1
|
Arnold RE, Saska J, Mesquita-Ribeiro R, Dajas-Bailador F, Taylor L, Lewis W, Argent S, Shao H, Houk KN, Denton RM. Total synthesis, biological evaluation and biosynthetic re-evaluation of Illicium-derived neolignans. Chem Sci 2024; 15:11783-11793. [PMID: 39092111 PMCID: PMC11290413 DOI: 10.1039/d4sc03232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 08/04/2024] Open
Abstract
We report the first total syntheses of simonsol F (3), simonsinol (5), fargenin (4), and macranthol (6) in addition to syntheses of simonsol C (2), simonsol G (1), and honokiol (14). The syntheses are based upon a phosphonium ylide-mediated cascade reaction and upon natural product isomerization reactions which proceed through Cope rearrangements of putative biosynthetic dienone intermediates. As a corollary of the natural product isomerization reactions, we propose an alternative biosynthesis of honokiol (14), simonsinol (5), and macranthol (6) which unites the natural products in this family under a single common precursor, chavicol (7). Finally, we demonstrate that simonsol C (2) and simonsol F (3) promote axonal growth in primary mouse cortical neurons.
Collapse
Affiliation(s)
- Robert E Arnold
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Jan Saska
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | | | | | - Laurence Taylor
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - William Lewis
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Stephen Argent
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Huiling Shao
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Kendall N Houk
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Ross M Denton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| |
Collapse
|
2
|
Kostanda E, Musa S, Pereman I. Unveiling the Chemical Composition and Biofunctionality of Hericium spp. Fungi: A Comprehensive Overview. Int J Mol Sci 2024; 25:5949. [PMID: 38892137 PMCID: PMC11172836 DOI: 10.3390/ijms25115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites.
Collapse
Affiliation(s)
- Elizabeth Kostanda
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Idan Pereman
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| |
Collapse
|
3
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
4
|
Navale GR, Chauhan R, Saini S, Roy P, Ghosh K. Effect of cycloastragenol and punicalagin on Prp(106-126) and Aβ(25-35) oligomerization and fibrillizaton. Biophys Chem 2023; 302:107108. [PMID: 37734278 DOI: 10.1016/j.bpc.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Numerous neurological disorders, including prion, Parkinson's, and Alzheimer's disease (AD), are identified as being caused by alterations in protein conformation, aggregation, and metal ion dyshomeostasis. Recent years have seen a significant increase in the exploration and study of natural products (NPs) from plant and microbial sources for their therapeutic potential against several diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases. In this study, we have examined the effect of two NPs, cycloastragenol (CAG) and punicalagin (PCG), on the metal-induced oligomerization and aggregation of Aβ25-35 and PrP106-126 peptides. The peptide aggregation and inhibitory properties of both NPs were examined by the thioflavin-T (ThT) assay, MALDI-TOF, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM). Among the two NPs, PCG significantly binds to the peptides, chelates metal ions (Cu2+ and Zn2+), inhibits peptide aggregation, substantially reduces oxidative stress, and controls the production of reactive oxygen species (ROS). Both NPs exhibited low cytotoxicity and prominently mitigated peptide-mediated cell cytotoxicity in hippocampal neuronal HT-22 cells by covalent bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
5
|
Fu P, Liu T, Shen Y, Lei X, Xiao T, Chen P, Qiu D, Wang Z, Zhang Y. Divergent Total Syntheses of Illicium Sesquiterpenes through Late-Stage Skeletal Reorganization. J Am Chem Soc 2023; 145:18642-18648. [PMID: 37562030 DOI: 10.1021/jacs.3c06442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We disclose unified, protecting-group-free, bioinspired divergent total syntheses of eight allo-cedrane and seco-prezizaane Illicium sesquiterpenes and formal syntheses of five anislactone sesquiterpenes. The efficiency of our approach derives from rapid access to the 15-carbon tricyclic carboxylic acid through cationic epoxide-ene cyclization and HAT oxygenation, transformation of this intermediate into three distinct tricyclic precursors via Lewis acid-mediated skeletal reorganizations, subsequent programmed oxidation level enhancement, and a biomimetic oxidation-initiated skeletal rearrangement cascade. Consequently, we created a synthetic correlation map of the three most prevalent Illicium sesquiterpene families.
Collapse
Affiliation(s)
- Pengfei Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tianjie Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Dongsheng Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1787-1796. [PMID: 36843128 DOI: 10.1007/s00210-023-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
Collapse
Affiliation(s)
- Lilian do Amaral
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, USP, Av Do Café S/N, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
7
|
Sum WC, Ebada SS, Kirchenwitz M, Kellner H, Ibrahim MAA, Stradal TEB, Matasyoh JC, Stadler M. Hericioic Acids A-G and Hericiofuranoic Acid; Neurotrophic Agents from Cultures of the European Mushroom Hericium flagellum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37440475 PMCID: PMC10375585 DOI: 10.1021/acs.jafc.3c02897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Neurodegenerative diseases are currently posing huge social, economic, and healthcare burdens among the aged populations worldwide with few and only palliative treatment alternatives available. Natural products continue to be a source of a vast array of potent neurotrophic molecules that could be considered as drug design starting points. The present study reports eight new isoindolinone and benzofuranone derivatives, for which we propose the trivial names, hericioic acids A-G (1-7) and hericiofuranoic acid (8), which were isolated from a solid culture (using rice as substrate) of the rare European edible mushroom Hericium flagellum. The chemical structures of these compounds were determined based on extensive 1D and 2D NMR spectroscopy along with HRESIMS analyses. The isolated compounds were assessed for their neurotrophic activity in rat pheochromocytoma cells (PC-12) to promote neurite outgrowth on 5 ng NGF supplementation; all the compounds increased neurite outgrowths, with compounds 3, 4, and 8 exhibiting the strongest effects.
