1
|
Guo D, Wang Z, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Rational design improves both thermostability and activity of a new D-tagatose 3-epimerase from Kroppenstedtia eburnean to produce D-allulose. Enzyme Microb Technol 2024; 178:110448. [PMID: 38657401 DOI: 10.1016/j.enzmictec.2024.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.
Collapse
Affiliation(s)
- Dingyu Guo
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhengchao Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Li Z, Hu Y, Yu C, Fei K, Shen L, Liu Y, Nakanishi H. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Biotechnol J 2024; 19:e2400280. [PMID: 39167550 DOI: 10.1002/biot.202400280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND D-Allulose is one of the most well-known rare sugars widely used in food, cosmetics, and pharmaceutical industries. The most popular method for D-allulose production is the conversion from D-fructose catalyzed by D-allulose 3-epimerase (DAEase). To address the general problem of low catalytic efficiency and poor thermostability of wild-type DAEase, D-allulose biosensor was adopted in this study to develop a convenient and efficient method for high-throughput screening of DAEase variants. RESULTS The catalytic activity and thermostability of DAEase from Caballeronia insecticola were simultaneously improved by semi-rational molecular modification. Compared with the wild-type enzyme, DAEaseS37N/F157Y variant exhibited 14.7% improvement in the catalytic activity and the half-time value (t1/2) at 65°C increased from 1.60 to 27.56 h by 17.23-fold. To our delight, the conversion rate of D-allulose was 33.6% from 500-g L-1 D-fructose in 1 h by Bacillus subtilis WB800 whole cells expressing this DAEase variant. Furthermore, the practicability of cell immobilization was evaluated and more than 80% relative activity of the immobilized cells was maintained from the second to seventh cycle. CONCLUSION All these results indicated that the DAEaseS37N/F157Y variant would be a potential candidate for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangfan Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Cai X, Shi X, Wang JY, Hu CH, Shen JD, Zhang B, Liu ZQ, Zheng YG. Enhancing the Thermal Stability and Enzyme Activity of Ketopantoate Hydroxymethyltransferase through Interface Modification Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13186-13195. [PMID: 38814711 DOI: 10.1021/acs.jafc.3c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.
Collapse
Affiliation(s)
- Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Shi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng-Hao Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
4
|
Wang J, Lu C, Shen X, He T, Lu D, Wang X, Zhang Y, Lin Z, Yang X. Enhancing the stability of a novel D-allulose 3-epimerase from Ruminococcus sp. CAG55 by interface interaction engineering and terminally attached a self-assembling peptide. Int J Biol Macromol 2024; 269:131986. [PMID: 38697423 DOI: 10.1016/j.ijbiomac.2024.131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Jing Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Chenlin Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuemei Shen
- COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Taibo He
- COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Wang
- COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Yuan Zhang
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Li C, Gao X, Li H, Wang T, Lu F, Qin H. Growth-Coupled Evolutionary Pressure Improving Epimerases for D-Allulose Biosynthesis Using a Biosensor-Assisted In Vivo Selection Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306478. [PMID: 38308132 PMCID: PMC11005681 DOI: 10.1002/advs.202306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Indexed: 02/04/2024]
Abstract
Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Huimin Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Tong Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Hui‐Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| |
Collapse
|
6
|
Guan L, Zhu L, Wang K, Gao Y, Li J, Yan S, Zhang X, Ji N, Fan J, Zhou Y, Yao X, Li B. Biochemical characterization, structure-guided mutagenesis, and application of a recombinant D-allulose 3-epimerase from Christensenellaceae bacterium for the biocatalytic production of D-allulose. Front Bioeng Biotechnol 2024; 12:1365814. [PMID: 38476966 PMCID: PMC10927987 DOI: 10.3389/fbioe.2024.1365814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
D-Allulose has become a promising alternative sweetener due to its unique properties of low caloric content, moderate sweetness, and physiological effects. D-Allulose 3-epimerase (DAEase) is a promising enzyme for D-Allulose production. However, the low catalytic efficiency limited its large-scale industrial applications. To obtain a more effective biocatalyst, a putative DAEase from Christensenellaceae bacterium (CbDAE) was identified and characterized. The recombinant CbDAE exhibited optimum activity at pH 7.5°C and 55°C, retaining more than 60% relative activity from 40°C to 70°C, and the catalytic activity could be significantly increased by Co2+ supplementation. These enzymatic properties of purified CbDAE were compared with other DAEases. CbDAE was also found to possess desirable thermal stability at 55°C with a half-life of 12.4 h. CbDAE performed the highest relative activity towards D-allulose and strong affinity for D-fructose but relatively low catalytic efficiency towards D-fructose. Based on the structure-guided design, the best double-mutation variant G36N/W112E was obtained which reached up to 4.21-fold enhancement of catalytic activity compared with wild-type (WT) CbDAE. The catalytic production of G36N/W112E with 500 g/L D-fructose was at a medium to a higher level among the DAEases in 3.5 h, reducing 40% catalytic reaction time compared to the WT CbDAE. In addition, the G36N/W112E variant was also applied in honey and apple juice for D-allulose conversion. Our research offers an extra biocatalyst for D-allulose production, and the comprehensive report of this enzyme makes it potentially interesting for industrial applications and will aid the development of industrial biocatalysts for D-allulose.
