-Trisubstituted Benzene. Chemistry 2023; 29:e202203309. [PMID: 36509732 DOI: 10.1002/chem.202203309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
1,3,5-tri-substituted benzene rings emerged with unique properties has widespread applications in materials, boosting the rapid development of their synthesis. Despite the significance, the direct construction of hetero-1,3,5-trisubstituted benzene core was far less-developed. Herein, we realized a DBU-mediated isomerization/6-π electro-cyclization/oxidative aromatization cascade of sulfonyl-substituted allenyl ketones under an air atmosphere (DBU=1,8-diazabicyclo[5.4.0]undec-7-ene). This versatile protocol featured metal-free conditions, easy operation, and broad functional group tolerance provides a new avenue for the construction of hetero-1,3,5-tri-substituted benzene.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiuli Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ximin Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, Changchun, 130024, P. R. China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
7
|
Kong L, Zou Y, Li XX, Zhang XP, Li X. Rhodium-catalyzed enantioselective C-H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution. Chem Sci 2023; 14:317-322. [PMID: 36687346 PMCID: PMC9811495 DOI: 10.1039/d2sc05310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Rhodium-catalyzed enantioselective C-H alkynylation of achiral and racemic sulfoxides is disclosed with alkynyl bromide as the alkynylating reagent. A wide range of chiral sulfoxides have been constructed in good yield and excellent enantioselectivity (up to 99% ee, s-factor up to > 500) via desymmetrization, kinetic resolution, and parallel kinetic resolution under mild reaction conditions. The high enantioselectivity was rendered by the chiral cyclopentadienyl rhodium(iii) catalyst paired with a chiral carboxamide additive. The interactions between the chiral catalyst, the sulfoxide, and the chiral carboxylic amide during the C-H bond cleavage offer the asymmetric induction, which is validated by DFT calculations. The chiral carboxamide functions as a base to promote C-H activation and offers an additional chiral environment during the C-H cleavage.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Yun Zou
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| |
Collapse
|
8
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
9
|
Shetgaonkar SE, Raju A, China H, Takenaga N, Dohi T, Singh FV. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents. Front Chem 2022; 10:909250. [PMID: 35844643 PMCID: PMC9283985 DOI: 10.3389/fchem.2022.909250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Transition metal-catalyzed direct oxidative coupling reactions via C–H bond activation have emerged as a straightforward strategy for the construction of complex molecules in organic synthesis. The direct transformation of C–H bonds into carbon–carbon and carbon–heteroatom bonds renders the requirement of prefunctionalization of starting materials and, therefore, represents a more efficient alternative to the traditional cross-coupling reactions. The key to the unprecedented progress made in this area has been the identification of an appropriate oxidant that facilitates oxidation and provides heteroatom ligands at the metal center. In this context, hypervalent iodine compounds have evolved as mainstream reagents particularly because of their excellent oxidizing nature, high electrophilicity, and versatile reactivity. They are environmentally benign reagents, stable, non-toxic, and relatively cheaper than inorganic oxidants. For many years, palladium catalysis has dominated these oxidative coupling reactions, but eventually, other transition metal catalysts such as gold, copper, platinum, iron, etc. were found to be promising alternate catalysts for facilitating such reactions. This review article critically summarizes the recent developments in non-palladium-catalyzed oxidative coupling reactions mediated by hypervalent iodine (III) reagents with significant emphasis on understanding the mechanistic aspects in detail.
