1
|
Hollands S, Tasch J, Simon DJ, Wassouf D, Barber I, Gessner A, Bechthold A, Zechel DL. Analysis of the cryptic biosynthetic gene cluster encoding the RiPP curacozole reveals a phenylalanine-specific peptide hydroxylase. Chem Sci 2024; 15:19858-19869. [PMID: 39568915 PMCID: PMC11575548 DOI: 10.1039/d4sc02262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Curacozole is representative of a cyanobactin-like sub-family of ribosomally synthesized and post-translationally modified peptides (RiPPs). The molecule is distinguished by its small macrocyclic structure, a poly-azole sequence that includes a phenyloxazole moiety, and a d-allo-Ile residue. The enzymatic steps required for its formation are not well understood. The predicted biosynthetic gene cluster (BGC) for curacozole in Streptomyces curacoi is cryptic, but is shown to be potently activated upon constitutive expression of the bldA-specified Leu-tRNA(UUA) molecule. Heterologous expression and gene deletion studies have defined the minimum BGC as consisting of seven genes, czlA, D, E, B1, C1, F, and BC. The biosynthetic pathway is highly substrate tolerant, accepting six variants of the precursor peptide CzlA to form new curacozole derivatives. This includes replacing the phenyloxazole moiety of curacozole with indole and p-hydroxyphenyloxazole groups by conversion of the corresponding CzlA Phe18Trp and Phe18Tyr variants. In vitro experiments with purified enzymes demonstrate that CzlD and CzlBC perform cyclodehydration and dehydrogenation reactions, respectively, to form a single oxazole from Ser 22 of CzlA. The curacozole BGC is flanked by czlI, a non-essential but conserved gene of unknown function. In vitro studies demonstrate CzlI to be a non-heme iron(ii) and 2-oxoglutarate-dependent dioxygenase, catalyzing the hydroxylation of Phe18 on CzlA to form the CzlA Phe18Tyr variant, which is then processed to form the p-hydroxyphenyloxazole derivative of curacozole. Overall, this work highlights the amenability of RiPP biosynthesis for engineering the production of new compounds and adds to the repertoire of known RiPP enzymes.
Collapse
Affiliation(s)
- Samantha Hollands
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Julia Tasch
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - David J Simon
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Dimah Wassouf
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - Isobel Barber
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| | - Arne Gessner
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University Freiburg Germany
| | - David L Zechel
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada +1-613-533-3259
| |
Collapse
|
2
|
Wang M, Wu M, Han M, Niu X, Fan A, Zhu S, Tong Y. Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases. ACS OMEGA 2024; 9:30891-30903. [PMID: 39035879 PMCID: PMC11256085 DOI: 10.1021/acsomega.4c03760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Collapse
Affiliation(s)
- Mengjiao Wang
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Mengyue Wu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Meng Han
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaogang Niu
- Beijing
Nuclear Magnetic Resonance Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aili Fan
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Shaozhou Zhu
- National
Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Yigang Tong
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
3
|
Calvopina-Chavez DG, Bursey DM, Tseng YJ, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN. Appl Environ Microbiol 2024; 90:e0024424. [PMID: 38780510 PMCID: PMC11218655 DOI: 10.1128/aem.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.
Collapse
Affiliation(s)
| | - Devan M. Bursey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Leena M. Patil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kathryn D. Bewley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Philip R. Bennallack
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Josh M. McPhie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Anisha Daley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Susan M. Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Calvopina-Chavez DG, Bursey DM, Tseng YJ, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563616. [PMID: 37961320 PMCID: PMC10634744 DOI: 10.1101/2023.10.23.563616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.
Collapse
Affiliation(s)
| | - Devan M Bursey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Leena M Patil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kathryn D Bewley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
- Currently at: Genentech Inc, San Francisco, CA 94080
| | - Philip R Bennallack
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
- Currently at: Werfen North America, Bedford, MA 01730
| | - Josh M McPhie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kimberly B Wagstaff
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Anisha Daley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Susan M Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joel S Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
5
|
Gordon CH, Hendrix E, He Y, Walker MC. AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes. Biomolecules 2023; 13:1243. [PMID: 37627309 PMCID: PMC10452190 DOI: 10.3390/biom13081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like compounds and can install non-proteogenic amino acids in peptides and proteins. However, engineering these enzymes has been somewhat limited, due in part to limited structural information on enzymes in the same families that nonetheless exhibit different substrate selectivities. Despite AlphaFold2's superior performance in single-chain protein structure prediction, its multimer version lacks accuracy and requires high-end GPUs, which are not typically available to most research groups. Additionally, the default parameters of AlphaFold2 may not be optimal for predicting complex structures like RiPP biosynthetic enzymes, due to their dynamic binding and substrate-modifying mechanisms. This study assessed the efficacy of the structure prediction program ColabFold (a variant of AlphaFold2) in modeling RiPP biosynthetic enzymes in both monomeric and dimeric forms. After extensive benchmarking, it was found that there were no statistically significant differences in the accuracy of the predicted structures, regardless of the various possible prediction parameters that were examined, and that with the default parameters, ColabFold was able to produce accurate models. We then generated additional structural predictions for select RiPP biosynthetic enzymes from multiple protein families and biosynthetic pathways. Our findings can serve as a reference for future enzyme engineering complemented by AlphaFold-related tools.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Mérgola-Greef J, Milne BF. First-principles study of electronic and optical properties in 1-dimensional oligomeric derivatives of telomestatin. Phys Chem Chem Phys 2023; 25:12744-12753. [PMID: 37114806 DOI: 10.1039/d3cp01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Real-space self-interaction corrected (time-dependent) density functional theory has been used to investigate the ground-state electronic structure and optical absorption profiles of a series of linear oligomers inspired by the natural product telomestatin. Length-dependent development of plasmonic excitations in the UV region is seen in the neutral species which is augmented by polaron-type absorption with tunable wavelengths in the IR when the chains are doped with an additional electron/hole. Combined with a lack of absorption in the visible region this suggests these oligomers as good candidates for applications such as transparent antennae in dye-sensitised solar energy collection materials. Due to strong longitudinal polarisation in their absorption spectra, these compounds are also indicated for use in nano-structured devices displaying orientation-sensitive optical responses.