Collapse
Affiliation(s)
- Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sherif S Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, Technische Universität Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, 61519 Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Zhou LY, Chen D, Guo XR, Niu YQ, Xu YS, Feng DF, Li TC. Intravitreal injection of Huperzine A promotes retinal ganglion cells survival and axonal regeneration after optic nerve crush. Front Cell Neurosci 2023; 17:1145574. [PMID: 37293627 PMCID: PMC10244636 DOI: 10.3389/fncel.2023.1145574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ran Guo
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Yu-Qian Niu
- Fengxian District Central Hospital Graduate Student Training Base, Jinzhou Medical University, Shanghai, China
| | - Yong-Sai Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Tie-Chen Li
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
10
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Hassan K, Matio Kemkuignou B, Kirchenwitz M, Wittstein K, Rascher-Albaghdadi M, Chepkirui C, Matasyoh JC, Decock C, Köster RW, Stradal TEB, Stadler M. Neurotrophic and Immunomodulatory Lanostane Triterpenoids from Wood-Inhabiting Basidiomycota. Int J Mol Sci 2022; 23:13593. [PMID: 36362380 PMCID: PMC9657622 DOI: 10.3390/ijms232113593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/05/2023] Open
Abstract
Neurotrophins such as nerve growth factor (ngf) and brain-derived neurotrophic factor (bdnf) play important roles in the central nervous system. They are potential therapeutic drugs for the treatment of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neurotrophic properties of triterpenes isolated from fruiting bodies of Laetiporus sulphureus and a mycelial culture of Antrodia sp. MUCL 56049. The structures of the isolated compounds were elucidated based on nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray mass spectrometry (HR-ESIMS). The secondary metabolites were tested for neurotrophin (ngf and bdnf) expression levels on human astrocytoma 1321N1 cells. Neurite outgrowth activity using rat pheochromocytoma (PC-12) cells was also determined. Twelve triterpenoids were isolated, of which several potently stimulated the expression of neurotrophic factors, namely, ngf (sulphurenic acid, 15α-dehydroxytrametenolic acid, fomefficinic acid D, and 16α-hydroxyeburicoic acid) and bdnf (sulphurenic acid and 15α-dehydroxytrametenolic acid), respectively. The triterpenes also potentiated ngf-induced neurite outgrowth in PC-12 cells. This is, to the best of our knowledge, the first report on the compound class of lanostanes in direct relation to bdnf and ngf enhancement. These compounds are widespread in medicinal mushrooms; hence, they appear promising as a starting point for the development of drugs and mycopharmaceuticals to combat neurodegenerative diseases. Interestingly, they do not show any pronounced cytotoxicity and may, therefore, be better suited for therapy than many other neurotrophic compounds that were previously reported.
Collapse
Affiliation(s)
- Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Monique Rascher-Albaghdadi
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Clara Chepkirui
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Josphat C. Matasyoh
- Department of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya
| | - Cony Decock
- Mycothéque de l’Université Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Reinhard W. Köster
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Hu J, Guo LD, Chen W, Jiang Y, Pu F, Ning C, Xu J. Total Syntheses of Daphnezomine L-type and Secodaphniphylline-type Daphniphyllum Alkaloids via Late-Stage C-N Bond Activation. Org Lett 2022; 24:7416-7420. [PMID: 36191161 DOI: 10.1021/acs.orglett.2c02988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we report the first total syntheses of daphnezomine L-type alkaloids daphnezomine L methyl ester and calyciphylline K via late-stage C-N bond activation. The first synthesis of secodaphniphylline-type alkaloid caldaphnidine D was also achieved via a similar strategy. Other key transformations employed in our synthesis were a facile vicinal diol olefination and an efficient radical cyclization cascade. Biological studies indicated two synthetic compounds possess promising neuroprotective activity.
Collapse
Affiliation(s)
- Jingping Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China.,Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, Guangdong518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,Shenzhen Bay Laboratory, Shenzhen518132, China
| |
Collapse
|
13
|
Yu C, Cao CY, Shi PD, Yang AA, Yang YX, Huang DS, Chen X, Chen ZM, Gao JM, Yin X. Highly oxygenated chemical constitutes and rearranged derivatives with neurotrophic activity from Ganoderma cochlear. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115393. [PMID: 35609755 DOI: 10.1016/j.jep.2022.115393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The morphological characteristics of Ganoderma cochlear (Blume & T. Nees) Bres were identical to G. sinsense J.D. Zhao, L.W. Hsu & X.Q. Zhang, however, with the fungus stipe lying in the back of the pileus. Fruiting bodies and spores of G. cochear have been traditionally used for smoothing, sleeping improvement, memory impairment, anti-aging, and prolonging life. Alzheimer's disease (AD) is a chromic progressive neurodegenerative disorder associated with loss of memory and cognition. Hallmarks of AD include aging, amyloid-β plaques, neurofibrillary tangles, neuron loss, neuronal degeneration, network disruption, cognitive dysfunction, inflammation and oxidation stress. In this study, norlanostanoids from G. cochear are identified as potential neurotrophic chemists related to the memory impairment usage to slow down pathogenetic process and restore neural circuits for AD. AIM OF STUDY Chemical and biological investigations in this study uncovered the potential constituents related to the traditional usage of G. cochlear. MATERIALS AND METHODS The extract of the mushrooms was purified using various column chromatography techniques and high-performance liquid chromatography (HPLC). The structures of the isolates were elucidated by combination of spectral, and single crystal X-ray diffraction analysis. The neurotrophic activity was evaluated by the differentiation state of PC12 cells, and the dose-dependent and time-dependant expression of growth-associated protein (GAP-43) was analyzed by western blotting. RESULTS Ganorbifates J-T (1-11), eleven previously undescribed triterpenoids together with five known trinorlanostanoids (12-16) were isolated from the fruiting bodies of G. Cochlear. Among them, ganorbifates N-O (5-6) had a demethylation at C-28 compared to the classic skeleton of 3,4-seco-25,26,27-trinorlanostanoids to form a new group of 3,4-seco-25,26,27,28-tetranorlanostanoids. Based on this, a novel skeleton of ganorbifate M (4) was further established by the arrangement of C-29 from C-4 to C-7. A plausible biosynthetic pathway of compounds 4-6 was proposed. Eight of the sixteen isolates showed neurotrophic activity with the concentration of 10 μM. Furthermore, compound 15 exhibited a dose-dependent neurogenic activity, and also strengthened the expression of the growth-associated protein (GAP-43) in NGF-induced PC-12 cells, whereas 11 showed an inhibitory effect at higher concentration. CONCLUSION These results demonstrated that 3,4-seco-norlanostanoids had reliable potential in promoting the outgrowth of PC-12 cells and could be used in the prevention and treatment of Alzheimer's disease, which is consist with the beneficial effects of G. Cochlear.