Collapse
Affiliation(s)
| | - Aleena Raju
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
| | - Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| |
Collapse
|
10
|
Chintawar CC, Bhoyare VW, Mane MV, Patil NT. Enantioselective Au(I)/Au(III) Redox Catalysis Enabled by Chiral (P,N)-Ligands. J Am Chem Soc 2022; 144:7089-7095. [PMID: 35436097 DOI: 10.1021/jacs.2c02799] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presented herein is the first report of enantioselective Au(I)/Au(III) redox catalysis, enabled by a newly designed hemilabile chiral (P,N)-ligand (ChetPhos). The potential of this concept has been demonstrated by the development of enantioselective 1,2-oxyarylation and 1,2-aminoarylation of alkenes which provided direct access to the medicinally relevant 3-oxy- and 3-aminochromans (up to 88% yield and 99% ee). DFT studies were carried out to unravel the enantiodetermining step, which revealed that the stronger trans influence of phosphorus allows selective positioning of the substrate in the C2-symmetric chiral environment present around nitrogen, imparting a high level of enantioselectivity.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Manoj V Mane
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India.,KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
11
|
Ni D, Song L, Zhao Y, Liu S. One-pot synthesis of multi-substituted conjugated dienones by trapping allene carbocations with active ylides. Chem Commun (Camb) 2022; 58:2698-2701. [PMID: 35108717 DOI: 10.1039/d1cc06405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(II)/boron reagent co-catalyzed unprecedent transformation was established for the rapid construction of multi-substituted conjugated dienones under mild conditions by trapping allene carbocations with oxonium ylides from simple starting points in yields up to 85%. Two CC double bonds, one C-C and one C-O single bond were built in this one-pot reaction. The diversity-oriented strategy was also established to synthesize alkyne ether and dihydrofuran derivatives by a substrate-depended fashion.
Collapse
Affiliation(s)
- Dan Ni
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
12
|
Li X, Chen P, Liu G. Palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes: easy access to β-alkynylcarboxylic esters. Chem Commun (Camb) 2022; 58:2544-2547. [PMID: 35099483 DOI: 10.1039/d1cc07092d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes has been established with ethynyl benziodoxolones (EBXs) as alkynylation reagents, providing β-alkynylcarboxylic esters efficiently from simple alkenes. The reaction features moderate to excellent regioselectivity and excellent functional group compatibility under mild reaction conditions.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
13
|
Han C, Liu Y, Tian X, Rominger F, Hashmi ASK. Dual Gold/Silver Catalysis: Indolizines from 2-Substituted Pyridine Derivatives via a Tandem C(sp 3)-H Alkynylation/Iminoauration. Org Lett 2021; 23:9480-9484. [PMID: 34874732 DOI: 10.1021/acs.orglett.1c03667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A dual gold/silver-catalyzed cascade C(sp3)-H alkynylation/iminoauration of 2-substituted pyridines with hypervalent iodine(III) reagents for the synthesis of indolizines is described. This novel reaction involves the formation of an alkynyl Au(III) species, a dual gold/silver-catalyzed C(sp3)-H functionalization, and a subsequent iminoauration process. A number of indolizines bearing diverse functionalities were prepared in good to excellent yield. Furthermore, a gram-scale reaction was efficiently conducted.
Collapse
Affiliation(s)
- Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Yaowen Liu
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xianhai Tian
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Yasukawa N, Yamada Y, Furugen C, Miki Y, Sajiki H, Sawama Y. Gold-Catalyzed Tandem Oxidative Coupling Reaction between β-Ketoallenes and Electron-Rich Arenes to 2-Furylmethylarenes. Org Lett 2021; 23:5891-5895. [PMID: 34320804 DOI: 10.1021/acs.orglett.1c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A tandem oxidative coupling reaction of β-ketoallenes and arenes was developed, which leads to the formation of 2-furylmethylarenes using AuCl3 and phenyliodine diacetate. The AuIII salt catalyzed the cyclization of β-ketoallenes to form a 2-furylmethyl gold intermediate, and the subsequent C-H functionalization of arenes proceeded smoothly. During the oxidative coupling, nucleophilic additions occurred at the center and terminal carbon atoms of the allene moiety to form C-O and C-C bonds.
