1
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Yang L, Gao Y, Liu Q, Li W, Li Z, Zhang D, Xie R, Zheng Y, Chen H, Zeng X. A Bacterial Responsive Microneedle Dressing with Hydrogel Backing Layer for Chronic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307104. [PMID: 37939306 DOI: 10.1002/smll.202307104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjing Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Rixin Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Li P, Pan J, Dong Y, Sun Y, Wang Y, Liao K, Chen Y, Deng X, Yu S, Hu H. Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment. J Control Release 2024; 365:219-235. [PMID: 37992874 DOI: 10.1016/j.jconrel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Chronic pulmonary infection caused by Pseudomonas aeruginosa (P. aeruginosa) is a common lung disease with high mortality, posing severe threats to public health. Highly resistant biofilm and intrinsic resistance make P. aeruginosa hard to eradicate, while powerful virulence system of P. aeruginosa may give rise to the recurrence of infection and eventual failure of antibiotic therapy. To address these issues, infection-microenvironment responsive nanoparticles functioning on biofilm eradication and virulence inhibition were simply prepared by electrostatic complexation between dimethylmaleic anhydride (DA) modified negatively charged coating and epsilon-poly(l-lysine) derived cationic nanoparticles loaded with azithromycin (AZI) (DA-AZI NPs). Charge reversal responsive to acidic condition enabled DA-AZI NPs to successively penetrate through both mucus and biofilms, followed by targeting to P. aeruginosa and permeabilizing its outer/inner membrane. Then in situ released AZI, which was induced by the lipase-triggered NPs dissociation, could easily enter into bacteria to take effects. DA-AZI NPs exhibited enhanced eradication activity against P. aeruginosa biofilms with a decrease of >99.999% of bacterial colonies, as well as remarkable inhibitory effects on the production of virulence factors and bacteria re-adhesion & biofilm re-formation. In a chronic pulmonary infection model, nebulization of DA-AZI NPs into infected mice resulted in prolonged retention and increased accumulation of the NPs in the infected sites of the lungs. Moreover, they significantly reduced the burden of P. aeruginosa, effectively alleviating lung tissue damages and inflammation. Overall, the proposed DA-AZI NPs highlight an innovative strategy for treating chronic pulmonary infection.
Collapse
Affiliation(s)
- Pengyu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Yalong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, PR China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Ladjouzi R, Lucau-Danila A, López P, Drider D. Lack of PNPase activity in Enterococcus faecalis 14 increases the stability of EntDD14 bacteriocin transcripts. Sci Rep 2023; 13:22870. [PMID: 38129448 PMCID: PMC10739964 DOI: 10.1038/s41598-023-48619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
A mutant deficient in polynucleotide phosphorylase (PNPase) activity was previously constructed in Enterococcus faecalis 14; a strain producing a leaderless two-peptide enterocin DD14 (EntDD14). Here, we examined the impact of the absence of PNPase on the expression and synthesis of EntDD14, at the transcriptional and functional levels. As result, EntDD14 synthesis augmented in line with the growth curve, reaching a two- to fourfold increase in the ΔpnpA mutant compared to the E. faecalis 14 wild-type strain (WT). EntDD14 synthesis has reached its highest level after 9 h of growth in both strains. Notably, high expression level of the ddABCDEFGHIJ cluster was registered in ΔpnpA mutant. Transcriptional and in silico analyses support the existence of ddAB and ddCDEFGHIJ independent transcripts, and analysis of the fate of ddAB and ddCDEFGHIJ mRNAs indicated that the differences in mRNA levels and the high EntDD14 activity are likely due to a better stability of the two transcripts in the ΔpnpA mutant, which should result in a higher translation efficiency of the ddAB EntDD14 structural genes and their other protein determinants. Consequently, this study shows a potential link between the mRNA stability and EntDD14 synthesis, secretion and immunity in a genetic background lacking PNPase.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- UMR Transfrontalière BioEcoAgro INRAe 1158, Univ. Lille, INRAE, Univ. LiègeUPJVYNCREA, Univ. Artois, Univ. Littoral Côte d'OpaleICV-Institut Charles Viollette, 59000, Lille, France
- EA DYNAMYC 7380, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (ENVA), USC Anses, 94000, Créteil, France
| | - Anca Lucau-Danila
- UMR Transfrontalière BioEcoAgro INRAe 1158, Univ. Lille, INRAE, Univ. LiègeUPJVYNCREA, Univ. Artois, Univ. Littoral Côte d'OpaleICV-Institut Charles Viollette, 59000, Lille, France
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Biological Research Center-Margarita Salas (CIB-Margarita Salas, CSIC), Madrid, Spain
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAe 1158, Univ. Lille, INRAE, Univ. LiègeUPJVYNCREA, Univ. Artois, Univ. Littoral Côte d'OpaleICV-Institut Charles Viollette, 59000, Lille, France.
| |
Collapse
|
5
|
Yang L, Song S, Yin M, Yang M, Yan D, Wan X, Xiao J, Jiang Y, Yao Y, Luo J. Antibiotic-based small molecular micelles combined with photodynamic therapy for bacterial infections. Asian J Pharm Sci 2023. [DOI: 10.1016/j.ajps.2023.100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
6
|
Sousa A, Phung AN, Škalko-Basnet N, Obuobi S. Smart delivery systems for microbial biofilm therapy: Dissecting design, drug release and toxicological features. J Control Release 2023; 354:394-416. [PMID: 36638844 DOI: 10.1016/j.jconrel.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Bacterial biofilms are highly protected surface attached communities of bacteria that typically cause chronic infections. To address their recalcitrance to antibiotics and minimise side effects of current therapies, smart drug carriers are being explored as promising platforms for antimicrobials. Herein, we briefly summarize recent efforts and considerations that have been applied in the design of these smart carriers. We guide readers on a journey on how they can leverage the inherent biofilm microenvironment, external stimuli, or combine both types of stimuli in a predictable manner. The specific carrier features that are responsible for their 'on-demand' properties are detailed and their impact on antibiofilm property are further discussed. Moreover, an analysis on the impact of such features on drug release profiles is provided. Since nanotechnology represents a significant slice of the drug delivery pie, some insights on the potential toxicity are also depicted. We hope that this review inspires researchers to use their knowledge and creativity to design responsive systems that can eradicate biofilm infections.