Collapse
Affiliation(s)
- Lijun Guan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ling Zhu
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Kunlun Wang
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Yang Gao
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Jialei Li
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Song Yan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xindi Zhang
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Nina Ji
- Heilongjiang Academy of Agricultural Sciences, Soybean Institute, Harbin, China
| | - Jing Fan
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Ye Zhou
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Xinmiao Yao
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| | - Bo Li
- Heilongjiang Academy of Sciences, Institute of Food Processing, Harbin, China
- Key Laboratory of Food Processing of Heilongjiang Province, Harbin, China
| |
Collapse
|
7
|
Zhu J, Long J, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z. Improving the thermal stability and branching efficiency of Pyrococcus horikoshii OT3 glycogen branching enzyme. Int J Biol Macromol 2024; 255:128010. [PMID: 37979752 DOI: 10.1016/j.ijbiomac.2023.128010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
In practical applications, the gelatinisation temperature of starch is high. Most current glycogen branching enzymes (GBEs, EC 2.4.1.18) exhibit optimum activity at moderate or low temperatures and quickly lose their activity at higher temperatures, limiting the application of GBEs in starch modification. Therefore, we used the PROSS strategy combined with PDBePISA analysis of the dimer interface to further improve the heat resistance of hyperthermophilic bacteria Pyrococcus horikoshii OT3 GBE. The results showed that the melting temperature of mutant T508K increased by 3.1 °C compared to wild-type (WT), and the optimum reaction temperature increased by 10 °C for all mutants except V140I. WT almost completely lost its activity after incubation at 95 °C for 60 h, while all of the combined mutants maintained >40 % of their residual activity. Further, the content of the α-1,6 glycosidic bond of corn starch modified by H415W and V140I/H415W was approximately 2.68-fold and 1.92-fold higher than that of unmodified corn starch and corn starch modified by WT, respectively. Additionally, the glucan chains of DP < 13 were significantly increased in mutant modified corn starch. This method has potential for improving the thermal stability of GBE, which can be applied in starch branching in the food industry.
Collapse
Affiliation(s)
- Jing Zhu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Chen J, Huang Z, Shi T, Ni D, Zhu Y, Xu W, Zhang W, Mu W. Engineering D-allulose 3-epimerase from Clostridium cellulolyticum for improved thermostability using directed evolution facilitated by a nonenzymatic colorimetric screening assay. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Zhao L, Ma Z, Wang Q, Hu M, Zhang J, Chen L, Shi G, Ding Z. Engineering the Thermostability of Sucrose Synthase by Reshaping the Subunit Interaction Contributes to Efficient UDP-Glucose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3832-3841. [PMID: 36795895 DOI: 10.1021/acs.jafc.2c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The restricted availability of UDP-glucose, an essential precursor that targets oligo/polysaccharide and glycoside synthesis, makes its practical application difficult. Sucrose synthase (Susy), which catalyzes one-step UDP-glucose synthesis, is a promising candidate. However, due to poor thermostability of Susy, mesophilic conditions are required for synthesis, which slow down the process, limit productivity, and prevent scaled and efficient UDP-glucose preparation. Here, we obtained an engineered thermostable Susy (mutant M4) from Nitrosospira multiformis through automated prediction and greedy accumulation of beneficial mutations. The mutant improved the T1/2 value at 55 °C by 27-fold, resulting in UDP-glucose synthesis at 37 g/L/h of space-time yield that met industrial biotransformation standards. Furthermore, global interaction between mutant M4 subunits was reconstructed by newly formed interfaces according to molecular dynamics simulations, with residue Trp162 playing an important role in strengthening the interface interaction. This work enabled effective, time-saving UDP-glucose production and paved the way for rational thermostability engineering of oligomeric enzymes.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Manfeng Hu
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingxiang Zhang
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Bommarius AS. Total Turnover Number – a Key Criterion for Process Evaluation. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Andreas S. Bommarius
- Georgia Institute of Technology School of Chemical & Biomolecular Engineering 950 Atlantic Drive GA 30332-2000 Atlanta USA
| |
Collapse
|
12
|
Tülek A, Günay E, Servili B, Eşsiz Ş, Binay B, Yildirim D. Sustainable production of formic acid from CO2 by a novel immobilized mutant formate dehydrogenase. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Tian Y, Hou X, Ni D, Xu W, Guang C, Zhang W, Chen Q, Rao Y, Mu W. Structure-based interface engineering methodology in designing a thermostable amylose-forming transglucosylase. J Biol Chem 2022; 298:102074. [PMID: 35643316 PMCID: PMC9234714 DOI: 10.1016/j.jbc.2022.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Many drugs and prebiotics derive their activities from sugar substituents. Due to the prevalence and complexity of these biologically active compounds, enzymatic glycodiversification that facilitates easier access to these compounds can make profound contributions to the pharmaceutical, food, and feed industries. Amylosucrases (ASases) are attractive tools for glycodiversification because of their broad acceptor substrate specificity, but the lack of structural information and their poor thermostability limit their industrial applications. Herein, we reported the crystal structure of ASase from Calidithermus timidus, which displays a homotetrameric quaternary organization not previously observed for other ASases. We employed a workflow composed of five common strategies, including interface engineering, folding energy calculations, consensus sequence, hydrophobic effects enhancement, and B-factor analysis, to enhance the thermostability of C. timidus ASase. As a result, we obtained a quadruple-point mutant M31 ASase with a half-life at 65 °C increased from 22.91 h to 52.93 h, which could facilitate biosynthesis of glucans with a degree of polymerization of more than 20 using sucrose as a substrate at 50 °C. In conclusion, this study provides a structural basis for understanding the multifunctional biocatalyst ASase and presents a powerful methodology to effectively and systematically enhance protein thermostability.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
14
|
Chen Z, Gao XD, Li Z. Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose. Front Microbiol 2022; 13:881037. [PMID: 35495640 PMCID: PMC9048046 DOI: 10.3389/fmicb.2022.881037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 01/11/2023] Open
Abstract
D-Allulose, a generally regarded as safe (GRAS) sugar, is rare in nature. It is among the most promising sweeteners for future use due to its low caloric content, sucrose-like taste, and unique functions. D-Allulose has many physiological effects, such as antiobesity, antihyperglycemia, antidiabetes, anti-inflammatory, antioxidant, and neuroprotective effects. Therefore, D-allulose has important application value in the food, pharmaceutical, and healthcare industries. However, the high cost of D-allulose production limits its large-scale application. Currently, biotransformation is very attractive for D-allulose synthesis, with the two main methods of biosynthesis being the Izumoring strategy and the DHAP-dependent aldolase strategy. This article reviews recent advances regarding the physiological functions and biosynthesis of D-allulose. In addition, future perspectives on the production of D-allulose are presented.