Collapse
Affiliation(s)
- Chao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Pei-Dong Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - An-An Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ying-Xiang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - De-Seng Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Zi-Ming Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China.
| | - Xia Yin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
14
|
Gohil K, Kazmi MZH, Williams FJ. Structure-activity relationship and bioactivity studies of neurotrophic trans-banglene. Org Biomol Chem 2022; 20:2187-2193. [PMID: 35229853 DOI: 10.1039/d2ob00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synthesis and bioactivity of neurotrophic banglenes and derivatives is described, establishing a structure-activity relationship which enables future mechanistic studies. Neuritogenesis assays indicate that (-) trans-banglene is the active enantiomer. Assays performed with and without NGF protein suggest that neurotrophic activity and potentiation of NGF activity by (-) trans-banglene might be distinct unassociated processes. Interestingly, (-) trans-banglene potentiation of NGF-induced neuritogenesis is unaffected by the presence of Erk1/2, Akt and Pkc inhibitors.
Collapse
Affiliation(s)
- Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - M Zain H Kazmi
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | |
Collapse
|
15
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Shuming Chen
- Department of Chemistry and Biochemistry Oberlin College 119 Woodland Street Oberlin OH 44074 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
16
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022; 61:e202114514. [PMID: 34820990 PMCID: PMC8748398 DOI: 10.1002/anie.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/19/2023]
Abstract
A strategy to control the diastereoselectivity of bond formation at a prochiral attached-ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non-covalent interactions to control re- vs. si- facial selectivity en route to fully substituted attached-rings. This divergency reflects differential engagement of one rotational isomer of the attached-ring system. The successful synthesis of an erythro subtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A.
Collapse
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Yadav N, Sangwan S, Kumar R, Chauhan S, Duhan A, Singh A, Arya RK. Comprehensive Overview of Progress in Functionalization of 2‐Pyridone and 2, 4 ‐Dihydroxy Pyridine: Key Constituents of Vital Natural Products. ChemistrySelect 2021. [DOI: 10.1002/slct.202102941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Neelam Yadav
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Sarita Sangwan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Ravi Kumar
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
- MAP Section Department of Genetics and Plant Breeding Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Sonu Chauhan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Anil Duhan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Ajay Singh
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| | - Rajesh K. Arya
- MAP Section Department of Genetics and Plant Breeding Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana India 125004
| |
Collapse
|
18
|
Ma D, Martin BS, Gallagher KS, Saito T, Dai M. One-Carbon Insertion and Polarity Inversion Enabled a Pyrrole Strategy to the Total Syntheses of Pyridine-Containing Lycopodium Alkaloids: Complanadine A and Lycodine. J Am Chem Soc 2021; 143:16383-16387. [PMID: 34570487 PMCID: PMC9123642 DOI: 10.1021/jacs.1c08626] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Complanadine A and lycodine are representative members of the Lycopodium alkaloids with a characteristic pyridine-containing tetracyclic skeleton. Complanadine A has demonstrated promising neurotrophic activity and potential for persistent pain management. Herein we report a pyrrole strategy enabled by one-carbon insertion and polarity inversion for concise total syntheses of complanadine A and lycodine. The use of a pyrrole as the pyridine precursor allowed the rapid construction of their tetracyclic skeleton via a one-pot Staudinger reduction, amine-ketone condensation, and Mannich-type cyclization. The pyrrole group was then converted to the desired pyridine by the Ciamician-Dennstedt rearrangement via a one-carbon insertion process, which also simultaneously introduced a chloride at C3 for the next C-H arylation. Other key steps include a direct anti-Markovnikov hydroazidation, a Mukaiyama-Michael addition, and a Paal-Knorr pyrrole synthesis. Lycodine and complanadine A were prepared in 8 and 11 steps, respectively, from a readily available known compound.