Collapse
Affiliation(s)
- A Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - A Ngoc Phung
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - N Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - S Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Wang T, Cornel EJ, Li C, Du J. Drug delivery approaches for enhanced antibiofilm therapy. J Control Release 2023; 353:350-365. [PMID: 36473605 DOI: 10.1016/j.jconrel.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biofilms have attracted increasing attention in recent years. Many bacterial infections are associated with biofilm formation. A bacterial biofilm is an aggregated membrane-like substance that is composed of a large number of bacteria and their secreted extracellular polymeric substances. The traditional antibiofilm approaches, such as chemotherapy based on antibiotics, are often ineffective in eradicating biofilms owing to the limited diffusion ability of antibiotics within biofilms and inactivation of antibiotics by biofilms. Moreover, a larger dosage of antibiotics could be effective, but leads to an increased tolerance. Smart drug delivery systems that deliver antibiotics into the biofilm interior is a promising strategy to meet this challenge. In this review, we focus on the methods to improve drug delivery efficiency for enhanced chemotherapy of biofilms. Furthermore, we have summarized chemical approaches for enhanced drug delivery, such as chemical shields, charge reversal, and dual corona enhanced delivery strategies; these methods focus on physicochemical biofilm properties and specific biofilm features. Afterwards, physical approaches are discussed, such as magnetism-mediated drug delivery, electricity-mediated drug delivery, ultrasound-mediated drug delivery, and shock wave-mediated drug delivery. Finally, a perspective on the development of next-generation antibiofilm drug delivery systems is given.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
8
|
Zhou Q, Si Z, Wang K, Li K, Hong W, Zhang Y, Li P. Enzyme-triggered smart antimicrobial drug release systems against bacterial infections. J Control Release 2022; 352:507-526. [PMID: 36341932 DOI: 10.1016/j.jconrel.2022.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
The rapid emergence and spread of drug-resistant bacteria, as one of the most pressing public health threats, are declining our arsenal of available antimicrobial drugs. Advanced antimicrobial drug delivery systems that can achieve precise and controlled release of antimicrobial agents in the microenvironment of bacterial infections will retard the development of antimicrobial resistance. A variety of extracellular enzymes are secreted by bacteria to destroy physical integrity of tissue during their invasion of host body, which can be utilized as stimuli to trigger "on-demand" release of antimicrobials. In the past decade, such bacterial enzyme responsive drug release systems have been intensively studied but few review has been released. Herein, we systematically summarize the recent progress of smart antimicrobial drug delivery systems triggered by bacteria secreted enzymes such as lipase, hyaluronidase, protease and antibiotic degrading enzymes. The perspectives and existing key issues of this field will also be discussed to fuel the innovative research and translational application in the future.
Collapse
Affiliation(s)
- Qian Zhou
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
9
|
Lin T, Jiang G, Lin D, Lai Y, Hou L, Zhao S. Bacitracin-Functionalized Dextran-MoSe 2 with Peroxidase-like and Near-Infrared Photothermal Activities for Low-Temperature and Synergetic Antibacterial Applications. ACS APPLIED BIO MATERIALS 2022; 5:2347-2354. [DOI: 10.1021/acsabm.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Gaoyan Jiang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Danxuan Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yunping Lai
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
10
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
11
|
Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
The continuously increasing bacterial resistance has become a big threat to public health worldwide, which makes it urgent to develop innovative antibacterial strategies. Nanotechnology-based drug delivery systems are considered as promising strategies in combating bacterial infections which are expected to improve the therapeutic efficacy and minimize the side effects. Unfortunately, the conventional nanodrug delivery systems always suffer from practical dilemmas, including incomplete and slow drug release, insufficient accumulation in infected sites, and weak biofilm penetration ability. Stimuli-responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles. In this review, we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area, including planktonic bacteria, intracellular bacteria, and bacterial biofilms. Taking advantage of the specific infected microenvironment (pH, enzyme, redox, and toxin), the mechanisms and strategies of the design of endogenous stimuli-responsive nanoplatforms are discussed, with an emphasis on how to improve the therapeutic efficacy and minimize side effects. How to realize controlled drug delivery using exogenous stimuli-responsive nanoplatforms especially light-responsive nanoparticles for improved antibacterial effects is another topic of this review. We especially highlight photothermal-triggered drug delivery systems by the combination of photothermal agents and thermo-responsive materials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Pranantyo D, Zhang K, Si Z, Hou Z, Chan-Park MB. Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. Biomacromolecules 2022; 23:1873-1891. [PMID: 35471022 DOI: 10.1021/acs.biomac.1c01614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.
Collapse
|
13
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Yin M, Yang M, Yan D, Yang L, Wan X, Xiao J, Yao Y, Luo J. Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8847-8864. [PMID: 35138798 DOI: 10.1021/acsami.1c24229] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The appearance of multidrug-resistant bacteria and their biofilms presents a serious threat to modern medical systems. Herein, we fabricated a novel gold-nanorod-based chemo-photothermal-integrated antimicrobial platform with surface-charge-switchable and near-infrared (NIR)-induced size-transformable activities that show an enhanced killing efficiency against methicillin-resistant Staphylococcus aureus (MRSA) in both planktonic and biofilm phenotypes. The nanocomposites are prepared by in situ copolymerization using N-isopropyl acrylamide (NIPAM), acrylic acid (AA), and N-allylmethylamine (MAA) as monomers on the surfaces of gold nanorods (GNRs). Ciprofloxacin (CIP) is loaded onto polymer shells of nanocomposites with a loading content of 9.8%. The negatively charged nanocomposites switch to positive upon passive accumulation at the infectious sites, which promotes deep biofilm penetration and bacterial adhesion of the nanoparticles. Subsequently, NIR irradiation triggers the nanocomposites to rapidly shrink in volume, further increasing the depth of biofilm penetration. The NIR-triggered, ultrafast volume shrinkage causes an instant release of CIP on the bacterial surface, realizing the synergistic benefits of chemo-photothermal therapy. Both in vitro and in vivo evidence demonstrate that drug-loaded nanocomposites could eradicate clinical MRSA biofilms. Taken together, the multifunctional chemo-photothermal-integrated antimicrobial platform, as designed, is a promising antimicrobial agent against MRSA infections.