Collapse
Affiliation(s)
- Joëlle Mérgola-Greef
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
| | - Bruce F Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
7
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
8
|
Goto Y, Suga H. Ribosomal Synthesis of Peptides Bearing Noncanonical Backbone Structures via Chemical Posttranslational Modifications. Methods Mol Biol 2023; 2670:255-266. [PMID: 37184709 DOI: 10.1007/978-1-0716-3214-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Noncanonical peptide backbone structures, such as heterocycles and non-α-amino acids, are characteristic building blocks present in peptidic natural products. To achieve ribosomal synthesis of designer peptides bearing such noncanonical backbone structures, we have devised translation-compatible precursor residues and their chemical posttranslational modification processes. In this chapter, we describe the detailed procedures for the in vitro translation of peptides containing the precursor residues by means of genetic code reprogramming technology and posttranslational generation of objective noncanonical backbone structures.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nat Chem Biol 2023; 19:111-119. [PMID: 36280794 DOI: 10.1038/s41589-022-01141-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
YcaO enzymes catalyze ATP-dependent post-translation modifications on peptides, including the installation of (ox/thi)azoline, thioamide and/or amidine moieties. Here we demonstrate that, in the biosynthesis of the bis-methyloxazolic alkaloid muscoride A, the YcaO enzyme MusD carries out both ATP-dependent cyclodehydration and peptide bond cleavage, which is a mechanism unprecedented for such a reaction. YcaO-catalyzed modifications are proposed to occur through a backbone O-phosphorylated intermediate, but this mechanism remains speculative. We report, to our knowedge, the first characterization of an acyl-phosphate species consistent with the proposed mechanism for backbone amide activation. The 3.1-Å-resolution cryogenic electron microscopy structure of MusD along with biochemical analysis allow identification of residues that enable peptide cleavage reaction. Bioinformatics analysis identifies other cyanobactin pathways that may deploy bifunctional YcaO enzymes. Our structural, mutational and mechanistic studies expand the scope of modifications catalyzed by YcaO proteins to include peptide hydrolysis and provide evidence for a unifying mechanism for the catalytically diverse outcomes.
Collapse
|
10
|
Nguyen NA, Cong Y, Hurrell RC, Arias N, Garg N, Puri AW, Schmidt EW, Agarwal V. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chem Biol 2022; 17:1577-1585. [PMID: 35666841 PMCID: PMC9746716 DOI: 10.1021/acschembio.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product-encoding biosynthetic gene clusters (BGCs) within microbial genomes far outnumber the known natural products; chemical products from such BGCs remain cryptic. These silent BGCs hold promise not only for the elaboration of new natural products but also for the discovery of useful biosynthetic enzymes. Here, we describe a genome mining strategy targeted toward the discovery of substrate promiscuous natural product biosynthetic enzymes. In the genome of the methanotrophic bacterium Methylovulum psychrotolerans Sph1T, we discover a transcriptionally silent natural product BGC that encoded numerous ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. These cryptic RiPP natural products were accessed using heterologous expression of the substrate peptide and biosynthetic enzyme-encoded genes. In line with our genome mining strategy, the RiPP biosynthetic enzymes in this BGC were found to be substrate promiscuous, which allowed us to use them in a combinatorial fashion with a similarly substrate-tolerant cyanobactin biosynthetic enzyme to introduce head-to-tail macrocyclization in the proteusin family of RiPP natural products.
Collapse
Affiliation(s)
- Nguyet A. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Rachel C. Hurrell
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Natalie Arias
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332
| | - Aaron W. Puri
- Department of Chemistry and the Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City UT, USA 84112
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City UT, USA 84112
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA, USA 30332,School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA 30332,correspondence:
| |
Collapse
|
11
|
Gu W, Zheng Y, Pogorelov T, Nair SK, Schmidt EW. Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD. ACS Chem Biol 2022; 17:1215-1225. [PMID: 35420020 DOI: 10.1021/acschembio.2c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the YcaO superfamily are among the most common post-translational modification enzymes in natural product biosynthesis, with wide usage in biotechnology and synthetic biology applications. Here, we use domain-swapped chimeras and discovered unstructured regions in cyanobactin YcaOs that guide interactions with the substrates, governing access to interior amino acids in the substrates and explaining the chemoselectivity between PatD and TruD. These results define how the cyanobactin heterocyclases modify exceptionally sequence diverse substrates, yet with a high degree of positional and nucleophile selectivity.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | | | | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Sikandar A, Lopatniuk M, Luzhetskyy A, Müller R, Koehnke J. Total In Vitro Biosynthesis of the Thioamitide Thioholgamide and Investigation of the Pathway. J Am Chem Soc 2022; 144:5136-5144. [PMID: 35263083 DOI: 10.1021/jacs.2c00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thioholgamides are ribosomally synthesized and posttranslationally modified peptides (RiPPs), with potent activity against cancerous cell lines and an unprecedented structure. Despite being one of the most structurally and chemically complex RiPPs, very few biosynthetic steps have been elucidated. Here, we report the complete in vitro reconstitution of the biosynthetic pathway. We demonstrate that thioamidation is the first step and acts as a gatekeeper for downstream processing. Thr dehydration follows thioamidation, and our studies reveal that both these modifications require the formation of protein complexes─ThoH/I and ThoC/D. Harnessing the power of AlphaFold, we deduce that ThoD acts as a lyase and also proposes putative catalytic residues. ThoF catalyzes the oxidative decarboxylation of the terminal Cys, and the subsequent macrocyclization is facilitated by ThoE. This is followed by Ser dehydration, which is also carried out by ThoC/D. ThoG is responsible for histidine bis-N-methylation, which is a prerequisite for His β-hydroxylation─a modification carried out by ThoJ. The last step of the pathway is the removal of the leader peptide by ThoK to afford mature thioholgamide.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University (UdS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Maria Lopatniuk