Collapse
Affiliation(s)
- Naoki Yasukawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yutaro Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Chikara Furugen
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuya Miki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
15
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
16
|
Palladium‐Catalyzed Diastereoselective Synthesis of (
Z
)‐Conjugated Enynyl Homoallylic Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Han C, Tian X, Zhang H, Rominger F, Hashmi ASK. Tetrasubstituted 1,3-Enynes by Gold-Catalyzed Direct C(sp 2)-H Alkynylation of Acceptor-Substituted Enamines. Org Lett 2021; 23:4764-4768. [PMID: 34105968 DOI: 10.1021/acs.orglett.1c01486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A gold-catalyzed synthesis of tetrasubstituted 1,3-enynes from hypervalent iodine(III) reagents and activated alkenes is reported. This reaction involves an in situ formed alkynyl Au(III) species and a subsequent direct C(sp2)-H functionalization of alkenes, offering 26 enynes in 62-92% yield with excellent functional group tolerance.
Collapse
Affiliation(s)
- Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xianhai Tian
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Huili Zhang
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Font P, Ribas X. Fundamental Basis for Implementing Oxidant‐Free Au(I)/Au(III) Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pau Font
- QBIS-CAT group Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi Girona 17003 Catalonia Spain
| | - Xavi Ribas
- QBIS-CAT group Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi Girona 17003 Catalonia Spain
| |
Collapse
|
19
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au-Ag Bimetallic Catalysis: 3-Alkynyl Benzofurans from Phenols via Tandem C-H Alkynylation/Oxy-Alkynylation. Angew Chem Int Ed Engl 2021; 60:10637-10642. [PMID: 33617065 PMCID: PMC8252013 DOI: 10.1002/anie.202016595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/17/2023]
Abstract
The development of new methodologies enabling a facile access to valuable heterocyclic frameworks still is an important subject of research. In this context, we describe a dual catalytic cycle merging C-H alkynylation of phenols and oxy-alkynylation of the newly introduced triple bond by using a unique redox property and the carbophilic π acidity of gold. Mechanistic studies support the participation of a bimetallic gold-silver species. The one-pot protocol offers a direct, simple, and regio-specific approach to 3-alkynyl benzofurans from readily available phenols. A broad range of substrates, including heterocycles, is transferred with excellent functional group tolerance. Thus, this methodology can be used for the late-stage incorporation of benzofurans.
Collapse
Affiliation(s)
- Long Hu
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Martin C. Dietl
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Chunyu Han
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University (KAU)21589JeddahSaudi Arabia
| |
Collapse
|
20
|
Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Oxidative additions of alkynyl/vinyl iodides to gold and gold-catalyzed vinylation reactions triggered by the MeDalphos ligand. Chem Sci 2021; 12:7706-7712. [PMID: 34168822 PMCID: PMC8188461 DOI: 10.1039/d1sc01483h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The hemilabile Ad2P(o-C6H4)NMe2 ligand promotes fast, quantitative and irreversible oxidative addition of alkynyl and vinyl iodides to gold. The reaction is general. It works with a broad range of substrates of various electronic bias and steric demand, and proceeds with complete retention of stereochemistry from Z and E vinyl iodides. Both alkynyl and vinyl iodides react faster than aryl iodides. The elementary step is amenable to catalysis. Oxidative addition of vinyl iodides to gold and π-activation of alkenols (and N-alkenyl amines) at gold have been combined to achieve hetero-vinylation reactions. A number of functionalized heterocycles, i.e. tetrahydrofuranes, tetrahydropyranes, oxepanes and pyrrolidines were obtained thereby (24 examples, 87% average yield). Taking advantage of the chemoselectivity for vinyl iodides over aryl iodides, sequential transformations involving first a hetero-vinylation step and then a C-N coupling, a C-C coupling or an heteroarylation were achieved from a vinyl/aryl bis-iodide substrate.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Alexis Tabey
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
21
|
Calogero F, Gualandi A, Matteo MD, Potenti S, Fermi A, Bergamini G, Cozzi PG. Photoredox Propargylation of Aldehydes Catalytic in Titanium. J Org Chem 2021; 86:7002-7009. [PMID: 33884879 PMCID: PMC8279488 DOI: 10.1021/acs.joc.1c00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
A practical and effective
photoredox propargylation of aldehydes
promoted by 10 mol % of [Cp2TiCl2] is presented.