Collapse
Affiliation(s)
- Meihui Yin
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Min Yang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Daoping Yan
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lijiao Yang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohui Wan
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jipeng Xiao
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yongchao Yao
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jianbin Luo
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
15
|
Chen Y, Huang Y, Jin Q. Polymeric nanoplatforms for the delivery of antibacterial agents. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| |
Collapse
|
16
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
17
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
18
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
19
|
Neganova M, Aleksandrova Y, Suslov E, Mozhaitsev E, Munkuev A, Tsypyshev D, Chicheva M, Rogachev A, Sukocheva O, Volcho K, Klochkov S. Novel Multitarget Hydroxamic Acids with a Natural Origin CAP Group against Alzheimer's Disease: Synthesis, Docking and Biological Evaluation. Pharmaceutics 2021; 13:pharmaceutics13111893. [PMID: 34834312 PMCID: PMC8623418 DOI: 10.3390/pharmaceutics13111893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hydroxamic acids are one of the most promising and actively studied classes of chemical compounds in medicinal chemistry. In this study, we describe the directed synthesis and effects of HDAC6 inhibitors. Fragments of adamantane and natural terpenes camphane and fenchane, combined with linkers of various nature with an amide group, were used as the CAP groups. Accordingly, 11 original target compounds were developed, synthesized, and exposed to in vitro and in vivo biological evaluations, including in silico methods. In silico studies showed that all synthesized compounds were drug-like and could penetrate through the blood-brain barrier. According to the in vitro testing, hydroxamic acids 15 and 25, which effectively inhibited HDAC6 and exhibited anti-aggregation properties against β-amyloid peptides, were chosen as the most promising substances to study their neuroprotective activities in vivo. All in vivo studies were performed using 5xFAD transgenic mice simulating Alzheimer's disease. In these animals, the Novel Object Recognition and Morris Water Maze Test showed that the formation of hippocampus-dependent long-term episodic and spatial memory was deteriorated. Hydroxamic acid 15 restored normal memory functions to the level observed in control wild-type animals. Notably, this effect was precisely associated with the ability to restore lost cognitive functions, but not with the effect on motor and exploratory activities or on the level of anxiety in animals. Conclusively, hydroxamic acid 15 containing an adamantane fragment linked by an amide bond to a hydrocarbon linker is a possible potential multitarget agent against Alzheimer's disease.
Collapse
Affiliation(s)
- Margarita Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Evgenii Suslov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Evgenii Mozhaitsev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Aldar Munkuev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Dmitry Tsypyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Maria Chicheva
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
| | - Artem Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Olga Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Konstantin Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.S.); (E.M.); (A.M.); (D.T.); (A.R.); (K.V.)
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 142432 Moscow, Russia; (M.N.); (Y.A.); (M.C.)
- Correspondence: ; Tel.: +7-(496)-5242525
| |
Collapse
|
20
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
21
|
Riduan SN, Zhang Y. Recent Advances of Zinc-based Antimicrobial Materials. Chem Asian J 2021; 16:2588-2595. [PMID: 34313021 DOI: 10.1002/asia.202100656] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Indexed: 12/16/2022]
Abstract
Zinc has been widely utilized as an antimicrobial material, often in the form of complexes or zinc oxide nanoparticles. The efficacy of zinc complexes are often due to the synergistic effect of both the zinc ions and the attached organic ligands. In contrast, the nanoparticle effect of ZnO, and the photocatalytic generation of reactive oxygen species (ROS) has been postulated to be the effective mechanism of ZnO as a biocide. Recently, new forms of zinc-based biocidal materials have been reported with distinct antimicrobial mechanisms. This minireview summarizes these recent advances, including zinc-based nano-arrays, MOF-based ROS release and zinc composites that can self-generate ROS.
Collapse
Affiliation(s)
- Siti Nurhanna Riduan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|
22
|
Improving the biofouling resistance of polyamide thin-film composite membrane via grafting polyacrylamide brush on the surface by in-situ atomic transfer radical polymerization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Brouns JP, Dankers PYW. Introduction of Enzyme-Responsivity in Biomaterials to Achieve Dynamic Reciprocity in Cell-Material Interactions. Biomacromolecules 2021; 22:4-23. [PMID: 32813514 PMCID: PMC7805013 DOI: 10.1021/acs.biomac.0c00930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Much effort has been made in the development of biomaterials that synthetically mimic the dynamics of the natural extracellular matrix in tissues. Most of these biomaterials specifically interact with cells, but lack the ability to adapt and truly communicate with the cellular environment. Communication between biomaterials and cells is achieved by the development of various materials with enzyme-responsive moieties in order to respond to cellular cues. In this perspective, we discuss different enzyme-responsive systems, from surfaces to supramolecular assemblies. Additionally, we highlight their further prospects in order to create, inspired by nature, fully autonomous adaptive biomaterials that display dynamic reciprocal behavior. This Perspective shows new strategies for the development of biomaterials that may find broad utility in regenerative medicine applications, from scaffolds for tissue engineering to systems for controlled drug delivery.
Collapse
Affiliation(s)
- Joyce
E. P. Brouns
- Eindhoven University of
Technology, Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Laboratory
of Chemical Biology, Het
Kranenveld 14, 5612 AZ, Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Eindhoven University of
Technology, Institute for Complex
Molecular Systems, Department of Biomedical Engineering, Laboratory
of Chemical Biology, Het
Kranenveld 14, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Control Release 2021; 329:1102-1116. [DOI: 10.1016/j.jconrel.2020.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
|
25
|
Albright V, Penarete-Acosta D, Stack M, Zheng J, Marin A, Hlushko H, Wang H, Jayaraman A, Andrianov AK, Sukhishvili SA. Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings. Biomaterials 2020; 268:120586. [PMID: 33310537 DOI: 10.1016/j.biomaterials.2020.120586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.