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University (UdS), Campus E8.1, 66123 Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, HIPS, HZI, UdS, 66123 Saarbrücken, Germany.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
13
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Li G, Patel K, Zhang Y, Pugmire J, Ding Y, Bruner SD. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins 2022; 90:670-679. [PMID: 34664307 PMCID: PMC8816810 DOI: 10.1002/prot.26264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022]
Abstract
Microviridins, tricyclic peptide natural products originally isolated from cyanobacteria, function as inhibitors of diverse serine-type proteases. Here we report the structure and biochemical characterization of AMdnB, a unique iterative macrocyclase involved in a microviridin biosynthetic pathway from Anabaena sp. PCC 7120. The ATP-dependent cyclase, along with the homologous AMdnC, introduce up to nine macrocyclizations on three distinct core regions of a precursor peptide, AMdnA. The results presented here provide structural and mechanistic insight into the iterative chemistry of AMdnB. In vitro AMdnB-catalyzed cyclization reactions demonstrate the synthesis of the two predicted tricyclic products from a multi-core precursor peptide substrate, consistent with a distributive mode of catalysis. The X-ray structure of AMdnB shows a structural motif common to ATP-grasp cyclases involved in RiPPs biosynthesis. Additionally, comparison with the noniterative MdnB allows insight into the structural basis for the iterative chemistry. Overall, the presented results provide insight into the general mechanism of iterative enzymes in ribosomally synthesized and post-translationally modified peptide biosynthetic pathways.
Collapse
Affiliation(s)
- Gengnan Li
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Krishna Patel
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Yi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jackson Pugmire
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA., Corresponding author
| |
Collapse
|
15
|
Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Mar Drugs 2022; 20:md20020119. [PMID: 35200648 PMCID: PMC8875616 DOI: 10.3390/md20020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Patellamides are highly bioactive compounds found along with other cyanobactins in the symbiosis between didemnid ascidians and the enigmatic cyanobacterium Prochloron. The biosynthetic pathway of patellamide synthesis is well understood, the relevant operons have been identified in the Prochloron genome and genes involved in patellamide synthesis are among the most highly transcribed cyanobacterial genes in hospite. However, a more detailed study of the in vivo dynamics of patellamides and their function in the ascidian-Prochloron symbiosis is complicated by the fact that Prochloron remains uncultivated despite numerous attempts since its discovery in 1975. A major challenge is to account for the highly dynamic microenvironmental conditions experienced by Prochloron in hospite, where light-dark cycles drive rapid shifts between hyperoxia and anoxia as well as pH variations from pH ~6 to ~10. Recently, work on patellamide analogues has pointed out a range of different catalytic functions of patellamide that could prove essential for the ascidian-Prochloron symbiosis and could be modulated by the strong microenvironmental dynamics. Here, we review fundamental properties of patellamides and their occurrence and dynamics in vitro and in vivo. We discuss possible functions of patellamides in the ascidian-Prochloron symbiosis and identify important knowledge gaps and needs for further experimental studies.
Collapse
|
16
|
Russell AH, Vior NM, Hems ES, Lacret R, Truman AW. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem Sci 2021; 12:11769-11778. [PMID: 34659714 PMCID: PMC8442711 DOI: 10.1039/d1sc01456k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural product with a wide range of bioactivities. Genome mining for RiPP biosynthetic gene clusters (BGCs) is often hampered by poor annotation of the short precursor peptides that are ultimately modified into the final molecule. Here, we utilise a previously described genome mining tool, RiPPER, to identify novel RiPP precursor peptides near YcaO-domain proteins, enzymes that catalyse various RiPP post-translational modifications including heterocyclisation and thioamidation. Using this dataset, we identified a novel and diverse family of RiPP BGCs spanning over 230 species of Actinobacteria and Firmicutes. A representative BGC from Streptomyces albidoflavus J1074 (formerly known as Streptomyces albus) was characterised, leading to the discovery of streptamidine, a novel amidine-containing RiPP. This new BGC family highlights the breadth of unexplored natural products with structurally rare features, even in model organisms.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| |
Collapse
|
17
|
Tsutsumi H, Kuroda T, Kimura H, Goto Y, Suga H. Posttranslational chemical installation of azoles into translated peptides. Nat Commun 2021; 12:696. [PMID: 33514734 PMCID: PMC7846737 DOI: 10.1038/s41467-021-20992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Azoles are five-membered heterocycles often found in the backbones of peptidic natural products and synthetic peptidomimetics. Here, we report a method of ribosomal synthesis of azole-containing peptides involving specific ribosomal incorporation of a bromovinylglycine derivative into the nascent peptide chain and its chemoselective conversion to a unique azole structure. The chemoselective conversion was achieved by posttranslational dehydrobromination of the bromovinyl group and isomerization in aqueous media under fairly mild conditions. This method enables us to install exotic azole groups, oxazole and thiazole, at designated positions in the peptide chain with both linear and macrocyclic scaffolds and thereby expand the repertoire of building blocks in the mRNA-templated synthesis of designer peptides. Azoles are five-membered heterocycles found in peptidic natural products and synthetic peptiodomimetics. Here the authors demonstrate a posttranslational chemical modification method for in vitro ribosomal synthesis of peptides with exotic azole groups at specific positions.