Collapse
Affiliation(s)
| | | | - Katelyn S. Gallagher
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Takeru Saito
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
20
|
He Q, Wu Z, Li L, Sun W, Wang G, Jiang R, Hu L, Shi L, He R, Wang Y, Ye W. Discovery of Neuritogenic
Securinega
Alkaloids from
Flueggea suffruticosa
by a Building Blocks‐Based Molecular Network Strategy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qi‐Fang He
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
| | - Zhen‐Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
| | - Liuren Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
| | - Wan‐Yang Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| | - Gui‐Yang Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| | - Ren‐Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| | - Li‐Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
| | - Lei Shi
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
| | - Rong‐Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| | - Wen‐Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research College of Pharmacy Jinan University Guangzhou 510632 China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research Jinan University Guangzhou 510632 China
| |
Collapse
|
21
|
He QF, Wu ZL, Li L, Sun WY, Wang GY, Jiang RW, Hu LJ, Shi L, He RR, Wang Y, Ye WC. Discovery of Neuritogenic Securinega Alkaloids from Flueggea suffruticosa by a Building Blocks-Based Molecular Network Strategy. Angew Chem Int Ed Engl 2021; 60:19609-19613. [PMID: 34196083 DOI: 10.1002/anie.202103878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Indexed: 12/22/2022]
Abstract
A combined strategy of building blocks recognition and molecular network construction, termed the building blocks-based molecular network (BBMN), was first presented to facilitate the efficient discovery of novel natural products. By mapping the BBMN of the total alkaloid fraction of Flueggea suffruticosa, three Securinega alkaloids (SEAs) with unusual chemical architectures, suffranidines A-C (1-3), were discovered and isolated. Compound 1 characterizes an unprecedented 8/5/6/5/6/6/6/6-fused octacyclic scaffold with a unique cage-shaped 3-azatricyclo[6.4.0.03,11 ]dodecane core. Compounds 2 and 3 are highly modified SEA dimers that incorporate additional C6 motifs. A hypothetical biosynthetic pathway for 1-3 was proposed. In addition, 1 significantly induced neuronal differentiation and neurite extension by upregulating eukaryotic elongation factor 2 (eEF2)-mediated protein synthesis.
Collapse
Affiliation(s)
- Qi-Fang He
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Liuren Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Gui-Yang Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Li-Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Shi
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
22
|
Allievi L, Dhambri S, Sun R, Selkti M, Lannou MI, Sorin G, Ardisson J. Gold(I)-Catalyzed 7- exo-dig Cyclization: A Key Step to Access the Bicyclo[4.2.1]nonane Skeleton of Vibsatin A, a Neurotrophic Diterpenoid. Org Lett 2021; 23:5218-5222. [PMID: 34156861 DOI: 10.1021/acs.orglett.1c01757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibsatin A is a new neurotrophic vibsane-type diterpenoid comprising a bridged bicyclo[4.2.1]nonane skeleton. Inspired by Sawamura's works, we generated the bicyclic backbone through a Conia-ene-derived 7-exo-dig cyclization from an enantiomerically enriched TIPS-based silyl enol ether. The reaction, catalyzed by a sensitive gold(I) complex, was efficiently performed on a large scale by glovebox free techniques. Furthermore, the shape of this system was exploited for subsequent installation of all of the stereogenic centers.
Collapse
Affiliation(s)
- Luca Allievi
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Sabrina Dhambri
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Rongyu Sun
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Mohamed Selkti
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Marie-Isabelle Lannou
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Geoffroy Sorin
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| | - Janick Ardisson
- UMR CNRS 8038, Faculté de Pharmacie, Université de Paris, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France
| |
Collapse
|
23
|
Zhang Y, Pike A. Pyridones in drug discovery: Recent advances. Bioorg Med Chem Lett 2021; 38:127849. [DOI: 10.1016/j.bmcl.2021.127849] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
|
24
|
Sisti FM, Dos Santos NAG, do Amaral L, Dos Santos AC. The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration. Neurotox Res 2021; 39:886-896. [PMID: 33666886 DOI: 10.1007/s12640-021-00341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (β-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Antonio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
25
|
Schuppe AW, Liu Y, Newhouse TR. An invocation for computational evaluation of isomerization transforms: cationic skeletal reorganizations as a case study. Nat Prod Rep 2021; 38:510-527. [PMID: 32931541 PMCID: PMC7956923 DOI: 10.1039/d0np00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2010 to 2020This review article describes how cationic rearrangement reactions have been used in natural product total synthesis over the last decade as a case study for the many productive ways by which isomerization reactions are enabling for synthesis. This review argues that isomerization reactions in particular are well suited for computational evaluation, as relatively simple calculations can provide significant insight.
Collapse
Affiliation(s)
- Alexander W Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511-8107, USA.