Collapse
Affiliation(s)
- Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Thermostabilizing ketoreductase ChKRED20 by consensus mutagenesis at dimeric interfaces. Enzyme Microb Technol 2022; 158:110052. [DOI: 10.1016/j.enzmictec.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
16
|
Feng Y, Pu Z, Zhu L, Wu M, Yang L, Yu H, Lin J. Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via a dual-enzyme screening system. Enzyme Microb Technol 2022; 159:110054. [DOI: 10.1016/j.enzmictec.2022.110054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
|
17
|
Chen J, Chen D, Chen Q, Xu W, Zhang W, Mu W. Computer-Aided Targeted Mutagenesis of Thermoclostridium caenicola d-Allulose 3-Epimerase for Improved Thermostability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1943-1951. [PMID: 35107285 DOI: 10.1021/acs.jafc.1c07256] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
d-Allulose 3-epimerase (DAEase) is a key enzyme in d-allulose bioproduction. DAEase from Thermoclostridium caenicola suffers from poor thermostability, hampering its large-scale applications in industry. In this study, mutants A70P, G107P, F155Y, and D162T with increased melting point temperature (Tm) were obtained by targeted mutagenesis based on the calculation of the free energy of folding. The optimal single-point mutant G107P showed 11.08 h, 5, and 5.70 °C increases in the values of half-life (t1/2) at 60 °C, the optimum temperature (Topt), and Tm, respectively. Beneficial mutations were combined by ordered recombination mutagenesis, and the combinational mutant Var3 (G107P/F155Y/D162T/A70P) was generated with ΔTopt of 10 °C and ΔTm of 12.25 °C. Its t1/2 value at 65 °C was more than 140 times higher than that of the wild-type enzyme. Molecular dynamics simulations and homology modeling analysis indicated that the enhanced overall rigidity, increased hydrogen bonds between subunits, and redistributed surface electrostatic charges might be responsible for the improved thermostability of the mutant Var3.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
19
|
Zhang W, Chen D, Chen J, Xu W, Chen Q, Wu H, Guang C, Mu W. D-allulose, a versatile rare sugar: recent biotechnological advances and challenges. Crit Rev Food Sci Nutr 2021; 63:5661-5679. [PMID: 34965808 DOI: 10.1080/10408398.2021.2023091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
D-Allulose is the C-3 epimer of D-fructose, and widely regarded as a promising substitute for sucrose. It's an excellent low-calorie sweetener, with 70% sweetness of sucrose, 0.4 kcal/g dietary energy, and special physiological functions. It has been approved as GRAS by the U.S. Food and Drug Administration, and is allowed to be excluded from total and added sugar counts on the food labels. Therefore, D-allulose gradually attracts more public attention. Owing to scarcity in nature, the bioproduction of D-allulose by using ketose 3-epimerase (KEase) has become the research hotspot. Herein, we give a summary of the physicochemical properties, physiological function, applications, and the chemical and biochemical synthesis methods of D-allulose. In addition, the recent progress in the D-allulose bioproduction using KEases, and the possible solutions for existing challenges in the D-allulose industrial production are comprehensively discussed, focusing on the molecular modification, immobilization, food-grade expression, utilizing low-cost biomass as feedstock, overcoming thermodynamic limitation, as well as the downstream separation and purification. Finally, Prospects for further development are also proposed.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Zhu L, Song Y, Chang C, Ma H, Yang L, Deng Z, Deng W, Qu X. Engineering Leifsonia Alcohol Dehydrogenase for Thermostability and Catalytic Efficiency by Enhancing Subunit Interactions. Chembiochem 2021; 22:3178-3183. [PMID: 34549865 DOI: 10.1002/cbic.202100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Leifsonia alcohol dehydrogenase (LnADH) is a promising biocatalyst for the synthesis of chiral alcohols. However, limitations of wild-type LnADH observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve its thermostability and catalytic efficiency by altering the subunit interfaces. Residues T100 and S148 were identified to be significant for thermostability and activity, and the melting temperature (ΔTm ) and catalytic efficiency of the mutant T100R/S148I toward ketone substrates was improved by 18.7 °C and 1.8-5.5-fold. Solving the crystal structures of the wild-type enzyme and T100R/S148L revealed beneficial effects of mutations on stability and catalytic activity. The most robust mutant T100R/S148I is promising for industrial applications and can produce 200 g liter-1 day-1 chiral alcohols at 50 °C by only a 1 : 500 ratio of enzyme to substrate.