Collapse
Affiliation(s)
- Haruka Tsutsumi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomohiro Kuroda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
18
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
19
|
Vinogradov AA, Shimomura M, Kano N, Goto Y, Onaka H, Suga H. Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A. J Am Chem Soc 2020; 142:13886-13897. [PMID: 32664727 DOI: 10.1021/jacs.0c05541] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) often have relaxed specificity profiles and are able to modify diverse substrates. When several such enzymes act together during precursor peptide maturation, a multitude of products can form, yet usually the biosynthesis converges on a single natural product. For the most part, the mechanisms controlling the integrity of RiPP assembly remain elusive. Here, we investigate the biosynthesis of lactazole A, a model thiopeptide produced by five promiscuous enzymes from a ribosomal precursor peptide. Using our in vitro thiopeptide production (FIT-Laz) system, we determine the order of biosynthetic events at the individual modification level and supplement this study with substrate scope analysis for participating enzymes. Our results reveal an unusual but well-defined assembly process where cyclodehydration, dehydroalanine formation, and azoline dehydrogenation events are intertwined due to minimal substrate recognition requirements characteristic of every lactazole enzyme. Additionally, each enzyme plays a role in directing LazBF-mediated dehydroalanine formation, which emerges as the central theme of the assembly process. Cyclodehydratase LazDE discriminates a single serine residue for azoline formation, leaving the remaining five as potential dehydratase substrates. Pyridine synthase LazC exerts kinetic control over LazBF to prevent the formation of overdehydrated thiopeptides, whereas the coupling of dehydrogenation to dehydroalanine installation impedes generation of underdehydrated products. Altogether, our results indicate that substrate-level cooperation between the biosynthetic enzymes maintains the integrity of lactazole assembly. This work advances our understanding of RiPP biosynthesis processes and facilitates thiopeptide bioengineering.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Du Y, Qiu Y, Meng X, Feng J, Tao J, Liu W. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides. J Am Chem Soc 2020; 142:8454-8463. [DOI: 10.1021/jacs.0c02329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junyin Feng
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
21
|
Song H, Rao C, Deng Z, Yu Y, Naismith JH. The Biosynthesis of the Benzoxazole in Nataxazole Proceeds via an Unstable Ester and has Synthetic Utility. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haigang Song
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University 185 East Lake Road Wuhan 430071 P. R. China
- Division of Structural BiologyWellcome Centre for Human Genetics Roosevelt Drive Oxford OX3 7BN UK
- The Research Complex at Harwell Harwell Campus OX11 0FA UK
- The Rosalind Franklin Institute Harwell Campus OX11 0FA UK
| | - Cong Rao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University 185 East Lake Road Wuhan 430071 P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University 185 East Lake Road Wuhan 430071 P. R. China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University 185 East Lake Road Wuhan 430071 P. R. China
| | - James H. Naismith
- Division of Structural BiologyWellcome Centre for Human Genetics Roosevelt Drive Oxford OX3 7BN UK
- The Research Complex at Harwell Harwell Campus OX11 0FA UK
- The Rosalind Franklin Institute Harwell Campus OX11 0FA UK
| |
Collapse
|
22
|
Song H, Rao C, Deng Z, Yu Y, Naismith JH. The Biosynthesis of the Benzoxazole in Nataxazole Proceeds via an Unstable Ester and has Synthetic Utility. Angew Chem Int Ed Engl 2020; 59:6054-6061. [PMID: 31903677 PMCID: PMC7204872 DOI: 10.1002/anie.201915685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/25/2022]
Abstract
Heterocycles, a class of molecules that includes oxazoles, constitute one of the most common building blocks in current pharmaceuticals and are common in medicinally important natural products. The antitumor natural product nataxazole is a model for a large class of benzoxazole‐containing molecules that are made by a pathway that is not characterized. We report structural, biochemical, and chemical evidence that benzoxazole biosynthesis proceeds through an ester generated by an ATP‐dependent adenylating enzyme. The ester rearranges via a tetrahedral hemiorthoamide to yield an amide, which is a shunt product and not, as previously thought, an intermediate in the pathway. A second zinc‐dependent enzyme catalyzes the formation of hemiorthoamide from the ester but, by shuttling protons, the enzyme eliminates water, a reverse hydrolysis reaction, to yield the benzoxazole and avoids the amide. These insights have allowed us to harness the pathway to synthesize a series of novel halogenated benzoxazoles.
Collapse
Affiliation(s)
- Haigang Song
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University185 East Lake RoadWuhan430071P. R. China
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOX11 0FAUK
| | - Cong Rao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University185 East Lake RoadWuhan430071P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University185 East Lake RoadWuhan430071P. R. China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan University185 East Lake RoadWuhan430071P. R. China
| | - James H. Naismith
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOX11 0FAUK
| |
Collapse
|
23
|
Lee H, Choi M, Park JU, Roh H, Kim S. Genome Mining Reveals High Topological Diversity of ω-Ester-Containing Peptides and Divergent Evolution of ATP-Grasp Macrocyclases. J Am Chem Soc 2020; 142:3013-3023. [PMID: 31961152 DOI: 10.1021/jacs.9b12076] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ω-Ester-containing peptides (OEPs) are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) containing intramolecular ω-ester or ω-amide bonds. Although their distinct side-to-side connections may create considerable topological diversity of multicyclic peptides, it is largely unknown how diverse ring patterns have been developed in nature. Here, using genome mining of biosynthetic enzymes of OEPs, we identified genes encoding nine new groups of putative OEPs with novel core consensus sequences, disclosing a total of ∼1500 candidate OEPs in 12 groups. Connectivity analysis revealed that OEPs from three different groups contain novel tricyclic structures, one of which has a distinct biosynthetic pathway where a single ATP-grasp enzyme produces both ω-ester and ω-amide linkages. Analysis of the enzyme cross-reactivity showed that, while enzymes are promiscuous to nonconserved regions of the core peptide, they have high specificity to the cognate core consensus sequence, suggesting that the enzyme-core pair has coevolved to create a unique ring topology within the same group and has sufficiently diversified across different groups. Collectively, our results demonstrate that the diverse ring topologies, in addition to diverse sequences, have been developed in nature with multiple ω-ester or ω-amide linkages in the OEP family of RiPPs.