Collapse
Affiliation(s)
- Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mary Stack
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jeremy Zheng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Hanna Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
26
|
Clainche TL, Linklater D, Wong S, Le P, Juodkazis S, Guével XL, Coll JL, Ivanova EP, Martel-Frachet V. Mechano-Bactericidal Titanium Surfaces for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48272-48283. [PMID: 33054152 DOI: 10.1021/acsami.0c11502] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite advances in the development of bone substitutes and strict aseptic procedures, the majority of failures in bone grafting surgery are related to nosocomial infections. Development of biomaterials combining both osteogenic and antibiotic activity is, therefore, a crucial public health issue. Herein, two types of intrinsically bactericidal titanium supports were fabricated by using commercially scalable techniques: plasma etching or hydrothermal treatment, which display two separate mechanisms of mechano-bactericidal action. Hydrothermal etching produces a randomly nanostructured surface with sharp nanosheet protrusions killing bacteria via cutting of the cell membrane, whereas plasma etching of titanium produces a microscale two-tier hierarchical topography that both reduce bacterial attachment and rupture those bacteria that encounter the surface. The adhesion, growth, and proliferation of human adipose-derived stem cells (hASCs) on the two mechano-bactericidal topographies were assessed. Both types of supports allowed the growth and proliferation of the hASCs in the same manner and cells retained their stemness and osteogenic potential. Furthermore, these supports induced osteogenic differentiation of hASCs without the need of differentiation factors, demonstrating their osteoinductive properties. This study proves that these innovative mechano-bactericidal titanium surfaces with both regenerative and bactericidal properties are a promising solution to improve the success rate of reconstructive surgery.
Collapse
Affiliation(s)
- Tristan Le Clainche
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Denver Linklater
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sherman Wong
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Phuc Le
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Xavier Le Guével
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Jean-Luc Coll
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Véronique Martel-Frachet
- Cancer Target and Experimental Therapeutics, Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, Site Santé, Allée des Alpes, 38700 La Tronche, France
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
27
|
Zhang J, Liu L, Wang L, Zhu W, Wang H. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application. J Mater Chem B 2020; 8:8908-8913. [PMID: 33026400 DOI: 10.1039/d0tb01717e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteria-induced infections have always been associated with various medical devices. The construction of an intelligent antimicrobial surface is an important challenge. In this study, we report the construction of a zwitterionic surface with good biocompatibility under physiological conditions and which shows an anti-adhesion effect on the original bacteria. Once the bacteria multiply, the acidic environment initiated by the bacteria will cause the amide bond on the surface to break, and the zwitterionic surface can be rapidly converted to a cationic bactericidal surface. Confocal laser scanning (CLSM) and scanning electron microscopy (SEM) show that the zwitterionic surface has efficient antibacterial activity with an anti-adhesion property while the pH-responsive transition to quaternary ammonium compounds with a germicidal surface in the acidic environment of bacterial metabolism aids the activity. Thus, the pH-responsive zwitterionic-to-cationic transition antibacterial design opens up new ideas for the efficient and safe application of cationic bactericides in clinical medical antibacterial materials.
Collapse
Affiliation(s)
- Jing Zhang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lei Liu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Lu Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Wenhe Zhu
- Jilin Medical University, Jilin 132013, P. R. China.
| | - Huiyan Wang
- Jilin Medical University, Jilin 132013, P. R. China.
| |
Collapse
|
28
|
Deng Y, Shi X, Chen Y, Yang W, Ma Y, Shi XL, Song P, Dargusch MS, Chen ZG. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Deng
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U. K
| | - Yong Chen
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Matthew S. Dargusch
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
29
|
Hu D, Zou L, Yu W, Jia F, Han H, Yao K, Jin Q, Ji J. Relief of Biofilm Hypoxia Using an Oxygen Nanocarrier: A New Paradigm for Enhanced Antibiotic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000398. [PMID: 32596125 PMCID: PMC7312432 DOI: 10.1002/advs.202000398] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/10/2020] [Indexed: 06/01/2023]
Abstract
Biofilms are chief culprits of most intractable infections and pose great threats to human health. Conventional antibiotic therapies are hypodynamic to biofilms due to their strong drug resistance, closely related with biofilm hypoxia. A new strategy for enhanced antibiotic therapy by relieving biofilm hypoxia is reported here. A two-step sequential delivery strategy is fabricated using perfluorohexane (PFH)-loaded liposomes (lip) as oxygen (O2) carriers (denoted as lip@PFH@O2) and commercial antibiotics. The results indicate that the two-step sequential treatment exhibits much lower minimum bactericidal concentrations than the antibiotic treatment alone. In this design, the lip@PFH@O2 holds positively charged surface for better biofilm penetration. After penetrating into biofilm, oxygen can be released from lip@PFH@O2 by inches, which greatly relieves biofilm hypoxia. With the relief of hypoxia, the quorum sensing and the drug efflux pumps of bacteria are suppressed by restraining related gene expression, leading to the reduced antibiotic resistance. Furthermore, the in vivo experimental results also demonstrate that lip@PFH@O2 can effectively relieve biofilm hypoxia and enhance therapeutic efficacy of antibiotics. As a proof-of-concept, this research provides an innovative strategy for enhanced antibiotic therapy by relieving hypoxia, which may hold a bright future in combating biofilm-associated infections.