Collapse
Affiliation(s)
- Lu Zhu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| | - Yang Song
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Chenchen Chang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Wei Deng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Rd., Wuhan, 430071, China
| |
Collapse
|
21
|
Li C, Zhang W, Wei C, Gao X, Mao S, Lu F, Qin HM. Continuous Spectrophotometric Assay for High-Throughput Screening of Predominant d-Allulose 3-Epimerases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11637-11645. [PMID: 34569239 DOI: 10.1021/acs.jafc.1c04716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
d-Allulose is an attractive noncaloric sugar substitute with numerous health benefits, which can be biosynthesized by d-allulose 3-epimerases (DAEases). However, enzyme instability under harsh industrial reaction conditions hampered its practical applications. Here, we developed a continuous spectrophotometric assay (CSA) for the efficient analysis of d-allulose in a mixture. Furthermore, a high-throughput screening strategy for DAEases was developed using CSA by coupling DAEase with a NADH-dependent ribitol dehydrogenase, enabling high-throughput screening of DAEase variants with desired properties. The variant M15S/P40N/S209N exhibited a half-life of 22 h at 60 °C and an 8.7 °C increase of the T5060 value, with a 1.2-fold increase of activity. Structural modeling and molecular dynamics simulations indicated that the improvement of thermostability and activity was due to some new hydrogen bonds between chains at the dimer interface and between the residue and the substrate d-fructose. This work offers a robust tool and theoretical basis for the improvement of DAEases, which will benefit the enzymatic biosynthesis of d-allulose and promote its industrial application.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
22
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Zhu Z, Li L, Zhang W, Li C, Mao S, Lu F, Qin HM. Improving the enzyme property of D-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense through rational design. Enzyme Microb Technol 2021; 149:109850. [PMID: 34311887 DOI: 10.1016/j.enzmictec.2021.109850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
The rare sugar d-allulose is an attractive sucrose substitute due to its sweetness and ultra-low caloric value. It can be produced from D-fructose using d-allulose 3-epimerase (DAE) as the biocatalyst. However, most of the reported DAEs show low catalytic efficiency and poor thermostability, which limited their further use in food industrial. Here, a putative d-allulose 3-epimerase from a thermophilic organism of Halanaerobium congolense (HcDAE) was characterized, showing optimal activity at pH 8.0 and 70 °C in the presence of Mg2+. Saturation mutagenesis of Y7, C66, and I108, the putative residues responsible for substrate recognition at the O-4, -5, and -6 atoms of D-fructose was performed, and it yielded the triple mutant Y7H/C66L/I108A with improved activity toward D-fructose (345 % of wild-type enzyme). The combined mutant Y7H/C66L/I108A/R156C/K260C exhibited a half-half (t1/2) of 5.2 h at 70 °C and an increase of the Tm value by 6.5 °C due to the introduction of disulfide bridges between intersubunit with increased interface interactions. The results indicate that mutants could be used as industrial biocatalysts for d-allulose production.
Collapse
Affiliation(s)
- Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Lei Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
24
|
Chen J, Chen D, Ke M, Ye S, Wang X, Zhang W, Mu W. Characterization of a Recombinant D-Allulose 3-epimerase from Thermoclostridium caenicola with Potential Application in D-Allulose Production. Mol Biotechnol 2021; 63:534-543. [PMID: 33782841 DOI: 10.1007/s12033-021-00320-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/20/2021] [Indexed: 01/02/2023]
Abstract
In recent years, with the increasing public health awareness, low-calorie rare sugars have received more attention on a global scale. D-Allulose, the C-3 epimer of D-fructose, is a representative rare sugar. It displays high sweetness and excellent physiological functions, but only provides a caloric value of 0.4 kcal/g. D-Allulose 3-epimerase (DAEase) is indispensable in D-allulose production. In this study, a putative DAEase from Thermoclostridium caenicola was identified and characterized. The novel T. caenicola DAEase displayed maximum activity at pH 7.5 and 65 °C in the presence of 1 mM Co2+. The half-life (t1/2) at 50 °C was 13.6 h, and the melting temperature (Tm) was 62.4 °C. It was strictly metal-dependent, and the addition of Co2+ remarkably enhanced its thermostability, with a 5.4-fold increase in t1/2 value at 55 °C and 4.8 °C increase in Tm. Furthermore, DAEase displayed high relative activity (89.0%) at a weakly acidic pH 6.5 and produced 139.8 g/L D-allulose from 500 g/L D-fructose, achieving a conversion ratio of 28.0%. These findings suggest that T. caenicola DAEase is a promising biocatalyst for the production of D-allulose.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ding Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Mengyu Ke
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Shengyuan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
25
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
26
|
Guo C, Ni Y, Biewenga L, Pijning T, Thunnissen AWH, Poelarends GJ. Using Mutability Landscapes To Guide Enzyme Thermostabilization. Chembiochem 2021; 22:170-175. [PMID: 32790123 PMCID: PMC7821111 DOI: 10.1002/cbic.202000442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Indexed: 12/31/2022]
Abstract
Thermostabilizing enzymes while retaining their activity and enantioselectivity for applied biocatalysis is an important topic in protein engineering. Rational and computational design strategies as well as directed evolution have been used successfully to thermostabilize enzymes. Herein, we describe an alternative mutability-landscape approach that identified three single mutations (R11Y, R11I and A33D) within the enzyme 4-oxalocrotonate tautomerase (4-OT), which has potential as a biocatalyst for pharmaceutical synthesis, that gave rise to significant increases in apparent melting temperature Tm (up to 20 °C) and in half-life at 80 °C (up to 111-fold). Introduction of these beneficial mutations in an enantioselective but thermolabile 4-OT variant (M45Y/F50A) afforded improved triple-mutant enzyme variants showing an up to 39 °C increase in Tm value, with no reduction in catalytic activity or enantioselectivity. This study illustrates the power of mutability-landscape-guided protein engineering for thermostabilizing enzymes.