Collapse
Affiliation(s)
- Hyunbin Lee
- Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea
| | - Mingyu Choi
- Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea
| | - Jung-Un Park
- Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea
| | - Heejin Roh
- Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea
| | - Seokhee Kim
- Department of Chemistry , Seoul National University , 1 Gwanak-ro , Gwanak-gu, Seoul 08826 , South Korea
| |
Collapse
|
24
|
Kato Y, Kuroda T, Huang Y, Ohta R, Goto Y, Suga H. Chemoenzymatic Posttranslational Modification Reactions for the Synthesis of Ψ[CH 2NH]‐Containing Peptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yasuharu Kato
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| | - Tomohiro Kuroda
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| | - Yichao Huang
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| | - Risa Ohta
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| | - Yuki Goto
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
- JST-PRESTO The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| | - Hiroaki Suga
- Department of Chemistry Graduate School of Science The University of Tokyo Bunkyo Tokyo 113-0033 Japan
- JST-CREST The University of Tokyo Bunkyo Tokyo 113-0033 Japan
| |
Collapse
|
25
|
Kato Y, Kuroda T, Huang Y, Ohta R, Goto Y, Suga H. Chemoenzymatic Posttranslational Modification Reactions for the Synthesis of Ψ[CH 2 NH]-Containing Peptides. Angew Chem Int Ed Engl 2019; 59:684-688. [PMID: 31622000 DOI: 10.1002/anie.201910894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2019] [Indexed: 11/08/2022]
Abstract
The Ψ[CH2 NH] reduced amide bond is a peptide isostere widely used in the development of bioactive pseudopeptides. Reported here is a method of chemoenzymatic posttranslational modification for the synthesis of Ψ[CH2 NH]-containing peptides converted from ribosomally expressed peptides. The posttranslational conversion composed of an enzymatic cyclodehydration and facile two-step chemical reduction achieves deoxygenation of a specific amide bond present in a nonprotected peptide in water. This method generates the Ψ[CH2 NH] bond in peptides and is applicable to various peptide sequences, potentially enabling the preparation of a library of Ψ[CH2 NH]-containing peptides.
Collapse
Affiliation(s)
- Yasuharu Kato
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Tomohiro Kuroda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yichao Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Risa Ohta
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.,JST-PRESTO, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.,JST-CREST, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
26
|
Goto Y, Suga H. In Vitro Biosynthesis of Peptides Containing Exotic Azoline Analogues. Chembiochem 2019; 21:84-87. [PMID: 31523895 DOI: 10.1002/cbic.201900521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 01/09/2023]
Abstract
In nature, azolines produced by YcaO cyclodehydratases during the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) are generally limited to thiazoline, oxazoline, and methyloxazoline, which are derived from the proteinogenic Cys, Ser, and Thr residues, respectively. To investigate whether YcaO cyclodehydratases precisely recognize the common structural characteristics and chirality of the modifiable residues, the "reprogrammed FIT-PatD system" has been established by combining a YcaO cyclodehydratase (PatD) with genetic code reprogramming powered by the flexible in vitro translation (FIT) system, in which precursor peptides bearing non-proteinogenic Cys/Ser/Thr analogues could be expressed through a reprogrammed genetic code and subsequently cyclodehydrated by PatD. The study has revealed remarkable stereo-, chemo-, and regioversatility for modifiable residues in PatD-catalyzed cyclodehydration, expanding the repertoire of backbone heterocycles in RiPPs to exotic azoline analogues.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.,PRESTO (Japan) Science and Technology Agency, Bunkyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Proc Natl Acad Sci U S A 2019; 116:24049-24055. [PMID: 31719203 DOI: 10.1073/pnas.1908364116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes that generate ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products have garnered significant interest, given their ability to produce large libraries of chemically diverse scaffolds. Such RiPP biosynthetic enzymes are predicted to bind their corresponding peptide substrates through sequence-specific recognition of the leader sequence, which is removed after the installation of posttranslational modifications on the core sequence. The conservation of the leader sequence within a given RiPP class, in otherwise disparate precursor peptides, further supports the notion that strict sequence specificity is necessary for leader peptide engagement. Here, we demonstrate that leader binding by a biosynthetic enzyme in the lasso peptide class of RiPPs is directed by a minimal number of hydrophobic interactions. Biochemical and structural data illustrate how a single leader-binding domain can engage sequence-divergent leader peptides using a conserved motif that facilitates hydrophobic packing. The presence of this simple motif in noncognate peptides results in low micromolar affinity binding by binding domains from several different lasso biosynthetic systems. We also demonstrate that these observations likely extend to other RiPP biosynthetic classes. The portability of the binding motif opens avenues for the engineering of semisynthetic hybrid RiPP products.
Collapse
|
28
|
Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme. Biochemistry 2019; 58:2125-2132. [PMID: 30912640 PMCID: PMC6497369 DOI: 10.1021/acs.biochem.9b00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyanobactin
heterocyclases share the same catalytic domain (YcaO)
as heterocyclases/cyclodehydratases from other ribosomal peptide (RiPPs)
biosynthetic pathways. These enzymes process multiple residues (Cys/Thr/Ser)
within the same substrate. The processing of cysteine residues proceeds
with a known order. We show the order of reaction for threonines is
different and depends in part on a leader peptide within the substrate.
In contrast to other YcaO domains, which have been reported to exclusively
break down ATP into ADP and inorganic phosphate, cyanobactin heterocyclases
have been observed to produce AMP and inorganic pyrophosphate during
catalysis. We dissect the nucleotide profiles associated with heterocyclization
and propose a unifying mechanism, where the γ-phosphate of ATP
is transferred in a kinase mechanism to the substrate to yield a phosphorylated
intermediate common to all YcaO domains. In cyanobactin heterocyclases,
this phosphorylated intermediate, in a proportion of turnovers, reacts
with ADP to yield AMP and pyrophosphate.