No stoichiometric metals or scavengers are used for the process. A
catalytic amount of the cheap and simply prepared organic dye 3DPAFIPN
is used as the reductant for titanium. The reaction displayed a broad
scope, and no traces of allenyl isomers were detected for simple propargyl
bromide, whereas mixtures of propargyl and allenyl isomers were observed
for substituted propargyl bromides.
Collapse
Affiliation(s)
- Francesco Calogero
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Marco Di Matteo
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Simone Potenti
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy.,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Andrea Fermi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Giacomo Bergamini
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Alma Mater Studiorum, Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
22
|
Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2021; 60:9022-9031. [PMID: 33450121 PMCID: PMC8048981 DOI: 10.1002/anie.202014511] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Easy access to a wide range of structurally diverse stapled peptides is crucial for the development of inhibitors of protein-protein interactions. Herein, we report bis-functional hypervalent iodine reagents for two-component cysteine-cysteine and cysteine-lysine stapling yielding structurally diverse thioalkyne linkers. This stapling method works with unprotected natural amino acid residues and does not require pre-functionalization or metal catalysis. The products are stable to purification and isolation. Post-stapling modification can be accessed via amidation of an activated ester, or via cycloaddition onto the formed thioalkyne group. Increased helicity and binding affinity to MDM2 was obtained for a i,i+7 stapled peptide.
Collapse
Affiliation(s)
- Javier Ceballos
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Gontran Sangouard
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
23
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au‐Ag‐Bimetallkatalyse: 3‐Alkinylbenzofurane aus Phenolen durch Tandem‐C‐H‐Alkinylierung/Oxyalkinylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Hu
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Martin C. Dietl
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Chunyu Han
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Matthias Rudolph
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabien
| |
Collapse
|
24
|
Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Cys–Cys and Cys–Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Ceballos
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Gontran Sangouard
- Laboratory of Therapeutic Proteins and Peptides Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 5305 1015 Lausanne Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 5305 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| |
Collapse
|
25
|
π-Alkene/alkyne and carbene complexes of gold(I) stabilized by chelating ligands. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Bellina F, Biagetti M, Guariento S, Lessi M, Fausti M, Ronchi P, Rosadoni E. Ligand-free Pd/Ag-mediated dehydrogenative alkynylation of imidazole derivatives. RSC Adv 2021; 11:25504-25509. [PMID: 35478867 PMCID: PMC9036978 DOI: 10.1039/d1ra05303e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
A variety of 2-alkynyl(benzo)imidazoles have been synthesized by dehydrogenative alkynylation of (benzo)imidazoles with terminal alkyne in NMP under air in the presence of Ag2CO3 as the oxidant and Pd(OAc)2 as the catalyst precursor. The data obtained in this study support a reaction mechanism involving a non-concerted metalation deprotonation (n-CMD) pathway. The regioselective synthesis of 2-alkynyl(benz)imidazoles was successfully achieved by Pd(ii)/Ag(i)-mediated dehydrogenative alkynylation of the corresponding (benz)imidazoles with terminal alkynes in an open vessel.![]()
Collapse
Affiliation(s)
- Fabio Bellina
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Matteo Biagetti
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Sara Guariento
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Marco Lessi
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Mattia Fausti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Paolo Ronchi
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Elisabetta Rosadoni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| |
Collapse
|
27
|
Han C, Tian X, Song L, Liu Y, Hashmi ASK. Tetra-substituted furans by a gold-catalysed tandem C(sp 3)–H alkynylation/oxy-alkynylation reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01401c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gold-catalysed cascade C(sp3)–H alkynylation/oxy-alkynylation of acceptor-substituted carbonyl compounds with hypervalent iodine(iii) reagents for the synthesis of tetra-substituted furans, offering distinct advantages over previous methods.