| | | | | |
Collapse
|
26
|
Shen Y, Li L, Xiao X, Yang S, Hua Y, Wang Y, Zhang YW, Zhang Y. Site-Specific Photochemical Desaturation Enables Divergent Syntheses of Illicium Sesquiterpenes. J Am Chem Soc 2021; 143:3256-3263. [DOI: 10.1021/jacs.1c00525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Linbin Li
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Sihan Yang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuhui Hua
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinglu Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
27
|
Lye S, Aust CE, Griffiths LR, Fernandez F. Exploring new avenues for modifying course of progression of Alzheimer's disease: The rise of natural medicine. J Neurol Sci 2021; 422:117332. [PMID: 33607542 DOI: 10.1016/j.jns.2021.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022]
Abstract
With a constantly growing elderly population worldwide, a focus on developing efficient prevention and therapy for Alzheimer's disease (AD) seems timely and topical. Emphasis on natural medicine is increasingly popular in the search for drug candidates that are capable of preventing and treating AD related pathology, particularly where suppression of amyloid accumulation, neurofibrillary tangle formation, neuroinflammation and oxidative stress are equally significant. A number of phytochemical compounds have been shown to collectively reduce these AD hallmarks with the progression of natural drug candidates into human clinical trials. This review focuses on current research surrounding the therapies emerging within natural medicines and their related therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Sarah Lye
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia
| | - Caitlin E Aust
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Francesca Fernandez
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| |
Collapse
|
28
|
Wen T, Chu J, Cheng W, Fu Y, Hu F, Yang R, Guo Y, Zhang Y, Liu J. Discovery, semisynthesis and neurite outgrowth-promoting activity of novel merrillianone/cycloparviforalone based esters as neurotrophic agents. Bioorg Med Chem Lett 2021; 36:127832. [PMID: 33524533 DOI: 10.1016/j.bmcl.2021.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
Natural products (NPs) are very important sources for the development of new drugs. Merrillianone and cycloparvifloralone, isolated from the roots, stems, and fruits of Illicium henryi Diels, are two natural sesquiterpene compounds. In continuation of our effort to discovery more effective neurotrophic compounds from NPs, a series of novel merrillianone/cycloparviforalone based esters 2a-i, 3a-g and 3i-q were prepared and their structures were characterized by 1H NMR, 13C NMR and IR spectral analyses. Furthermore, the spatial structure of compound 2h was unambiguously confirmed by X-ray crystallography. The neurite outgrowth-promoting activity results indicated that most of the target derivatives exhibited more potent neurite outgrowth-promoting activity than merrillianone and cycloparviforalone. Among all target derivatives, the neurite outgrowth-promoting activity of compounds 2a, 3a and 3b was about 2-fold stronger than that of their precursors merrillianone and cycloparviforalone, respectively. Besides, compounds 2a and 3a displayed relatively low cytotoxicity to normal GES-1 cells. Moreover, these derivatives had good hydrolytic stability. Finally, some interesting results of the structure-activity relationships (SARs) were also discussed. This work will pave the way for the development of merrillianone/cycloparviforalone derivatives as potential neurotrophic agents.
Collapse
Affiliation(s)
- Tingyu Wen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Junyan Chu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Yingying Fu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Feixia Hu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Yong Guo
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| | - Yanbing Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
29
|
Yong JY, Li WR, Wang XJ, Su GZ, Li M, Zhang JP, Jia HL, Li YH, Wang RB, Gan M, Ma SG. Illihenin A: An Antiviral Sesquiterpenoid with a Cage-like Tricyclo[6.2.2.01,5]dodecane Skeleton from Illicium henryi. J Org Chem 2021; 86:2017-2022. [DOI: 10.1021/acs.joc.0c02727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Yao Yong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Wen-Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Xiao-jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Guo-Zhu Su
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Mi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Jian-Pei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Hong-Li Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s Republic of China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People’s Republic of China
| |
Collapse
|
30
|
Fukuyama Y, Kubo M, Harada K. The search for, and chemistry and mechanism of, neurotrophic natural products. J Nat Med 2020; 74:648-671. [PMID: 32643028 PMCID: PMC7456418 DOI: 10.1007/s11418-020-01431-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Abstract Neurotrophic factors, now termed neurotrophins, which belong to a class of polypeptidyl agents, have been shown to potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer’s disease, because endogenous neurotrophic factors (NGF, BDNF, NT3, NT4) have been recognized to play critical roles in the promotion of neurogenesis, differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular weight proteins are unable to cross the blood–brain barrier and are easily decomposed by peptidase under physiological conditions. To address this issue, small molecules that can mimic the functions of neurotrophic factors would be promising alternatives for the treatment of neurodegenerative disease. We have continued to search for natural products having typical neurotrophic properties, which can cause neurogenesis, enhance neurite outgrowth, and protect neuronal death using three cellular systems (PC12, rat cortical neurons, and MEB5 cells). In this review, we summarize the neurotrophic activities and synthesis of dimeric isocuparane-type sesquiterpenes from the liverwort, Mastigophora diclados, the mechanism of neurotrophic neolignans, magnolol, honokiol and their sesquiterpene derivatives, and introduce unique neurotrophin-mimic natural products, including seco-prezizaane-type sesquiterpenes from the Illicium species, vibsane-type diterpenes from Viburnum awabuki, and miscellaneous natural products with neurotrophic effects discovered by us. Graphic abstract ![]()
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
31
|
Heravi MM, Janati F, Zadsirjan V. Applications of Knoevenagel condensation reaction in the total synthesis of natural products. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02586-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics. J Clin Med 2020; 9:jcm9041061. [PMID: 32276438 PMCID: PMC7231062 DOI: 10.3390/jcm9041061] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Among the major neurodegenerative disorders (NDDs), Alzheimer’s disease (AD) and Parkinson’s disease (PD), are a huge socioeconomic burden. Over many centuries, people have sought a cure for NDDs from the natural herbals. Many medicinal plants and their secondary metabolites are reported with the ability to alleviate the symptoms of NDDs. The major mechanisms identified, through which phytochemicals exert their neuroprotective effects and potential maintenance of neurological health in ageing, include antioxidant, anti-inflammatory, antithrombotic, antiapoptotic, acetylcholinesterase and monoamine oxidase inhibition and neurotrophic activities. This article reviews the mechanisms of action of some of the major herbal products with potential in the treatment of NDDs according to their molecular targets, as well as their regional sources (Asia, America and Africa). A number of studies demonstrated the beneficial properties of plant extracts or their bioactive compounds against NDDs. Herbal products may potentially offer new treatment options for patients with NDDs, which is a cheaper and culturally suitable alternative to conventional therapies for millions of people in the world with age-related NDDs.