Collapse
Affiliation(s)
- Ying Ge
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Clarissa Melo Czekster
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ona K Miller
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Catherine H Botting
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - James H Naismith
- Research Complex at Harwell , Didcot, Oxon OX11 0FA , United Kingdom.,Division of Structural Biology , University of Oxford , Oxford OX3 7BN , United Kingdom.,Rosalind Franklin Institute , Harwell, Didcot, Oxon OX11 0FA , United Kingdom
| |
Collapse
|
29
|
Ghilarov D, Stevenson CEM, Travin DY, Piskunova J, Serebryakova M, Maxwell A, Lawson DM, Severinov K. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison. Mol Cell 2019; 73:749-762.e5. [PMID: 30661981 PMCID: PMC6395948 DOI: 10.1016/j.molcel.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products. Azole synthetase McbBCD is co-crystallized with its product, microcin B17 Crystal structure of McbBCD reveals an octameric assembly of B4C2D2 Two McbB subunits within each asymmetric unit interact to recognize a peptide Formation of each azole ring requires shuttling of peptide between two active centers
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | | | - Dmitrii Y Travin
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Julia Piskunova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK.
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Sikandar A, Koehnke J. The role of protein–protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2019; 36:1576-1588. [DOI: 10.1039/c8np00064f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the role of protein–protein complexes in the biosynthesis of selected ribosomally synthesized and post-translationally modified peptide (RiPP) classes.
Collapse
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes
- Helmholtz Institute for Pharmaceutical Research Saarland
- Helmholtz Centre for Infection Research
- Saarland University
- 66123 Saarbrücken
| |
Collapse
|
31
|
Abstract
Cyclic peptides are an emerging class of therapeutics that can modulate targets not amenable to traditional small molecule intervention (e.g., protein-protein interactions). However, N-to-C macrocyclization of peptides is a challenging and often a low yielding chemical transformation. Several macrocyclases from cyanobactin biosynthetic clusters have been used to catalyze this reaction.This chapter provides practical guidance to the processes of heterologous expression and purification of these enzymes as well as performing in vitro biochemical reactions. Finally, approaches to recover the final product from an enzymatic reaction mixture are also discussed.
Collapse
Affiliation(s)
- Wael E Houssen
- Marine Biodiscovery Centre, Chemistry Department, University of Aberdeen, Aberdeen, UK.,Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Gu W, Sardar D, Pierce E, Schmidt EW. Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis. J Am Chem Soc 2018; 140:16213-16221. [PMID: 30387998 DOI: 10.1021/jacs.8b09328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are ubiquitous natural products. Bioactive RiPPs are produced from a precursor peptide, which is modified by enzymes. Usually, a single product is encoded in a precursor peptide. However, in cyanobactins and several other RiPP pathways, a single precursor peptide encodes multiple bioactive products flanking with recognition sequences known as "cassettes". The role of multiple cassettes in one peptide is mysterious, but in general their presence is a marker of biosynthetic plasticity. Here, we show that in cyanobactin biosynthesis the presence of multiple cassettes confers distributive enzyme processing to multiple steps of the pathway, a feature we propose to be a hallmark of multicassette RiPPs. TruD heterocyclase is stochastic and distributive. Although a canonical biosynthetic route is favored with certain substrates, every conceivable biosynthetic route is accepted. Together, these factors afford greater plasticity to the biosynthetic pathway by equalizing the processing of each cassette, enabling access to chemical diversity.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Debosmita Sardar
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Elizabeth Pierce
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
33
|
Gao S, Ge Y, Bent AF, Schwarz-Linek U, Naismith JH. Oxidation of the Cyanobactin Precursor Peptide Is Independent of the Leader Peptide and Operates in a Defined Order. Biochemistry 2018; 57:5996-6002. [PMID: 30208270 DOI: 10.1021/acs.biochem.8b00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The five-membered nitrogen plus heteroatom rings known as azolines or in their oxidized form as azoles are very common in natural products and drugs. The oxidation of thiazoline to thiazole in the cyanobactin class of natural products is one of the several important transformations that are known to alter the biological properties of the compound. The ordering of the various chemical reactions that occur during cyanobactin biosynthesis is not fully understood. The structure of the flavin-dependent enzyme responsible for the oxidation of multiple thiazolines reveals it contains an additional domain that in other enzymes recognizes linear peptides. We characterize the activity of the enzyme on two substrates: one with a peptide leader and one without. Kinetics and biophysics reveal that the leader on the substrate is not recognized by the enzyme. The enzyme is faster on either substrate than the macrocyclase or protease in vitro. The enzyme has a preferred order of oxidation of multiple thiazolines in the same linear peptide.
Collapse
Affiliation(s)
- Sisi Gao
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews , Fife KY16 9ST , U.K.,Research Complex at Harwell , Didcot , Oxon OX11 0FA , U.K
| | - Ying Ge
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews , Fife KY16 9ST , U.K
| | - Andrew F Bent
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews , Fife KY16 9ST , U.K
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews , Fife KY16 9ST , U.K
| | - James H Naismith
- Research Complex at Harwell , Didcot , Oxon OX11 0FA , U.K.,Division of Structural Biology , University of Oxford , Oxford OX3 7BN , U.K
| |
Collapse
|
34
|
Sugita T, Okada M, Nakashima Y, Tian T, Abe I. A Tryptophan Prenyltransferase with Broad Substrate Tolerance from Bacillus subtilis
subsp. natto. Chembiochem 2018; 19:1396-1399. [DOI: 10.1002/cbic.201800174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tomotoshi Sugita
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Okada
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Present address: Department of Material and Life Chemistry; Kanagawa University; Yokohama 221-8686 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tian Tian
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
35
|
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Methods Enzymol 2018; 604:113-163. [PMID: 29779651 DOI: 10.1016/bs.mie.2018.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
36
|
A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nat Commun 2018; 9:1780. [PMID: 29725007 PMCID: PMC5934393 DOI: 10.1038/s41467-018-04154-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an important family of natural products. Their biosynthesis follows a common scheme in which the leader peptide of a precursor peptide guides the modifications of a single core peptide. Here we describe biochemical studies of the processing of multiple core peptides within a precursor peptide, rare in RiPP biosynthesis. In a cyanobacterial microviridin pathway, an ATP-grasp ligase, AMdnC, installs up to two macrolactones on each of the three core peptides within AMdnA. The enzyme catalysis occurs in a distributive fashion and follows an unstrict N-to-C overall directionality, but a strict order in macrolactonizing each core peptide. Furthermore, AMdnC is catalytically versatile to process unnatural substrates carrying one to four core peptides, and kinetic studies provide insights into its catalytic properties. Collectively, our results reveal a distinct biosynthetic logic of RiPPs, opening up the possibility of modular production via synthetic biology approaches. Microviridins belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, the authors discover a microviridin-synthesizing enzyme in a cyanobacterium that modifies multiple core peptides from a single substrate in a distributive and unstrictly directional manner, an unusual biosynthetic logic for RiPPs.