Collapse
Affiliation(s)
- Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xianhai Tian
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lina Song
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Yaowen Liu
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Liu Z, Budiman YP, Tian Y, Friedrich A, Huang M, Westcott SA, Radius U, Marder TB. Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes. Chemistry 2020; 26:17267-17274. [PMID: 32697365 PMCID: PMC7821263 DOI: 10.1002/chem.202002888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 01/13/2023]
Abstract
We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cross-coupled alkynyl(fluoro)arene products in moderate to excellent yields. Thus, it represents a simple alternative to the conventional Sonogashira reaction.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Mingming Huang
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
29
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
30
|
Genoux A, González JA, Merino E, Nevado C. Mechanistic Insights into C(sp 2 )-C(sp)N Reductive Elimination from Gold(III) Cyanide Complexes. Angew Chem Int Ed Engl 2020; 59:17881-17886. [PMID: 32648359 DOI: 10.1002/anie.202005731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Indexed: 01/14/2023]
Abstract
A new family of phosphine-ligated dicyanoarylgold(III) complexes has been prepared and their reactivity towards reductive elimination has been studied in detail. Both, a highly positive entropy of activation and a primary 12/13 C KIE suggest a late concerted transition state while Hammett analysis and DFT calculations indicate that the process is asynchronous. As a result, a distinct mechanism involving an asynchronous concerted reductive elimination for the overall C(sp2 )-C(sp)N bond forming reaction is characterized herein, for the first time, complementing previous studies reported for C(sp3 )-C(sp3 ), C(sp2 )-C(sp2 ), and C(sp3 )-C(sp2 ) bond formation processes taking place on gold(III) species.
Collapse
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Current address: Department of Organic and Inorganic Chemistry, Chemical Research Institute Andrés M. del Río (IQAR) University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
31
|
Rocchigiani L, Bochmann M. Recent Advances in Gold(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis. Chem Rev 2020; 121:8364-8451. [DOI: 10.1021/acs.chemrev.0c00552] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Luca Rocchigiani
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| |
Collapse
|
32
|
Genoux A, González JA, Merino E, Nevado C. Mechanistic Insights into C(sp
2
)−C(sp)N Reductive Elimination from Gold(III) Cyanide Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Jorge A. González
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Estíbaliz Merino
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
- Current address: Department of Organic and Inorganic Chemistry Chemical Research Institute Andrés M. del Río (IQAR) University of Alcalá 28805, Alcalá de Henares Madrid Spain
| | - Cristina Nevado
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
33
|
Pisella G, Gagnebin A, Waser J. Three-Component Reaction for the Synthesis of Highly Functionalized Propargyl Ethers. Chemistry 2020; 26:10199-10204. [PMID: 32187739 DOI: 10.1002/chem.202001317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/27/2022]
Abstract
Multicomponent reactions provide efficient means to access molecular complexity. Herein, we report a copper-catalyzed three-component reaction of diazo compounds, alcohols and ethynyl benziodoxole (EBX) reagents for the synthesis of propargyl ethers. Extensive variations of the three partners of the reaction is possible, leading to highly functionalized and structurally diverse products under mild conditions. Alkynylation of a copper ylide intermediate is postulated as key step for this transformation.
Collapse
Affiliation(s)
- Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Alec Gagnebin
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Zhang J, Yang Q, Zhu Y, Wang J, Deng G. Synthesis and Rhodium(II)-Mediated Cascade Cyclopropanation/Rearrangement/Isomerization of Diazo 2,3,5-Trisubstituted Furans: The Construction of Penta-substituted Aromatic Compounds. J Org Chem 2020; 85:2395-2405. [PMID: 31916442 DOI: 10.1021/acs.joc.9b03093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ag(I)-catalyzed synthesis of diazo-trisubstituted furans starting from diazo-cumulated allenyl ketones has been investigated. The Rh2(OAc)4-catalyzed reaction of the diazo 2,3,5-trisubstituted furans provided penta-substituted aromatics via cascade intermolecular cyclopropanation/rearrangement/isomerization. The cyclopropanation on the furan ring/rearrangement of cyclopropane moiety has been reported. A reasonable mechanism is proposed.