Collapse
Affiliation(s)
- Chao Guo
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Yan Ni
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
- Present address: Department of Biomedical EngineeringEindhoven University of Technology5600 MBEindhoven (TheNetherlands
| | - Lieuwe Biewenga
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
- Present address: Department of Biomedical EngineeringEindhoven University of Technology5600 MBEindhoven (TheNetherlands
| | - Tjaard Pijning
- Structural Biology GroupGroningen Institute of Biomolecular Sciences and BiotechnologyUniversity of GroningenNijenborgh 79747 AGGroningen (TheNetherlands
| | - Andy‐Mark W. H. Thunnissen
- Molecular Enzymology Group Groningen Institute of Biomolecular Sciences and BiotechnologyUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of PharmacyUniversity of GroningenAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
27
|
Femmer C, Bechtold M, Panke S. Semi‐rational engineering of an amino acid racemase that is stabilized in aqueous/organic solvent mixtures. Biotechnol Bioeng 2020; 117:2683-2693. [DOI: 10.1002/bit.27449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Christian Femmer
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Matthias Bechtold
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| | - Sven Panke
- Department of Biosystems Science and EngineeringETH Zurich Basel Switzerland
| |
Collapse
|
28
|
Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, van Schie LZ, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Janssen DB. Robust ω-Transaminases by Computational Stabilization of the Subunit Interface. ACS Catal 2020; 10:2915-2928. [PMID: 32953233 PMCID: PMC7493286 DOI: 10.1021/acscatal.9b05223] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Cyntia M. Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luc Z. van Schie
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
29
|
Unbiased libraries in protein directed evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140321. [DOI: 10.1016/j.bbapap.2019.140321] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
|
30
|
Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. Recent advances in the improvement of enzyme thermostability by structure modification. Crit Rev Biotechnol 2019; 40:83-98. [DOI: 10.1080/07388551.2019.1682963] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhe Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
31
|
Mao S, Cheng X, Zhu Z, Chen Y, Li C, Zhu M, Liu X, Lu F, Qin HM. Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Enzyme Microb Technol 2019; 132:109441. [PMID: 31731964 DOI: 10.1016/j.enzmictec.2019.109441] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022]
Abstract
D-allulose has received increasing attention due to its excellent physiological properties and commercial potential. The D-allulose 3-epimerase from Rhodopirellula baltica (RbDAEase) catalyzes the conversion of D-fructose to D-allulose. However, its poor thermostability has hampered its industrial application. Site-directed mutagenesis based on homologous structures in which the residuals on high flexible regions were substituted according to B-factors analysis, is an effective way to improve the thermostability and robustness of an enzyme. RbDAEase showed substrate specificity toward D-allulose with a Km of 58.57 mM and kcat of 1849.43 min-1. It showed a melting temperature (Tm) of 45.7 °C and half-life (t1/2) of 52.3 min at pH 8.0, 60 °C with 1 mM Mn2+. The Site-directed mutation L144 F strengthened the thermostability to a Δt1/2 of 50.4 min, ΔTm of 12.6 °C, and ΔT5060 of 22 °C. It also improved the conversion rate to 28.6%. Structural analysis reveals that a new hydrophobic interaction was formed by the mutation. Thus, site-directed mutagenesis based on B-factors analysis would be an efficient strategy to enhance the thermostability of designed ketose 3-epimerases.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Xiaotao Cheng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Xin Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| |
Collapse
|
32
|
Zhu Z, Gao D, Li C, Chen Y, Zhu M, Liu X, Tanokura M, Qin HM, Lu F. Redesign of a novel D-allulose 3-epimerase from Staphylococcus aureus for thermostability and efficient biocatalytic production of D-allulose. Microb Cell Fact 2019; 18:59. [PMID: 30909913 PMCID: PMC6432756 DOI: 10.1186/s12934-019-1107-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A novel D-allulose 3-epimerase from Staphylococcus aureus (SaDAE) has been screened as a D-allulose 3-epimerase family enzyme based on its high specificity for D-allulose. It usually converts both D-fructose and D-tagatose to respectively D-allulose and D-sorbose. We targeted potential biocatalysts for the large-scale industrial production of rare sugars. RESULTS SaDAE showed a high activity on D-allulose with an affinity of 41.5 mM and catalytic efficiency of 1.1 s-1 mM-1. Four residues, Glu146, Asp179, Gln205, and Glu240, constitute the catalytic tetrad of SaDAE. Glu146 and Glu240 formed unique interactions with substrates based on the structural model analysis. The redesigned SaDAE_V105A showed an improvement of relative activity toward D-fructose of 68%. The conversion rate of SaDAE_V105A reached 38.9% after 6 h. The triple mutant S191D/M193E/S213C showed higher thermostability than the wild-type enzyme, exhibiting a 50% loss of activity after incubation for 60 min at 74.2 °C compared with 67 °C for the wild type. CONCLUSIONS We redesigned SaDAE for thermostability and biocatalytic production of D-allulose. The research will aid the development of industrial biocatalysts for D-allulose.
Collapse
Affiliation(s)
- Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Dengke Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Menglu Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xin Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Masaru Tanokura
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
33
|
Acevedo‐Rocha CG, Sun Z, Reetz MT. Clarifying the Difference between Iterative Saturation Mutagenesis as a Rational Guide in Directed Evolution and OmniChange as a Gene Mutagenesis Technique. Chembiochem 2018; 19:2542-2544. [PMID: 30408315 DOI: 10.1002/cbic.201800372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Zhoutong Sun
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Department of ChemistryPhilipps University 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
| |
Collapse
|
34
|
Sutiono S, Carsten J, Sieber V. Structure-Guided Engineering of α-Keto Acid Decarboxylase for the Production of Higher Alcohols at Elevated Temperature. CHEMSUSCHEM 2018; 11:3335-3344. [PMID: 29953730 DOI: 10.1002/cssc.201800944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Branched-chain keto acid decarboxylases (KDCs) are a class of enzymes that catalyze the decarboxylation of α-keto acids. They are key enzymes for production of higher alcohols in vivo and in vitro. However, the two most active KDCs (KivD and KdcA) have only moderate thermostability (<55 °C), which hinders the production of alcohols at high temperatures. Herein, structure-guided engineering toward improved thermostability of KdcA is outlined. Strategies such as stabilization of the catalytic center, surface engineering, and optimization of dimer interactions were applied. With seven amino acid substitutions, variant 7M.D showed an increase of the temperature at which 50 % of activity remains after one-hour incubation T1h50 by 14.8 °C without compromising its substrate specificity. 7M.D exhibited greater than 400-fold improvement of half-life at 70 °C and greater than 600-fold increase in process stability in the presence of 4 % isobutanol at 50 °C. 7M.D is more promising for the production of higher alcohols in thermophiles (>65 °C) and in cell-free applications.