Collapse
|
37
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
38
|
Travin DY, Metelev M, Serebryakova M, Komarova ES, Osterman IA, Ghilarov D, Severinov K. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme. J Am Chem Soc 2018; 140:5625-5633. [PMID: 29601195 DOI: 10.1021/jacs.8b02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Mikhail Metelev
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Marina Serebryakova
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Translational Biomedicine , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia.,Waksman Institute for Microbiology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
39
|
Ongpipattanakul C, Nair SK. Biosynthetic Proteases That Catalyze the Macrocyclization of Ribosomally Synthesized Linear Peptides. Biochemistry 2018; 57:3201-3209. [PMID: 29553721 DOI: 10.1021/acs.biochem.8b00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circular peptides have long been sought after as scaffolds for drug design as they demonstrate protein-like properties in the context of small, constrained peptides. Traditional routes toward the production of cyclic peptides rely on synthesis or semisynthetic methods, which restrict their use as platforms for the production of large, structurally diverse chemical libraries. Here, we discuss the biosynthetic routes toward the N-C macrocyclization of linear peptide precursors, specifically, those transformations that are catalyzed by peptidases. While canonical peptidases catalyze the proteolysis of linear peptides, the biosynthetic macrocyclases couple proteolytic cleavage with cyclization to produce macrocyclic compounds. In this Perspective, we explore the different structural features that impart on each of these biosynthetic proteases the distinct ability to perform macrocyclization and focus on their potential use in biotechnology.
Collapse
|
40
|
Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat Commun 2017; 8:1045. [PMID: 29051530 PMCID: PMC5648786 DOI: 10.1038/s41467-017-00862-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023] Open
Abstract
Peptide macrocycles are promising therapeutic molecules because they are protease resistant, structurally rigid, membrane permeable, and capable of modulating protein-protein interactions. Here, we report the characterization of the dual function macrocyclase-peptidase enzyme involved in the biosynthesis of the highly toxic amanitin toxin family of macrocycles. The enzyme first removes 10 residues from the N-terminus of a 35-residue substrate. Conformational trapping of the 25 amino-acid peptide forces the enzyme to release this intermediate rather than proceed to macrocyclization. The enzyme rebinds the 25 amino-acid peptide in a different conformation and catalyzes macrocyclization of the N-terminal eight residues. Structures of the enzyme bound to both substrates and biophysical analysis characterize the different binding modes rationalizing the mechanism. Using these insights simpler substrates with only five C-terminal residues were designed, allowing the enzyme to be more effectively exploited in biotechnology.
Collapse
|
41
|
Abstract
Natural products are significant therapeutic agents and valuable drug leads. This is likely owing to their three-dimensional structural complexity, which enables them to form complex interactions with biological targets. Enzymes from natural product biosynthetic pathways show great potential to generate natural product-like compounds and libraries. Many challenges still remain in biosynthesis, such as how to rationally synthesize small molecules with novel structures and how to generate maximum chemical diversity. In this Account, we describe recent advances from our laboratory in the synthesis of natural product-like libraries using natural biosynthetic machinery. Our work has focused on the pat and tru biosynthetic pathways to patellamides, trunkamide, and related compounds from cyanobacterial symbionts in marine tunicates. These belong to the cyanobactin class of natural products, which are part of the larger group of ribosomally synthesized and post-translationally modified peptides (RiPPs). These results have enabled the synthesis of rationally designed small molecules and libraries covering more than 1 million estimated derivatives. Because the RiPPs are translated on the ribosome and then enzymatically modified, they are highly compatible with recombinant technologies. This is important because it means that the resulting natural products, their derivatives, and wholly new compounds can be synthesized using the tools of genetic engineering. The RiPPs also represent possibly the most widespread group of bioactive natural products, although this is in part because of the broad definition of what constitutes a RiPP. In addition, the underlying ideas may form the basis for broad-substrate biosynthetic pathways beyond the RiPPs. For example, some of the ideas about kinetic ordering of broad substrate pathways may apply to polyketide or nonribosomal peptide biosynthesis as well. While making these products, we have sought to understand what makes biosynthetic pathways plastic and whether there are any rules that might generally apply to plastic biosynthetic pathways. We present three principles of diversity-generating biosynthesis: (1) substrate evolution, in which the substrates change while enzymes remain constant; (2) pairing of recognition sequences on substrates with biosynthetic enzymes; (3) an inverse metabolic flux in comparison to canonical pathways. If these principles are general, they may enable the design of unimagined derivatives using biosynthetic engineering. For example, it is possible to discover substrate evolution directly by examining sequencing data. By shuffling appropriate recognition sequences and biosynthetic enzymes, it has already been possible to make new hybrid products of multiple pathways. While cases so far have been limited, if this is more general, designed synthesis will become routine. Finally, biosynthesis of natural products is regulated in elaborate ways that are just beginning to be understood. If the inverse metabolic flux model is widespread, it potentially informs on what the timing and relative production level of each enzyme in a designer pathway should be in order to optimize the synthesis of new compounds in vivo.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| |
Collapse
|
42
|
Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. J Am Chem Soc 2017; 139:11734-11744. [PMID: 28704043 PMCID: PMC6443407 DOI: 10.1021/jacs.7b01283] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
Collapse
Affiliation(s)
- Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Paul M. Himes
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Sungwon Hwang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Yakimov A, Shabalin K, Utkina I, Travin DY, Komarova ES, Serebryakova M, Artamonova T, Khodorkovskii M, Konevega AL, Sergiev PV, Severinov K, Polikanov YS. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 2017; 13:1129-1136. [PMID: 28846667 PMCID: PMC5701663 DOI: 10.1038/nchembio.2462] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
While screening of small-molecular metabolites produced by most cultivatable microorganisms often results in rediscovery of known compounds, genome-mining programs allow to harness much greater chemical diversity and result in discovery of new molecular scaffolds. Here we report genome-guided identification of a new antibiotic klebsazolicin (KLB) from Klebsiella pneumoniae that inhibits growth of sensitive cells by targeting ribosome. A member of ribosomally-synthesized post-translationally modified peptides (RiPPs), KLB is characterized by the presence of unique N-terminal amidine ring essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosome by interfering with translation elongation. Structural analysis of the ribosome-KLB complex reveals the compound bound in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramins-B. KLB adopts compact conformation and largely obstructs the tunnel. Engineered KLB fragments retain in vitro activity and can serve as a starting point for the development of new bioactive compounds.