Collapse
|
33
|
Temperini A, Lanari D, Colognese F, Piazzolla F. Scalable Multicomponent Synthesis of (Hetero)aryl-Substituted Phenyls: Focus on Metal-Free Halogenated Biaryls, 3-Arylindoles, and Isourolithine A Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Temperini
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Daniela Lanari
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesco Colognese
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesca Piazzolla
- School of Chemistry and Biochemistry; University of Geneva; 1211 Geneva Switzerland
| |
Collapse
|
34
|
|
35
|
Tang Y, Yang XK, Zhang XW, Wu WT, Zhang FL, Jiang H, Liu YL, Amatore C, Huang WH. Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem Sci 2019; 11:778-785. [PMID: 34123052 PMCID: PMC8146302 DOI: 10.1039/c9sc05538j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons and low level of dopamine (DA) in the midbrain. Recent studies suggested that some natural products can protect neurons against injury, but their role on neurotransmitter release and the underlying mechanisms remained unknown. In this work, nanoelectrode electrochemistry was used for the first time to quantify DA release inside single DAergic synapses. Our results unambiguously demonstrated that harpagide, a natural product, effectively enhances synaptic DA release and restores DA release at normal levels from injured neurons in PD model. These important protective and curative effects are shown to result from the fact that harpagide efficiently inhibits the phosphorylation and aggregation of α-synuclein by alleviating the intracellular reactive oxygen level, being beneficial for vesicle loading and recycling. This establishes that harpagide offers promising avenues for preventive or therapeutic interventions against PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiao-Ke Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- PASTEUR, Departement de Chimie, Pcole Normale Superieure, PSL Research University, Sorbonne Universites, UPMC Univ. Paris 06, CNRS 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
36
|
Wang Z, Ma C, Wang Y, Xiao Q, Xu C, Li Y. Structural optimization and neurotrophic activity evaluation of neurotrophic gentiside derivatives. Bioorg Med Chem Lett 2019; 29:126685. [PMID: 31607606 DOI: 10.1016/j.bmcl.2019.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
C14 alkyl benzoate ABG001, derived from naturally occurring gentisides, was reported to exhibit neurotrophic activity which is similar to NGF (Nerve Growth Factor). In this research, ABG001 was modified by the strategy of isosteric replacement and conformational restriction with the purpose of improving the bioactivity. The cellular neurotrophic activity of those ABG001 derivatives were evaluated, among which 3-hydroxyquinolin-2-(1H)-one A3 and 4-decylphenol ester B7 displayed much better neurotrophic activity compared with ABG001, which highlights the potential of those novel scaffolds for future neurotrophic agent development.
Collapse
Affiliation(s)
- Zhenkang Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chunhua Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang 453007, China
| | - Yujie Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiang Xiao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chenghui Xu
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
37
|
Tong J, Liu C, Wang B. Synthesis of A-B-C-ring Tricyclic Core of iso-Merrilactone A. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
39
|
Zhang T, Li T, Wu X, Li J. Theoretical Study of Ruthenium(0)-Catalyzed Transfer Hydrogenative Cycloaddition of Cyclohexadiene and Norbornadiene with 1,2-Diols to Form Bridged Carbocycles. J Org Chem 2019; 84:3377-3387. [PMID: 30775919 DOI: 10.1021/acs.joc.8b03276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The recent success of Krische et al. ( Angew. Chem., Int. Ed. 2017 , 56 , 14667 -14671 ) in achieving a ruthenium(0)-catalyzed transfer hydrogenative cycloaddition of 1,2-diols with cyclohexadiene and norbornadiene in excellent yield with exo- and diastereoselectivity represents an exciting development in the synthesis of bridged carbocycles. In the present work, the possible catalytic mechanisms and origin of the exo- and diastereoselectivity for cyclohexadiene and norbornadiene were studied in detail by density functional theory calculations. The theoretical results indicate that the exoselective pathway for the cyclohexadiene substrate proceeds by a novel two-step successive C-C coupling, while the endoselective pathway undergoes the C-C coupling reaction in a conventional concerted manner. The origin of the preferential chemoselectivity of dione-cyclohexadiene C-C coupling over aromatization to benzene was investigated. Aromatization to benzene is unfavorable because of the large distortion energy of the three-membered ring in the transition state of hydrogen migration. From distortion/interaction analysis, for norbornadiene, the distortion energy plays the main role in determining the exoselectivity.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Ting Li
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Xiajun Wu
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| | - Juan Li
- Department of Chemistry , Jinan University , Huangpu Road West 601 , Guangzhou , Guangdong 510632 , P. R. China
| |
Collapse
|
40
|
Lin L, Jiang N, Wu H, Mei Y, Yang J, Tan R. Cytotoxic and antibacterial polyketide-indole hybrids synthesized from indole-3-carbinol by Daldinia eschscholzii. Acta Pharm Sin B 2019; 9:369-380. [PMID: 30972283 PMCID: PMC6437554 DOI: 10.1016/j.apsb.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Two skeletally undescribed polyketide-indole hybrids (PIHs), named indolchromins A and B, were generated from indole-3-carbinol (I3C) in the fungal culture (Daldinia eschscholzii). The indolchromin structures were elucidated mainly by their 1D and 2D NMR spectra with the former confirmed by the single-crystal X-ray crystallographic analysis. Each indolchromin alkaloid was chirally separated into four isomers, whose absolute configurations were assigned by comparing the recorded circular dichroism (CD) spectra with the electronic CD (ECD) curves computed for all optional stereoisomers. Furthermore, the indolchromin construction pathways in fungal culture were clarified through enzyme inhibition, precursor feeding experiment, and energy calculation. The cascade reactions, including decarboxylative Claisen condensation catalyzed by 8-amino-7-oxononanoate synthase (AONS), C(sp3)-H activation, double bond migration, and Michael addition, all undergone compatibly during the fungal cultivation. In an MIC range of 1.3–8.6 μmol/L, (2S,4R)- and (2R,4S)-indolchromin A and (2R,4S)-indolchromin B are inhibitory against Clostridium perfringens, Clostridium difficile, Veillonella sp., Bacteroides fragilis, and Streptococcus pyogenes. (2R,4S)-Indolchromin A and (2S,4S)-indolchromin B were cytotoxic against the human breast cancer cell line MDA-MB-231 with IC50 values of 27.9 and 131.2 nmol/L, respectively, with the former additionally active against another human breast cancer cell line MCF-7 (IC50 94.4 nmol/L).