Collapse
Affiliation(s)
- Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Haijie Han
- Eye CenterSecond Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Ke Yao
- Eye CenterSecond Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang Province310027P. R. China
| |
Collapse
|
30
|
Triclosan-loaded pH-responsive copolymer to target bacteria and to have long bacteriostatic efficacy. Eur J Pharm Sci 2020; 148:105320. [PMID: 32240797 DOI: 10.1016/j.ejps.2020.105320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 11/20/2022]
Abstract
It is important to reduce side effects and to explore novel usage for hydrophobic broad-spectrum antibacterial agent triclosan (TCS). In this study, a new amphiphilic copolymer with tertiary amine groups, monomethyl ether poly(ethylene glycol)-b-poly{α-[4-(diethylamino)methyl-1,2,3-triazol]-caprolactone-co-caprolactone} (mPEG-PDCL) was designed and synthesized, and its micelles were applied as carries of TCS to enhance antimicrobial and bacteriostatic action. mPEG-PDCL and its contrastive copolymer mPEG-PCL could form uniform spherical micelles with sizes 50-110 nm. The zeta potential of mPEG-PDCL micelles was positive and changed from 7.00 ± 0.67 mV at pH 7.5 to 24.67 ± 1.23 mV at pH 5.5. Both TCS-loaded micelles displayed quite high drug loading content (approx. 15%) and drug loading efficiency (more than 85%). In comparison with pH 7.4, TCS released faster in acidic environment which was induced by bacteria metabolism. MIC values of both TCS-loaded micelles against S. aureus and E. coli were as low as free TCS. TCS-loaded micelles showed much better antibacterial activity than free TCS, especially, mPEG-PDCL/TCS micelles displayed long bacteriostatic efficacy in 60 h against S. aureus and in 54 h against E. coli. mPEG-PDCL micelles preferred targeting to both S. aureus and E. coli due to positive zeta potential. In in vivo experiment, the purulence of the infected wound almost disappeared for SD rats treated with mPEG-PDCL/TCS micelles. Therefore, mPEG-PDCL micelles may be used as good carriers for antimicrobial agents, and the TCS-loaded micelles possess long antimicrobial/bacteriostatic efficacy.
Collapse
|
31
|
Bacterial lipase triggers the release of antibiotics from digestible liquid crystal nanoparticles. J Control Release 2020; 319:168-182. [DOI: 10.1016/j.jconrel.2019.12.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
|
32
|
Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, Liu L, Wang L, Mao C, Wang Y. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics 2020; 10:109-122. [PMID: 31903109 PMCID: PMC6929614 DOI: 10.7150/thno.38388] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Localized delivery of antimicrobial agents such as antimicrobial peptides (AMPs) by a biomaterial should be on-demand. Namely, AMPs should be latent and biocompatible in the absence of bacterial infection, but released in an amount enough to kill bacteria immediately in response to bacterial infection. Methods: To achieve the unmet goal of such on-demand delivery, here we turned a titanium implant with titania nanotubes (Ti-NTs) into a Pandora's box. The box was loaded with AMPs (HHC36 peptides, with a sequence of KRWWKWWRR) inside the nanotubes and "closed" (surface-modified) with a pH-responsive molecular gate, poly(methacrylic acid) (PMAA), which swelled under normal physiological conditions (pH 7.4) but collapsed under bacterial infection (pH ≤ 6.0). Thus, the PMAA-gated Ti-NTs behaved just like a Pandora's box. The box retarded the burst release of AMPs under physiological conditions because the gate swelled to block the nanotubes opening. However, it was opened to release AMPs to kill bacteria immediately when bacterial infection occurred to lowering the pH (and thus made the gate collapse). Results: We demonstrated such smart excellent bactericidal activity against a panel of four clinically important bacteria, including Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus. In addition, this box was biocompatible and could promote the osteogenic differentiation of human mesenchymal stem cells. Both in vitro and in vivo studies confirmed the smart "on-demand" bactericidal activity of the Pandora's box. The molecularly gated Pandora's box design represents a new strategy in smart drug delivery.
Collapse
Affiliation(s)
- Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xuetao Shi
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Huichang Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Liu
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Lin Wang
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center Norman, OK, 73019, USA
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510006, China
| |
Collapse
|
33
|
Urinary Catheter Coating Modifications: The Race against Catheter-Associated Infections. COATINGS 2019. [DOI: 10.3390/coatings10010023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Urinary catheters are common medical devices, whose main function is to drain the bladder. Although they improve patients’ quality of life, catheter placement predisposes the patient to develop a catheter-associated urinary tract infection (CAUTI). The catheter is used by pathogens as a platform for colonization and biofilm formation, leading to bacteriuria and increasing the risk of developing secondary bloodstream infections. In an effort to prevent microbial colonization, several catheter modifications have been made ranging from introduction of antimicrobial compounds to antifouling coatings. In this review, we discuss the effectiveness of different coatings in preventing catheter colonization in vitro and in vivo, the challenges in fighting CAUTIs, and novel approaches targeting host–catheter–microbe interactions.
Collapse
|
34
|
Yang D, Lv X, Xue L, Yang N, Hu Y, Weng L, Fu N, Wang L, Dong X. A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azole-resistant Candida albicans infections. Chem Commun (Camb) 2019; 55:15145-15148. [PMID: 31790115 DOI: 10.1039/c9cc08463k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A lipase-triggered drug release nanoplatform (PGL-DPP-FLU NPs) for multi-modal antifungal therapy is developed. The lipases secreted by C. albicans can accelerate FLU release. The ROS and heat produced by PGL-DPP-FLU NPs make C. albicans more vulnerable to FLU, thereby PGL-DPP-FLU NPs exhibit high performance for combating azole-resistant C. albicans biofilms and wound infection.
Collapse
Affiliation(s)
- Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xinyi Lv
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Lei Xue
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Nan Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yanling Hu
- School of Electrical and Control Engineering, Nanjing Polytechnic Institute, No. 625, Geguan Road, Nanjing City, 210048, Jiangsu, China.
| | - Lixing Weng
- Institute of Advanced Materials (IAM) and Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Nina Fu
- Institute of Advanced Materials (IAM) and Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lianhui Wang
- Institute of Advanced Materials (IAM) and Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiaochen Dong
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
35
|
Su L, Li Y, Liu Y, An Y, Shi L. Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications. Macromol Biosci 2019; 19:e1900289. [PMID: 31642591 DOI: 10.1002/mabi.201900289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Bacterial infection is becoming the biggest threat to human health. The scenario is partly due to the ineffectiveness of the conventional antibiotic treatments against the emergence of multidrug-resistant bacteria and partly due to the bacteria living in biofilms or cells. Adaptive biomaterials can change their physicochemical properties in the microenvironment of bacterial infection, thereby facilitating either their interactions with bacteria or drug release. The trends in treating bacterial infections using adaptive biomaterials-based systems are flourishing and generate innumerous possibility to design novel antimicrobial therapeutics. This feature article aims to summarize the recent developments in the formulations, mechanisms, and advances of adaptive materials in bacterial infection diagnosis, contact killing of bacteria, and antimicrobial drug delivery. Also, the challenges and limitations of current antimicrobial treatments based on adaptive materials and their clinical and industrial future prospects are discussed.