Collapse
Affiliation(s)
- Jianfang Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Qin Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) , Peking University , Beijing 100871 , PR China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China.,Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha 410081 , China.,Beijing National Laboratory for Molecular Sciences (BNLMS) , Peking University , Beijing 100871 , PR China
| |
Collapse
|
35
|
Banerjee S, Bhoyare VW, Patil NT. Gold and hypervalent iodine(iii): liaisons over a decade for electrophilic functional group transfer reactions. Chem Commun (Camb) 2020; 56:2677-2690. [PMID: 32090230 DOI: 10.1039/d0cc00106f] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the last two decades, hypervalent iodine(iii) reagents have evolved from being 'bonding curiosities' to mainstream reagents in organic synthesis, in particular, electrophilic functional group transfer reactions. In this context, gold catalysts have not only emerged as a unique toolbox to facilitate such reactions (especially alkynylations) but also opened new possibilities with their different modes of reactivities for other functional group transfer reactions (acetoxylations and arylations). This feature article critically summarizes hitherto all such Au-catalyzed electrophilic functional group transfer reactions with hypervalent iodine(iii) reagents, emphasizing their mechanistic aspects.
Collapse
Affiliation(s)
- Somsuvra Banerjee
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| |
Collapse
|
36
|
Bernhard Y, Gilbert J, Bousquet T, Favrelle-Huret A, Zinck P, Pellegrini S, Pelinski L. One-Pot Synthesis of 2,5-Disubstituted Furans through In Situ Formation of Allenes and Enolization Cascade. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yann Bernhard
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Joachim Gilbert
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Till Bousquet
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Audrey Favrelle-Huret
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Philippe Zinck
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Sylvain Pellegrini
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Lydie Pelinski
- ENSCL, Centrale Lille, Univ. Artois, UMR 8181 UCCSUnité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| |
Collapse
|
37
|
Liu Z, Yang C, Xue Q, Zhao M, Shan C, Xu Y, Loh T. Copper‐Catalyzed Asymmetric Silylation of Propargyl Dichlorides: Access to Enantioenriched Functionalized Allenylsilanes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zheng‐Li Liu
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Chao Yang
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Qi‐Yan Xue
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Meng Zhao
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Cui‐Cui Shan
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Yun‐He Xu
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Teck‐Peng Loh
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 637616 Singapore Singapore
| |
Collapse
|
38
|
Liu ZL, Yang C, Xue QY, Zhao M, Shan CC, Xu YH, Loh TP. Copper-Catalyzed Asymmetric Silylation of Propargyl Dichlorides: Access to Enantioenriched Functionalized Allenylsilanes. Angew Chem Int Ed Engl 2019; 58:16538-16542. [PMID: 31532868 PMCID: PMC6899605 DOI: 10.1002/anie.201908343] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Indexed: 02/04/2023]
Abstract
A copper‐catalyzed silylation of propargyl dichlorides was developed to access chloro‐substituted allenylsilanes under mild reaction conditions. Moreover, enantioenriched chloro‐substituted allenylsilanes can be synthesized in moderate to high yields and good enantioselectivities with this protocol.