Collapse
|
41
|
Hung K, Condakes ML, Novaes LFT, Harwood SJ, Morikawa T, Yang Z, Maimone TJ. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J Am Chem Soc 2019; 141:3083-3099. [PMID: 30698435 DOI: 10.1021/jacs.8b12247] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Illicium sesquiterpenes are a family of natural products containing over 100 highly oxidized and structurally complex members, many of which display interesting biological activities. This comprehensive account chronicles the evolution of a semisynthetic strategy toward these molecules from (+)-cedrol, seeking to emulate key aspects of their presumed biosynthesis. An initial route generated lower oxidation state analogs but failed in delivering a crucial hydroxy group in the final step. Insight gathered during these studies, however, ultimately led to a synthesis of the pseudoanisatinoids along with the allo-cedrane natural product 11- O-debenzoyltashironin. A second-generation strategy was then developed to access the more highly oxidized majucinoid compounds including jiadifenolide and majucin itself. Overall, one dozen natural products can be accessed from an abundant and inexpensive terpene feedstock. A multitude of general observations regarding site-selective C(sp3)-H bond functionalization reactions in complex polycyclic architectures are reported.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Matthew L Condakes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Luiz F T Novaes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Stephen J Harwood
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Takahiro Morikawa
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Zhi Yang
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
42
|
Guzmán EA. Regulated Cell Death Signaling Pathways and Marine Natural Products That Target Them. Mar Drugs 2019; 17:md17020076. [PMID: 30678065 PMCID: PMC6410226 DOI: 10.3390/md17020076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Our understanding of cell death used to consist in necrosis, an unregulated form, and apoptosis, regulated cell death. That understanding expanded to acknowledge that apoptosis happens through the intrinsic or extrinsic pathways. Actually, many other regulated cell death processes exist, including necroptosis, a regulated form of necrosis, and autophagy-dependent cell death. We also understand that apoptosis occurs beyond the intrinsic and extrinsic pathways with caspase independent forms of apoptosis existing. Our knowledge of the signaling continues to grow, and with that, so does our ability to target different parts of the pathways with small molecules. Marine natural products co-evolve with their targets, and these unique molecules have complex structures with exquisite biological activities and specificities. This article offers a review of our current understanding of the signaling pathways regulating cell death, and highlights marine natural products that can affect these signaling pathways.
Collapse
Affiliation(s)
- Esther A Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
43
|
Condakes ML, Novaes LFT, Maimone TJ. Contemporary Synthetic Strategies toward seco-Prezizaane Sesquiterpenes from Illicium Species. J Org Chem 2018; 83:14843-14852. [PMID: 30525614 PMCID: PMC6467809 DOI: 10.1021/acs.joc.8b02802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since the elucidation of the structure of anisatin in the late 1960s, sesquiterpene lactones from various Illicium species of plants have captivated synthetic chemists worldwide, resulting in a large body of synthetic work. In particular, Illicium sesquiterpenes containing the seco-prezizaane carbon framework have seen immense interest in recent years owing to desirable structural and medicinal attributes. This synopsis will focus on recently developed synthetic strategies to access these compact, highly oxidized terpenoids.
Collapse
Affiliation(s)
- Matthew L. Condakes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Luiz F. T. Novaes
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California–Berkeley, Berkeley, CA, 94720
| |
Collapse
|
44
|
Nguyen LV, Beeler AB. Synthesis of Complex Stereoheptads en Route to Daphnane Diterpene Orthoesters. Org Lett 2018; 20:5177-5180. [DOI: 10.1021/acs.orglett.8b02124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long V. Nguyen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Aaron B. Beeler
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
45
|
Qin H, Zhao A, Fu X. Chemical modulation of cell fates: in situ regeneration. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1137-1150. [PMID: 30099708 DOI: 10.1007/s11427-018-9349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Chemical modulation of cell fates has been widely used to promote tissue and organ regeneration. Small molecules can target the self-renewal, expansion, differentiation, and survival of endogenous stem cells for enhancing their regenerative power or induce dedifferentiation or transdifferentiation of mature cells into proliferative progenitors or specialized cell types needed for regeneration. Here, we discuss current progress and potential using small molecules to promote in vivo regenerative processes by regulating the cell fate. Current studies of small molecules in regeneration will provide insights into developing safe and efficient chemical approaches for in situ tissue repair and regeneration.