Collapse
Affiliation(s)
- Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
36
|
Abstract
Food and beverage industries operate their production units under stringent hygiene standards to verify high-quality products. However, the presence of biofilms can cause hygienic problems in the industries in the case of pathogenic organisms. Microorganisms can form biofilms, which are resistant to cleaning and disinfection. Microorganisms in biofilms are closely packed in a matrix that acts as a barrier to cleaning and disinfection. Biofilms are observed in processing equipment and open surfaces, resulting in food safety problems or weakening of production efficiency. This review provides a recap of the biofouling process, including the production mechanisms and control techniques of microbial adhesion. Microbial adhesion and colonization are the sine qua non of the establishment of bacterial pathogenesis and this report focuses on their prevention.
Collapse
|
37
|
Thermosensitive hybrid hydrogels for the controlled release of bioactive vancomycin in the treatment of orthopaedic implant infections. Eur J Pharm Biopharm 2019; 142:322-333. [PMID: 31295503 DOI: 10.1016/j.ejpb.2019.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 01/02/2023]
Abstract
The purpose of this work was the development of antibacterial delivery systems for vancomycin, with potential application in the prevention or treatment of orthopedic implant infections. Previous studies have shown tandem thermal gelling and Michael addition cross-linking of hydrogels based on methacrylate, acrylate or vinylsulfone triblock copolymers of PEG-p(HPMAm-lac1-2) and thiolated hyaluronic acid. In this work we exploited these α-β unsaturated derivatives of PEG-p(HPMAm-lac1-2) triblock copolymers and used them in combination with thiolated hyaluronic acid as controlled delivery systems for vancomycin. It was found that the antibiotic was sustainably released from the hydrogel networks for at least 5 days with release kinetics depending on diffusion and dissociation of the positively charged vancomycin from the negatively charged hyaluronic acid. The release of vancomycin could be tailored mainly by HA-SH solid content and degree of thiolation. The developed hydrogels were demonstrate efficacious in preserving the structural and functional integrity of the encapsulated drug by physical immobilization within the gel network and ionic interaction with hyaluronic acid, thereby preventing vancomycin deamidation processes. Furthermore, the antimicrobial activity of vancomycin loaded hydrogels was assessed, demonstrating retention of inhibitory activity towards Staphylococcus aureus during formulation and release, with slightly increased activity of vancomycin encapsulated in hydrogels of higher HA-SH content as compared to controls.
Collapse
|
38
|
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2019; 2:100017. [PMID: 32159147 PMCID: PMC7061676 DOI: 10.1016/j.mtbio.2019.100017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections on the implant surface may eventually lead to biofilm formation and thus threaten the use of implants in body. Despite efficient host immune system, the implant surface can be rapidly occupied by bacteria, resulting in infection persistence, implant failure, and even death of the patients. It is difficult to cope with these problems because bacteria exhibit complex adhesion mechanisms to the implants that vary according to bacterial strains. Different biomaterial coatings have been produced to release antibiotics to kill bacteria. However, antibiotic resistance occurs very frequently. Stimuli-responsive biomaterials have gained much attention in recent years but are not effective enough in killing the pathogens because of the complex mechanisms in bacteria. This review is focused on the development of highly efficient and specifically targeted biomaterials that release the antimicrobial agents or respond to bacteria on demands in body. The mechanisms of bacterial adhesion, biofilm formation, and antibiotic resistance are discussed, and the released substances accounting for implant infection are described. Strategies that have been used in past for the eradication of bacterial infections are also discussed. Different types of stimuli can be triggered only upon the existence of bacteria, leading to the release of antibacterial molecules that in turn kill the bacteria. In particular, the toxin-triggered, pH-responsive, and dual stimulus-responsive adaptive antibacterial biomaterials are introduced. Finally, the state of the art in fabrication of dual responsive antibacterial biomaterials and tissue integration in medical implants is discussed.
Collapse
Affiliation(s)
| | | | - C. Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
39
|
Liu F, He D, Yu Y, Cheng L, Zhang S. Quaternary Ammonium Salt-Based Cross-Linked Micelles to Combat Biofilm. Bioconjug Chem 2019; 30:541-546. [PMID: 30726061 DOI: 10.1021/acs.bioconjchem.9b00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to self-produced extracellular polymeric substances (EPS), biofilms are hard to eradicate by common antimicrobials. Herein, a new quaternary ammonium salt based cross-linked micelle (QAS@CM) was created to combat biofilms. The QAS@CM adsorbed first onto the biofilm surface through multicharged interaction, then penetrated the EPS in the form of nanoparticles and diffused throughout the films. By responding to the biofilm acid/lipase microenvironment, these nanoparticles would further break into quaternary ammonium oligomers and act as the polyvalent inhibitors to effectively destroy the established biofilm and kill the corresponding bacteria within it.
Collapse
Affiliation(s)
- Fangqin Liu
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Dengfeng He
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases , Sichuan University , Chengdu 610041 , China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| |
Collapse
|
40
|
Wang X, Hao X, Chang D, Zhu C, Chen L, Dong A, Gao G. Novel hydrophilicN-halamine polymer with enhanced antibacterial activity synthesized by inverse emulsion polymerization. J Appl Polym Sci 2018. [DOI: 10.1002/app.47419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Wang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Xiufeng Hao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Dan Chang
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Chongyi Zhu
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Lili Chen
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot 010021 People's Republic of China
| | - Ge Gao
- College of Chemistry; Jilin University; Changchun 130021 People's Republic of China
| |
Collapse
|
41
|
Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. NANOSCALE 2018; 10:20946-20962. [PMID: 30406235 DOI: 10.1039/c8nr07146b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of antibiotics has been an epoch-making invention in the past few decades for the treatment of infectious diseases. However, the intravenous injection of antibiotics lacking responsiveness and targeting properties has led to low drug utilization and high cytotoxicity. More importantly, it has also caused the development and spread of drug-resistant bacteria due to repeated medication and increased dosage. The differences in the microenvironments of the bacterial infection sites and normal tissues, such as lower pH, high expression of some special enzymes, hydrogen peroxide and released toxins, etc., are usually used for targeted and controlled drug delivery. In addition, bacterial surface charges, antigens and the surface structures of bacterial cell walls are all different from normal tissue cells. Based on the special bacterial infection microenvironments and bacteria surface properties, a series of drug delivery systems has been constructed for highly efficient drug release. This review summarizes the recent progress in targeted and responsive drug delivery systems for enhanced antibacterial properties.