Collapse
Affiliation(s)
- Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Jörg Carsten
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
- Straubing Branch BioCat, Fraunhofer IGB, Schulgasse 11a, 94315, Straubing, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St., Lucia, 4072, Australia
| |
Collapse
|
35
|
Feng X, Wang X, Han B, Zou C, Hou Y, Zhao L, Li C. Design of Glyco-Linkers at Multiple Structural Levels to Modulate Protein Stability. J Phys Chem Lett 2018; 9:4638-4645. [PMID: 30060662 DOI: 10.1021/acs.jpclett.8b01570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
N-glycosylation has critical roles in regulating protein stability, but the molecular basis is poorly understood. In this study, we integrated experimental and computational techniques to investigate the mechanism by which full-length N-glycans modulate protein stability from quaternary structure perspective. We found the two inherent N-glycans of β-glucuronidase expressed in Pichia pastoris function as "glyco-linkers" that hold spatially proximal motifs together to compact the local protein structure. We further designed and placed glyco-linkers in the unusual form of glyco-bridge and glyco-hairpin at the interfaces between domains and monomers with higher structural level, respectively, which conferred dramatically higher kinetic stability and thermodynamic stability than the inherent N-glycans. Our study not only provides unique insight into the interactions between glycans and proteins from a quaternary structure perspective but also facilitates the rational design of N-glycans as general tools that can enhance protein stability.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Xiaoyan Wang
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
- Center of Biotechnology , COFCO Nutrition & Health Research Institute , Beijing 102209 , China
| | - Beijia Han
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Changling Zou
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuhui Hou
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Chun Li
- Department of Biochemical Engineering/Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
36
|
Zhang W, Zhang Y, Huang J, Chen Z, Zhang T, Guang C, Mu W. Thermostability Improvement of the d-Allulose 3-Epimerase from Dorea sp. CAG317 by Site-Directed Mutagenesis at the Interface Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5593-5601. [PMID: 29762031 DOI: 10.1021/acs.jafc.8b01200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Allulose is a low-calorie sweetener and has broad applications in the food, cosmetics, and pharmaceutical industries. Recently, most studies focus on d-allulose production from d-fructose by d-allulose 3-epimerase (DAEase). However, the major blocker of industrial production of d-allulose is the poor thermostability. In this study, site-directed mutagenesis at the interface regions of Dorea sp. DAEase was carried out, and the F154Y/E191D/I193F mutation was obtained. The mutant protein displayed much higher thermostability, with a t1/2 value of 20.47 h (50 °C) and a Tm value of 74.18 °C. Compared with the wild-type DAEase, the t1/2 value at 50 °C increased by 5.4-fold, and the Tm value increased by 17.54 °C. In the d-allulose production from 500 g/L d-fructose, 148.2 g/L d-allulose could be obtained by F154Y/E191D/I193F mutant protein. The results suggest that site-directed mutagenesis at the interface regions is an efficient approach for improving the thermostability of DAEase.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Yanmin Zhang
- School of Science , China Pharmaceutical University , 639 Longmian Avenue , Nanjing , Jiangsu 211198 , China
| | - Jiawei Huang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
37
|
Fan LQ, Li MW, Qiu YJ, Chen QM, Jiang SJ, Shang YJ, Zhao LM. Increasing thermal stability of glutamate decarboxylase from Escherichia. coli by site-directed saturation mutagenesis and its application in GABA production. J Biotechnol 2018; 278:1-9. [PMID: 29660473 DOI: 10.1016/j.jbiotec.2018.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/03/2017] [Accepted: 04/12/2018] [Indexed: 01/05/2023]
Abstract
Gamma-amino butyric acid (GABA) is an important bio-product used in pharmaceuticals, functional foods, and a precursor of the biodegradable plastic polyamide 4 (Nylon 4). Glutamate decarboxylase B (GadB) from Escherichia. coli is a highly active biocatalyst that can convert l-glutamate to GABA. However, its practical application is limited by the poor thermostability and only active under acidic conditions of GadB. In this study, we performed site-directed saturation mutagenesis of the N-terminal residues of GadB from Escherichia coli to improve its thermostability. A triple mutant (M6, Gln5Ile/Val6Asp/Thr7Gln) showed higher thermostability, with a 5.6 times (560%) increase in half-life value at 45 °C, 8.7 °C rise in melting temperature (Tm) and a 14.3 °C rise in the temperature at which 50% of the initial activity remained after 15 min incubation (T1550), compared to wild-type enzyme. Protein 3D structure analysis showed that the induced new hydrogen bonds in the same polypeptide chain or between polypeptide chains in E. coli GadB homo-hexamer may be responsible for the improved thermostability. Increased thermostability contributed to increased GABA conversion ability. After 12 h conversion of 3 mol/L l-glutamate, GABA produced and mole conversion rate catalyzed by M6 whole cells was 297 g/L and 95%, respectively, while those by wild-type GAD was 273.5 g/L and 86.2%, respectively.