Collapse
Affiliation(s)
- Zheng-Li Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi-Yan Xue
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Cui-Cui Shan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Teck-Peng Loh
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616, Singapore, Singapore
| |
Collapse
|
39
|
Hofer M, de Haro T, Gómez-Bengoa E, Genoux A, Nevado C. Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes. Chem Sci 2019; 10:8411-8420. [PMID: 31803420 PMCID: PMC6844217 DOI: 10.1039/c9sc02372k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
The mechanism of the gold-catalyzed oxidative cross-coupling of arenes and alkynes has been studied in detail combining stoichiometric experiments with putative reaction intermediates and DFT calculations. Our data suggest that ligand exchange between the alkyne, the Au(i)-catalyst and the hypervalent iodine reagent is responsible for the formation of both an Au(i)-acetylide complex and a more reactive "non-symmetric" I(iii) oxidant responsible for the crucial Au(i)/Au(iii) turnover. Further, the reactivity of the in situ generated Au(iii)-acetylide complex is governed by the nature of the anionic ligands transferred by the I(iii) oxidant: while halogen ligands remain unreactive, acetato ligands are efficiently displaced by the arene to yield the observed Csp2-Csp cross-coupling products through an irreversible reductive elimination step. Finally, the nature of competitive processes and catalyst deactivation pathways has also been unraveled. This detailed investigation provides insights not only on the specific features of the species involved in oxidative gold-catalyzed cross couplings but also highlights the importance of both ancillary and anionic ligands in the reactivity of the key Au(iii) intermediates.
Collapse
Affiliation(s)
- Manuel Hofer
- Department of Chemistry , University of Zürich , Winterthurerstrasse 190 , Zürich , CH-8057 , Switzerland .
| | - Teresa de Haro
- Department of Chemistry , University of Zürich , Winterthurerstrasse 190 , Zürich , CH-8057 , Switzerland .
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I , Universidad del Pais Vasco , Apdo 1072 , CP-20080 Donostia-San Sebastián , Spain
| | - Alexandre Genoux
- Department of Chemistry , University of Zürich , Winterthurerstrasse 190 , Zürich , CH-8057 , Switzerland .
| | - Cristina Nevado
- Department of Chemistry , University of Zürich , Winterthurerstrasse 190 , Zürich , CH-8057 , Switzerland .
| |
Collapse
|
40
|
Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nat Chem 2019; 11:797-805. [DOI: 10.1038/s41557-019-0295-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/18/2019] [Indexed: 01/19/2023]
|
41
|
Zorba L, Kidonakis M, Saridakis I, Stratakis M. Cycloisomerization of Conjugated Allenones into Furans under Mild Conditions Catalyzed by Ligandless Au Nanoparticles. Org Lett 2019; 21:5552-5555. [DOI: 10.1021/acs.orglett.9b01869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Leandros Zorba
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Iakovos Saridakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| |
Collapse
|
42
|
Yang Y, Schießl J, Zallouz S, Göker V, Gross J, Rudolph M, Rominger F, Hashmi ASK. Gold-Catalyzed C(sp 2 )-C(sp) Coupling by Alkynylation through Oxidative Addition of Bromoalkynes. Chemistry 2019; 25:9624-9628. [PMID: 31094025 DOI: 10.1002/chem.201902213] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/20/2022]
Abstract
A gold(I)-catalyzed cascade cyclization-alkynylation of allenoates using alkynyl bromide to generate β-alkynyl-γ-butenolides was investigated. Whereas alkynyl iodides afforded significant amounts of the homo-coupling of two lactone units, alkynyl bromides led to a selective reaction, and a broad functional group tolerance was observed. Under the optimized reaction conditions, it was possible to directly synthesize a large range of β-alkynyl-γ-butenolides in moderate to good yields without the need for any external oxidant.