Collapse
Affiliation(s)
- Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jingjie Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yuqin Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wenya Jiang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Hangdong Dai
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Shuaiyue Pang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lei Lei
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| |
Collapse
|
42
|
Gutiérrez-Cortés C, Suarez H, Buitrago G, Nero LA, Todorov SD. Enhanced Bacteriocin Production by Pediococcus pentosaceus 147 in Co-culture With Lactobacillus plantarum LE27 on Cheese Whey Broth. Front Microbiol 2018; 9:2952. [PMID: 30559735 PMCID: PMC6286998 DOI: 10.3389/fmicb.2018.02952] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
The production of bacteriocins by lactic acid bacteria (LAB) has been of wide interest in the food industry due to their potential application in biopreservation. The production of bacteriocins is usually low in single strain fermentation, but can improve when the bacteriocinogenic strain is cultured in association with another bacteria. The present work aims to evaluate the growth and production of bacteriocins by Pediococcus pentosaceus 147 (bacteriocinogenic strain) in co-culture with Lactobacillus plantarum LE27 (inducer strain) using a culture medium based on cheese whey (CW). Strains were inoculated in co-culture in a CW broth at 7.24 Log CFU/mL of initial concentration of P. pentosaceus 147 and incubated at 37°C. Bacteriocin production was measured after 24 h by the critical dilution method, biomass was measured by plating on MRS agar (1% aniline blue), and a mono-culture was used as a control. The titers of bacteriocins produced by P. pentosaceus 147 in mono-culture were 19,200 AU/mL lower than those obtained in co-culture with Lb. plantarum LE27 at 51,200 AU/mL. The effect of adding the inducer strain at different times of incubation (3, 6, 9, and 12 h) was evaluated, with the addition of the induction factor at the beginning of the incubation of P. pentosaceus 147 generating the highest bacteriocin activity. This study shows the potential of inducing bacteriocinogenesis using co-cultures of strains of the genera Pediococcus and Lactobacillus and using alternative substrates such as cheese whey.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Cortés
- Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Héctor Suarez
- Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gustavo Buitrago
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luis Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
43
|
Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:921-930. [DOI: 10.1016/j.msec.2018.08.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/18/2017] [Accepted: 08/30/2018] [Indexed: 11/18/2022]
|
44
|
Lu S, Bi W, Du Q, Sinha S, Wu X, Subrata A, Bhattacharjya S, Xing B, Yeow EKL. Lipopolysaccharide-affinity copolymer senses the rapid motility of swarmer bacteria to trigger antimicrobial drug release. Nat Commun 2018; 9:4277. [PMID: 30323232 PMCID: PMC6189052 DOI: 10.1038/s41467-018-06729-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
An intelligent drug release system that is triggered into action upon sensing the motion of swarmer P. mirabilis is introduced. The rational design of the drug release system focuses on a pNIPAAm-co-pAEMA copolymer that prevents drug leakage in a tobramycin-loaded mesoporous silica particle by covering its surface via electrostatic attraction. The copolymer chains are also conjugated to peptide ligands YVLWKRKRKFCFI-NH2 that display affinity to Gram-negative bacteria. When swarmer P. mirabilis cells approach and come in contact with the particle, the copolymer-YVLWKRKRKFCFI-NH2 binds to the lipopolysaccharides on the outer membrane of motile P. mirabilis and are stripped off the particle surface when the cells move away; hence releasing tobramycin into the swarmer colony and inhibiting its expansion. The release mechanism is termed Motion-Induced Mechanical Stripping (MIMS). For swarmer B. subtilis, the removal of copolymers from particle surfaces via MIMS is not apparent due to poor adherence between bacteria and copolymer-YVLWKRKRKFCFI-NH2 system.
Collapse
Affiliation(s)
- Shengtao Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Wuguo Bi
- College of Science, Harbin Engineering University, Harbin, 150080, China
| | - Quanchao Du
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore, Singapore
| | - Xiangyang Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Arnold Subrata
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
45
|
Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance. Drug Dev Res 2018; 80:33-47. [PMID: 30302779 DOI: 10.1002/ddr.21468] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The rise of antibiotic resistance necessitates the search for new platforms for drug development. Prodrugs are common tools for overcoming drawbacks typically associated with drug formulation and delivery, with ester prodrugs providing a classic strategy for masking polar alcohol and carboxylic acid functionalities and improving cell permeability. Ester prodrugs are normally designed to have simple ester groups, as they are expected to be cleaved and reactivated by a wide spectrum of cellular esterases. However, a number of pathogenic and commensal microbial esterases have been found to possess significant substrate specificity and can play an unexpected role in drug metabolism. Ester protection can also introduce antimicrobial properties into previously nontoxic drugs through alterations in cell permeability or solubility. Finally, mutation to microbial esterases is a novel mechanism for the development of antibiotic resistance. In this review, we highlight the important pathogenic and xenobiotic functions of microbial esterases and discuss the development and application of ester prodrugs for targeting microbial infections and combating antibiotic resistance. Esterases are often overlooked as therapeutic targets. Yet, with the growing need to develop new antibiotics, a thorough understanding of the specificity and function of microbial esterases and their combined action with ester prodrug antibiotics will support the design of future therapeutics.