Collapse
Affiliation(s)
- Li-Qiang Fan
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China.
| | - Ming-Wei Li
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China
| | - Yong-Jun Qiu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology(SCICBT), Shanghai, 200237, China
| | - Qi-Ming Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology(SCICBT), Shanghai, 200237, China
| | - Si-Jing Jiang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Jie Shang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Ming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, School of Biotechnology of East China University of Science and Technology, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology(SCICBT), Shanghai, 200237, China.
| |
Collapse
|
38
|
Kou F, Zhao J, Liu J, Sun C, Guo Y, Tan Z, Cheng F, Li Z, Zheng P, Sun J. Enhancement of the thermal and alkaline pH stability of Escherichia coli lysine decarboxylase for efficient cadaverine production. Biotechnol Lett 2018; 40:719-727. [PMID: 29349625 DOI: 10.1007/s10529-018-2514-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To enhance the thermal and alkaline pH stability of the lysine decarboxylase from Escherichia coli (CadA) by engineering the decameric interface and explore its potential for industrial applications. RESULTS The mutant T88S was designed for improved structural stability by computational analysis. The optimal pH and temperature of T88S were 7.0 and 55 °C (5.5 and 50 °C for wild-type). T88S showed higher thermostability with a 2.9-fold increase in the half-life at 70 °C (from 11 to 32 min) and increased melting temperature (from 76 to 78 °C). Additionally, the specific activity and pH stability (residual activity after 10 h incubation) of T88S at pH 8.0 were increased to 164 U/mg and 78% (58 U/mg and 57% for wild-type). The productivity of cadaverine with T88S (284 g L-lysine L-1 and 5 g DCW L-1) was 40 g L-1 h-1, in contrast to 28 g L-1 h-1 with wild-type. CONCLUSION The mutant T88S showed high thermostability, pH stability, and activity at alkaline pH, indicating that this mutant is a promising biocatalyst for industrial production of cadaverine.
Collapse
Affiliation(s)
- Fengyu Kou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Cunmin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zijian Tan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
39
|
Stabilization of Multimeric Proteins via Intersubunit Cyclization. Appl Environ Microbiol 2017; 83:AEM.01239-17. [PMID: 28710270 DOI: 10.1128/aem.01239-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023] Open
Abstract
Proteins with high catalytic efficiency and selectivity under mild conditions have long been appreciated by industrial and medicinal fields. These proteins, which are commonly multimeric, often possess low stability, impeding wider application. Currently, strategies to improve the stability of multimeric proteins concentrate on enhancing the interaction at internal interface of the subunits. In this report, we confirmed that the largely underestimated subunit terminal ends are as significant as the internal interface for protein stability. By connecting both the terminal ends and internal interface of subunits, the tetrameric Leifsonia alcohol dehydrogenase (LnADH) protein can been cyclized into a rigid form with significantly improved thermostability and resilience. The improvement in the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment (T5015) and melting temperature (Tm ) of the modified protein was 18°C and 23.3°C, respectively, which is superior to the results achieved by normal protein engineering. Our study provided a novel strategy to effectively improve the stability of multimeric proteins, which is suitable not only for the short-chain dehydrogenase/reductase (SDR) family but also other classes of proteins with close terminal ends.IMPORTANCE Industrially interesting proteins are generally multimeric proteins; however, their applications are often restricted due to low stability caused by the natural tendency of subunit disassociation. Current approaches targeting this problem mainly focus on enhancing the internal interfaces of the subunits to avoid their disassociation. In this study, we identified and confirmed the external interface to be significant for improving the stability of multimeric proteins. By connecting the terminal ends and internal interface with disulfide bonds, we found that the multimeric protein LnADH cyclized into a robust monomeric-like form, resulting in superior thermostability compared to traditional protein engineering. This intersubunit cyclization approach is efficient and easy to perform, providing a novel method for engineering many important classes of multimeric proteins.
Collapse
|
40
|
Zhang W, Li H, Jiang B, Zhang T, Mu W. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3420-3426. [PMID: 28009059 DOI: 10.1002/jsfa.8193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND d-Allulose is a novel and low-calorie rare monosaccharide that is a C-3 epimer of d-fructose. Because of its excellent physiological properties and commercial potential, d-allulose has attracted researchers' interests. Based on the Izumoring strategy, d-allulose is converted from d-fructose by d-psicose 3-epimerase (DPEase), while d-fructose is converted from d-glucose by d-glucose isomerase (GIase). In this study, we created a cellular system capable of converting d-glucose to d-allulose in a one-step process that co-expressed the GIase from Acidothermus cellulolyticus and the DPEase from Dorea sp. CAG. RESULTS The co-expression plasmid pETDuet-Dosp-DPE/Acce-GI was generated and transformed into Escherichia coli BL21(DE3) cells. The recombinant co-expression cells exhibited maximum catalytic activity at pH 6.5 and 75 °C. These cells were thermostable at less than 60 °C. The addition of Co2+ significantly increased the catalytic activity by 10.8-fold. When the reaction equilibrium was reached, the ratio of d-glucose, d-fructose and d-allulose was approximately 6.5:7:3, respectively. CONCLUSION A recombinant co-expression strain that catalysed the bioconversion of d-allulose from d-glucose in a one-step process was created and characterised. When adding 500 g L-1 d-glucose as a substrate, 204.3 g L-1 d-fructose and 89.1 g L-1 d-allulose were produced. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
41
|
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM. Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme Microb Technol 2017; 105:51-58. [PMID: 28756861 DOI: 10.1016/j.enzmictec.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 11/25/2022]
Abstract