Collapse
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jasmin Schießl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sirine Zallouz
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Verena Göker
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen Gross
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
43
|
Li M, Wang JH, Li W, Lin CD, Zhang LB, Wen LR. N-Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3-d]oxazoles. J Org Chem 2019; 84:8523-8530. [DOI: 10.1021/acs.joc.9b00858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
44
|
Zhao X, Tian B, Yang Y, Si X, Mulks FF, Rudolph M, Rominger F, Hashmi ASK. Gold‐Catalyzed Stereoselective Domino Cyclization/Alkynylation of
N
‐Propargylcarboxamides with Benziodoxole Reagents for the Synthesis of Alkynyloxazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ximei Zhao
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Bing Tian
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Yangyang Yang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Xiaojia Si
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Zernike Institute for Advanced MaterialsRijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen, The Netherlands
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Affiliation a Chemistry Department, Faculty of ScienceKing Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
45
|
Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Dual Gold/Silver Catalysis Involving Alkynylgold(III) Intermediates Formed by Oxidative Addition and Silver‐Catalyzed C−H Activation for the Direct Alkynylation of Cyclopropenes. Angew Chem Int Ed Engl 2019; 58:5129-5133. [DOI: 10.1002/anie.201812577] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Patrick Antoni
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marc Zimmer
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kohei Sekine
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Long Hu
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lumin Zhang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
46
|
Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Duale Gold/Silber‐Katalyse über oxidative Addition zu Alkinylgold(III)‐Zwischenstufen und silberkatalysierte C‐H‐Aktivierung für die direkte Alkinylierung von Cyclopropenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Patrick Antoni
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Marc Zimmer
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Kohei Sekine
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Florian F. Mulks
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Long Hu
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Lumin Zhang
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Matthias Rudolph
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabien
| |
Collapse
|
47
|
Mörsdorf JM, Wadepohl H, Ballmann J. A Tautomeric λ 3/λ 5-Phosphane Pair and Its Ambiphilic Reactivity. Inorg Chem 2019; 58:3502-3508. [PMID: 30777436 DOI: 10.1021/acs.inorgchem.9b00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central phosphorus atom of a novel hydroxyl-functionalized triarylphosphane was shown to reversibly insert into one of the molecule's O-H bonds, which forms the basis for a tautomeric λ3/λ5-phosphane equilibrium. For the first time, this equilibrium was detected for a λ3-triarylphosphane and the underlying dynamic process was elucidated by NMR spectroscopy. On the basis of reactivity studies, a nucleophilic character was assigned to the minor species present in solution, the λ3-phosphane. Upon methylation, for example, the λ3-form was selectively removed from the equilibrium and converted to the corresponding phosphonium salt. However, upon generation of an alkoxide via proton abstraction, the electrophilic character of the λ5-phosphane in the equilibrium became evident since the alkoxide was found to attack the molecule's phosphorus atom. This intramolecular reaction led to the selective formation of a new anionic λ6-hydridospirophosphane.
Collapse
Affiliation(s)
- Jean-Marc Mörsdorf
- Anorganisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 276 , 69120 Heidelberg , Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 276 , 69120 Heidelberg , Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 276 , 69120 Heidelberg , Germany
| |
Collapse
|
48
|
Yang JD, Li M, Xue XS. Computational I(III)-X BDEs for Benziodoxol(on)e-based Hypervalent Iodine Reagents: Implications for Their Functional Group Transfer Abilities. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry; Tsinghua University; Beijing 100084 China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Man Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
49
|
Hyatt IFD, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Org Biomol Chem 2019; 17:7822-7848. [DOI: 10.1039/c9ob01267b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review covers recent developments of hypervalent iodine chemistry in dearomatizations, radicals, hypervalent iodine-guided electrophilic substitution, arylations, photoredox, and more.
Collapse
Affiliation(s)
| | - Loma Dave
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Navindra David
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Kirandeep Kaur
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Marly Medard
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Cyrus Mowdawalla
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| |
Collapse
|
50
|
Yuan H, Tang C, Su S, Cui L, Jia X, Li C, Li J. A bicyclization reaction with two molecular allenyl ketones and isocyanides: synthesis of a lactone-containing azaspirocycle derivative. Chem Commun (Camb) 2019; 55:7231-7234. [DOI: 10.1039/c9cc02785h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel bicyclization reaction of two molecular allenyl ketones and isocyanides has been disclosed. This strategy allows for the construction of structurally complex spirocyclic lactam–lactone systems in an efficient manner.
Collapse
Affiliation(s)
- Hongdong Yuan
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Chongrong Tang
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Shikuan Su
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Lei Cui
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Xueshun Jia
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Chunju Li
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
| | - Jian Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| |
Collapse
|