Collapse
Affiliation(s)
- Hua Qin
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Andong Zhao
- Graduate School of Tianjin Medical University, Tianjin, 300070, China.,Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China
| | - Xiaobing Fu
- Cell Biology and Tissue Repair Laboratory, Key Laboratory of Wound Repair and Regeneration of PLA, the First Hospital Affiliated to the PLA General Hospital, Beijing, 100048, China. .,College of Life Sciences, PLA General Hospital, PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
46
|
Cao CY, Zhang CC, Shi XW, Li D, Cao W, Yin X, Gao JM. Sarcodonin G Derivatives Exhibit Distinctive Effects on Neurite Outgrowth by Modulating NGF Signaling in PC12 Cells. ACS Chem Neurosci 2018; 9:1607-1615. [PMID: 29653489 DOI: 10.1021/acschemneuro.7b00488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sarcodonin G, one of the cyathane diterpenoids isolated from the mushroom Sarcodon scabrosus, possesses pronounced neurotrophic activity but ambiguous mechanical understanding. In this work, sarcodonin G was chosen as a lead compound to prepare a series of 19- O-benzoyl derivatives by semisynthesis and their neuritogenic activities were evaluated. 6 and 15 (10 μM) were investigated with opposite effects in PC12 cells. 6 exhibited a superior activity to sarcodonin G by promoting NGF-induced neurite outgrowth, while 15 showed an inhibitory effect. Supportingly, 6 and 15 (20 μM) significantly induced and suppressed neurite extension in primary cultured rat cortical neurons, respectively. In mechanism, the two derivatives were revealed to influence NGF-induced neurite outgrowth in PC12 cells through the regulation of PKC-dependent and -independent ERK/CREB signaling as well as the upstream TrkA receptor phosphorylation. Furthermore, a possible pattern of interaction among NGF, 6/15 and TrkA was presented using molecular simulations. It revealed that 6/15 may contribute to the stabilization of the NGF-TrkAd5 complex by establishing several hydrophobic and hydrogen-bond interactions with NGF and TrkA, respectively. Taken together, 6 and 15 modulate PKC-dependent and -independent ERK/CREB signaling pathways possibly by influencing the binding affinity of NGF to the receptor TrkA, and finally regulate neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Chen-Yu Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Cheng-Chen Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Xin-Wei Shi
- Xi'an Botanical Garden , Institute of Botany of Shaanxi Province , Xi'an 710061 , Shaanxi China
| | - Ding Li
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Wei Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Xia Yin
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| | - Jin-Ming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|
47
|
Cacabelos R. Have there been improvements in Alzheimer's disease drug discovery over the past 5 years? Expert Opin Drug Discov 2018; 13:523-538. [PMID: 29607687 DOI: 10.1080/17460441.2018.1457645] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most important neurodegenerative disorder with a global cost worldwide of over $700 billion. Pharmacological treatment accounts for 10-20% of direct costs; no new drugs have been approved during the past 15 years; and the available medications are not cost-effective. Areas covered: A massive scrutiny of AD-related PubMed publications (ps)(2013-2017) identified 42,053ps of which 8,380 (19.60%) were associated with AD treatments. The most prevalent pharmacological categories included neurotransmitter enhancers (11.38%), multi-target drugs (2.45%), anti-Amyloid agents (13.30%), anti-Tau agents (2.03%), natural products and derivatives (25.58%), novel drugs (8.13%), novel targets (5.66%), other (old) drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and others (<1% each). Expert opinion: Unsuccessful outcomes in AD therapeutics are attributed to pathogenic misconceptions, erratic procedures in drug development and inappropriate regulations. Recommendations for the future are as follows: (i) the reconsideration of dominant pathogenic theories, (ii) the identification of reliable biomarkers, (iii) the redefinition of diagnostic criteria, (iv) new guidelines for disease management, (v) the reorientation of drug discovery programs, (vi) the updating of regulatory requirements, (vii) the introduction of pharmacogenomics in drug development and personalized treatments, and (viii) the implementation of preventive programs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- a EuroEspes Biomedical Research Center , Institute of Medical Science and Genomic Medicine , Corunna , Spain.,b Chair of Genomic Medicine , Continental University Medical School , Huancayo , Peru
| |
Collapse
|
48
|
Tang Y, Qiu QF, Zhang FL, Xie M, Huang WH. Quantifying orientational regeneration of injured neurons by natural product concentration gradients in a 3D microfluidic device. LAB ON A CHIP 2018; 18:971-978. [PMID: 29485173 DOI: 10.1039/c7lc01143a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Regeneration of injured neurons in complicated three-dimensional (3D) microenvironments is a key approach for treating neurodegenerative diseases. Microfluidics provides a versatile tool to recapitulate cellular microenvironments in vitro, but it still remains a big challenge to construct a microfluidic platform incorporating extracellular matrix (ECM) structures and highly controlled 3D gradients of soluble factors to study the regeneration of injured neurons. In this work, we developed a microfluidic device which can provide multiple adjustable gradients in a 3D ECM to investigate the regeneration of injured central nervous system (CNS) neurons in response to natural small molecules. With interconnecting but independently controlled central channels, asymmetrically designed side channels and a series of microgrooves connecting the central channels, spatially and temporally controlled 3D biochemical gradients can be generated inside collagen hydrogel in the central channels. This allows quantitative analysis of guided axon growth and the orientational regeneration of injured dopaminergic neurons by 3D chemical gradients of three natural molecules. This study demonstrates a promising microfluidic platform for the generation of highly controlled 3D biochemical gradients in an ECM to quantitatively study neuronal responses, thereby potentially facilitating drug screening and optimization of treatment protocols for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | | | | | | | | |
Collapse
|
49
|
Schiavone S, Trabace L. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders. Molecules 2018; 23:molecules23020411. [PMID: 29438357 PMCID: PMC6017408 DOI: 10.3390/molecules23020411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|
50
|
Liu L, Bao L, Wang L, Ma K, Han J, Yang Y, Liu R, Ren J, Yin W, Wang W, Liu H. Asperorydines A–M: Prenylated Tryptophan-Derived Alkaloids with Neurotrophic Effects from Aspergillus oryzae. J Org Chem 2018; 83:812-822. [DOI: 10.1021/acs.joc.7b02802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Li Bao
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Long Wang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Ke Ma
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Junjie Han
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yanlong Yang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Ruixing Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jinwei Ren
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Wenbing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wenzhao Wang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Hongwei Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|