Sucrose synthases (SuSys) can be used to synthesize cost-effective uridine 5'-diphosphate glucose (UDP-glc) or can be coupled to glycosyltransferases (GTs) for the continuous recycling of UDP-glc. In this study, we present the first report of the immobilization-stabilization of a SuSy by multipoint covalent attachment. This stabilization strategy is very complex for multimeric enzymes because a very intense multipoint attachment can promote a dramatic loss of activity and/or stability. The homotetrameric SuSy from Nitrosomonas europaea (SuSyNe) was immobilized on a glyoxyl agarose support through two different orientations. The first occurred at pH 8.5 through the surface area containing the greatest number of amino termini from several enzyme subunits. The second orientation occurred at pH 10 through the region of the whole enzyme containing the highest number of Lys residues. The multipoint covalent immobilization of SuSy on glyoxyl agarose at pH 10 provided a very significant stabilization factor under reaction conditions (almost 1000-fold more stable than soluble enzyme). Unfortunately, this important enzyme rigidification led to a dramatic loss of catalytic activity. A less stabilized conjugate, which was 65-fold more stable than the soluble form, preserved 64% of its initial catalytic activity. This derivative could be used for 3 reaction cycles and yielded approximately 210mM of UDP-glc per cycle. This optimal biocatalyst was modified with a polycationic polymer, polyethyleneimine (PEI), increasing its stability in the presence of the organic co-solvents necessary to glycosylate apolar antioxidants by GTs coupled to SuSy.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Lara Trobo-Maseda
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| | - Jose M Guisan
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| |
Collapse
|
42
|
TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C 5 and C 6 Epimerization Reactions. Appl Environ Microbiol 2017; 83:AEM.03291-16. [PMID: 28258150 DOI: 10.1128/aem.03291-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/26/2017] [Indexed: 01/11/2023] Open
Abstract
There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity.IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries.
Collapse
|
43
|
Enzymatic approaches to rare sugar production. Biotechnol Adv 2017; 35:267-274. [DOI: 10.1016/j.biotechadv.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
|
44
|
Zhang XF, Yang GY, Zhang Y, Xie Y, Withers SG, Feng Y. A general and efficient strategy for generating the stable enzymes. Sci Rep 2016; 6:33797. [PMID: 27667190 PMCID: PMC5036031 DOI: 10.1038/srep33797] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022] Open
Abstract
The local flexibility of an enzyme's active center plays pivotal roles in catalysis, however, little is known about how the flexibility of these flexible residues affects stability. In this study, we proposed an active center stabilization (ACS) strategy to improve the kinetic thermostability of Candida rugosa lipase1. Based on the B-factor ranking at the region ~10 Å within the catalytic Ser209, 18 residues were selected for site-saturation mutagenesis. Based on three-tier high-throughput screening and ordered recombination mutagenesis, the mutant VarB3 (F344I/F434Y/F133Y/F121Y) was shown to be the most stable, with a 40-fold longer in half-life at 60 °C and a 12.7 °C higher Tm value than that of the wild type, without a decrease in catalytic activity. Further analysis of enzymes with different structural complexities revealed that focusing mutations on the flexible residues within around 10 Å of the catalytic residue might increase the success rate for enzyme stabilization. In summary, this study identifies a panel of flexible residues within the active center that affect enzyme stability. This finding not only provides clues regarding the molecular evolution of enzyme stability but also indicates that ACS is a general and efficient strategy for exploring the functional robustness of enzymes for industrial applications.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Femmer C, Bechtold M, Roberts TM, Panke S. Exploiting racemases. Appl Microbiol Biotechnol 2016; 100:7423-36. [DOI: 10.1007/s00253-016-7729-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023]
|
46
|
Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant. Appl Microbiol Biotechnol 2016; 100:9955-9966. [DOI: 10.1007/s00253-016-7630-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
|
47
|
Feng X, Tang H, Han B, Lv B, Li C. Enhancing the Thermostability of β-Glucuronidase by Rationally Redesigning the Catalytic Domain Based on Sequence Alignment Strategy. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xudong Feng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Heng Tang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Beijia Han
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Bo Lv
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Chun Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
48
|
Zhang Y, Ren H, Wang Y, Chen K, Fang B, Wang S. Bioinspired Immobilization of Glycerol Dehydrogenase by Metal Ion-Chelated Polyethyleneimines as Artificial Polypeptides. Sci Rep 2016; 6:24163. [PMID: 27053034 PMCID: PMC4823755 DOI: 10.1038/srep24163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
In this study, a novel, simple and generally applicable strategy for multimeric oxidoreductase immobilization with multi-levels interactions was developed and involved activity and stability enhancements. Linear polyethyleneimines (PEIs) are flexible cationic polymers with molecular weights that span a wide range and are suitable biomimic polypeptides for biocompatible frameworks for enzyme immobilization. Metal ion-chelated linear PEIs were applied as a heterofunctional framework for glycerol dehydrogenase (GDH) immobilization by hydrogen bonds, electrostatic forces and coordination bonds interactions. Nanoparticles with diameters from 250-650 nm were prepared that exhibited a 1.4-fold enhancement catalytic efficiency. Importantly, the half-life of the immobilized GDH was enhanced by 5.6-folds in aqueous phase at 85 °C. A mechanistic illustration of the formation of multi-level interactions in the PEI-metal-GDH complex was proposed based on morphological and functional studies of the immobilized enzyme. This generally applicable strategy offers a potential technique for multimeric enzyme immobilization with the advantages of low cost, easy operation, high activity reservation and high stability.
Collapse
Affiliation(s)
- Yonghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong Ren
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kainan Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
49
|
Characterization of a new acidic NAD + -dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Model-based cost optimization of a reaction–separation integrated process for the enzymatic production of the rare sugar d-psicose at elevated temperatures. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.05.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|