Collapse
Affiliation(s)
- Mikhail Metelev
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Institute of Antimicrobial Chemotherapy, Smolensk State Medical Academy, Smolensk, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Osterman
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Irina Utkina
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry Y Travin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina S Komarova
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey L Konevega
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Petr V Sergiev
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Severinov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
44
|
Elucidating and engineering thiopeptide biosynthesis. World J Microbiol Biotechnol 2017; 33:119. [DOI: 10.1007/s11274-017-2283-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
|
45
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
46
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
47
|
Sardar D, Hao Y, Lin Z, Morita M, Nair SK, Schmidt EW. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products. J Am Chem Soc 2017; 139:2884-2887. [PMID: 28195477 PMCID: PMC5764894 DOI: 10.1021/jacs.6b12872] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent innovations in peptide natural product biosynthesis reveal a surprising wealth of previously uncharacterized biochemical reactions that have potential applications in synthetic biology. Among these, the cyanobactins are noteworthy because these peptides are protected at their N- and C-termini by macrocyclization. Here, we use a novel bifunctional enzyme AgeMTPT to protect linear peptides by attaching prenyl and methyl groups at their free N- and C-termini. Using this peptide protectase in combination with other modular biosynthetic enzymes, we describe the total synthesis of the natural product aeruginosamide B and the biosynthesis of linear cyanobactin natural products. Our studies help to define the enzymatic mechanism of macrocyclization, providing evidence against the water exclusion hypothesis of transpeptidation and favoring the kinetic lability hypothesis.
Collapse
Affiliation(s)
- Debosmita Sardar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | - Yue Hao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Illinois
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | - Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Illinois
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|
48
|
Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun 2017; 8:14207. [PMID: 28165449 PMCID: PMC5303826 DOI: 10.1038/ncomms14207] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Goadsporin (GS) is a member of ribosomally synthesized and post-translationally modified peptides (RiPPs), containing an N-terminal acetyl moiety, six azoles and two dehydroalanines in the peptidic main chain. Although the enzymes involved in GS biosynthesis have been defined, the principle of how the respective enzymes control the specific modifications remains elusive. Here we report a one-pot synthesis of GS using the enzymes reconstituted in the 'flexible' in vitro translation system, referred to as the FIT-GS system. This system allows us to readily prepare not only the precursor peptide from its synthetic DNA template but also 52 mutants, enabling us to dissect the modification determinants of GodA for each enzyme. The in vitro knowledge has also led us to successfully produce designer GS analogues in vivo. The methodology demonstrated in this work is also applicable to other RiPP biosynthesis, allowing us to rapidly investigate the principle of modification events with great ease.
Collapse
|
49
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Adaba RI, Mann G, Raab A, Houssen WE, McEwan AR, Thomas L, Tabudravu J, Naismith JH, Jaspars M. Accurate quantification of modified cyclic peptides without the need for authentic standards. Tetrahedron 2016; 72:8603-8609. [PMID: 32818002 PMCID: PMC7115945 DOI: 10.1016/j.tet.2016.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is a growing interest in the use of cyclic peptides as therapeutics, but their efficient production is often the bottleneck in taking them forward in the development pipeline. We have recently developed a method to synthesise azole-containing cyclic peptides using enzymes derived from different cyanobactin biosynthetic pathways. Accurate quantification is crucial for calculation of the reaction yield and for the downstream biological testing of the products. In this study, we demonstrate the development and validation of two methods to accurately quantify these compounds in the reaction mixture and after purification. The first method involves the use of a HPLC coupled in parallel to an ESMS and an ICPMS, hence correlating the calculated sulfur content to the amount of cyclic peptide. The second method is an NMR ERETIC method for quantifying the solution concentration of cyclic peptides. These methods make the quantification of new compounds much easier as there is no need for the use of authentic standards when they are not available.
Collapse
Affiliation(s)
- Rosemary I. Adaba
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| | - Greg Mann
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Andrea Raab
- TESLA, Department of Chemistry, University of Aberdeen, UK
| | - Wael E. Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Andrew R. McEwan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Louise Thomas
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jioji Tabudravu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen. AB24 3UE, UK
| |
Collapse
|