Collapse
Affiliation(s)
- Erik M Larsen
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana.,Department of Chemistry and Biochemistry, Bloomsburg University, Bloomsburg, Pennsylvania
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana
| |
Collapse
|
46
|
Walther R, Nielsen SM, Christiansen R, Meyer RL, Zelikin AN. Combatting implant-associated biofilms through localized drug synthesis. J Control Release 2018; 287:94-102. [PMID: 30138714 PMCID: PMC6176123 DOI: 10.1016/j.jconrel.2018.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Bacterial contamination of implantable biomaterials is a significant socioeconomic and healthcare burden. Indeed, bacterial colonization of implants after surgery has a high rate of incidence whereas concurrent prophylaxis using systemic antibiotics has limited clinical success. In this work, we develop enzyme-prodrug therapy (EPT) to prevent and to treat bacteria at interfaces. Towards the overall goal, novel prodrugs for fluoroquinolone antibiotics were developed on a privileged glucuronide scaffold. Whereas carbamoyl prodrugs were not stable and not suitable for EPT, glucuronides containing self-immolative linker between glucuronic acid masking group and the antibiotic were stable in solution and readily underwent bioconversion in the presence of β-glucuronidase. Surface coatings for model biomaterials were engineered using sequential polymer deposition technique. Resulting coatings afforded fast prodrug conversion and mediated antibacterial measures against planktonic species as evidenced by pronounced zone of bacterial growth inhibition around the biomaterial surface. These biomaterials coupled with the glucuronide prodrugs also effectively combatted bacteria within established biofilms and also successfully prevented bacterial colonization of the surface. To our knowledge, this is the first report of EPT engineered to the surface of biomaterials to mediate antibacterial measures.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Signe Maria Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Rikke Christiansen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark.
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark; Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus 8000, Denmark.
| |
Collapse
|
47
|
Cattò C, Villa F, Cappitelli F. Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Crit Rev Microbiol 2018; 44:633-652. [DOI: 10.1080/1040841x.2018.1489369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Villa
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
48
|
Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, Ratner DM, Stayton PS. Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci 2018; 6:1976-1985. [PMID: 29850694 PMCID: PMC6195317 DOI: 10.1039/c8bm00282g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary intracellular infections, such as tuberculosis, anthrax, and tularemia, have remained a significant challenge to conventional antibiotic therapy. Ineffective antibiotic treatment of these infections can lead not only to undesired side effects, but also to the emergence of antibiotic resistance. Aminoglycosides (e.g., streptomycin) have long been part of the therapeutic regiment for many pulmonary intracellular infections. Their bioavailability for intracellular bacterial pools, however, is limited by poor membrane permeability and rapid elimination. To address this challenge, polymer-augmented liposomes (PALs) were developed to provide improved cytosolic delivery of streptomycin to alveolar macrophages, an important host cell for intracellular pathogens. A multifunctional diblock copolymer was engineered to functionalize PALs with carbohydrate-mediated targeting, pH-responsive drug release, and endosomal release activity with a single functional polymer that replaces the pegylated lipid component to simplify the liposome formulation. The pH-sensing functionality enabled PALs to provide enhanced release of streptomycin under endosomal pH conditions (70% release in 6 hours) with limited release at physiological pH 7.4 (16%). The membrane-destabilizing activity connected to endosomal release was characterized in a hemolysis assay and PALs displayed a sharp pH profile across the endosomal pH development target range. The direct connection of this membrane-destabilizing pH profile to model drug release was demonstrated in an established pyranine/p-xylene bispyridinium dibromide (DPX) fluorescence dequenching assay. PALs displayed similar sharp pH-responsive release, whereas PEGylated control liposomes did not, and similar profiles were then shown for streptomycin release. The mannose-targeting capability of the PALs was also demonstrated with 2.5 times higher internalization compared to non-targeted PEGylated liposomes. Finally, the streptomycin-loaded PALs were shown to have a significantly improved intracellular antibacterial activity in a Francisella-macrophage co-culture model, compared with free streptomycin or streptomycin delivered by control PEGylated liposomes (13× and 16×, respectively). This study suggests the potential of PALs as a useful platform to deliver antibiotics for the treatment of intracellular macrophage infections.
Collapse
Affiliation(s)
- Fang-Yi Su
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmin Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hye-Nam Son
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Abby M. Kelly
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Daniel M. Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Dai T, Wang C, Wang Y, Xu W, Hu J, Cheng Y. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15163-15173. [PMID: 29648438 DOI: 10.1021/acsami.8b02527] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local bacterial infection is a challenging task and still remains a serious threat to human health in clinics. Systemic administration of antibiotics has only short-term antibacterial activity and usually causes adverse effects and bacterial resistance. A bioadhesive hydrogel with broad-spectrum and on-demand antibiotic activity is highly desirable. Here, we designed a pH-responsive nanocomposite hydrogel via a Schiff base linkage between oxidized polysaccharides and cationic dendrimers encapsulated with silver nanoparticles. The antibacterial components, both the cationic dendrimers and silver species, could be released in response to the acidity generated by growing bacteria. The released cationic polymer and silver exhibited a synergistic effect in antibacterial activity, and thus, the nanocomposite hydrogel showed potent antibacterial activity against both Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria ( Staphylococcus epidermidis and Staphylococcus aureus). The gel showed superior in vivo antibacterial efficacy against S. aureus infection compared with a commercial silver hydrogel at the same silver concentration. In addition, no obvious hemolytic toxicity, cytotoxicity, and tissue and biochemical toxicity were observed for the antibacterial hydrogel after incubation with cells or implantation. This study provides a facile and promising strategy to develop smart hydrogels to treat local bacterial infections.
Collapse
Affiliation(s)
- Tianjiao Dai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Changping Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yuqing Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital , The Second Military Medical University , Shanghai 200003 , P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
50
|
Huang Z, Lei K, He D, Xu Y, Williams J, Hu L, McNeil M, Ruso JM, Liu Z, Guo Z, Wang Z. Self-regulation in chemical and bio-engineering materials for intelligent systems. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2018; 3:40-48. [PMID: 34113747 PMCID: PMC8188858 DOI: 10.1049/trit.2018.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.
Collapse
Affiliation(s)
- Zhongyuan Huang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan, People’s Republic of China
| | - Kewei Lei
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
| | - Dan He
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Pharmaceutical Analysis, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong, People’s Republic of China
| | - Jacob Williams
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liu Hu
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Macy McNeil
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhe Wang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|