1
|
Heuberger L, Korpidou M, Guinart A, Doellerer D, López DM, Schoenenberger CA, Milinkovic D, Lörtscher E, Feringa BL, Palivan CG. Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413981. [PMID: 39491508 DOI: 10.1002/adma.202413981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented. Microfluidics is used to generate polymeric protocells subcompartmentalized by specialized artificial organelles. In one protocell population, light triggers artificial organelles with membrane-embedded photoresponsive rotary molecular motors to set off a sequence of reactions starting with the release of encapsulated signaling molecules into the lumen. Intercellular communication is mediated by signal transfer across membranes to protocells containing catalytic artificial organelles as subcompartments, whose signal conversion can be modulated by environmental calcium. Signal propagation also requires selective permeability of the diverse compartments. By segregating artificial organelles in distinct protocells, a sequential chain of reactions mediating intercellular communication is created that is further modulated by adding extracellular messengers. This connective behavior offers the potential for a deeper understanding of signaling pathways and faster integration of proto- and living cells, with the unique advantage of controlling each step by bio-relevant signals.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Ainoa Guinart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Daniel Doellerer
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | | | | | - Daela Milinkovic
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe-Zürich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
| | - Ben L Feringa
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, AG Groningen, 9747, The Netherlands
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel, 4002, Switzerland
- NCCR - Molecular Systems Engineering, Mattenstrasse 22, Basel, 4002, Switzerland
- Swiss Nanoscience Institute (SNI), University of Basel, Klingelbergstrasse 80, Basel, 4056, Switzerland
| |
Collapse
|
2
|
Zou R, Li H, Shi J, Sun C, Lu G, Yan X. Dual-enhanced enzyme cascade hybrid hydrogel for the construction of optical biosensor. Biosens Bioelectron 2024; 263:116613. [PMID: 39084044 DOI: 10.1016/j.bios.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.
Collapse
Affiliation(s)
- Ruiqi Zou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| | - Junxiao Shi
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Geyu Lu
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China
| | - Xu Yan
- Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
3
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2024:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
4
|
Odrobińska-Baliś J, Gumieniczek-Chłopek E, Uchacz T, Banachowicz P, Medaj A, Zapotoczny S. Spontaneous Fusion of Core-Shell Nanocapsules with Oil Cores and Oppositely Charged Polysaccharide Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311909. [PMID: 39031680 DOI: 10.1002/smll.202311909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/26/2024] [Indexed: 07/22/2024]
Abstract
Polymer nanocapsules with hydrophobic cores are promising candidates for nanoreactors to carry out (bio)chemical reactions mimicking the performance of natural cellular systems. Their architecture allows reagents to be encapsulated in the cores enabling reactions to proceed in confined environments in a controlled, and efficient manner. Polysaccharide-shell oil-core nanocapsules are proposed here as facile mergeable nanoreactors. Spontaneous fusion of oppositely charged polysaccharide capsules is demonstrated for the first time. Such capsules are formed and easily loaded with reagents by nanoemulsification of an aqueous solution of hydrophobically modified polysaccharides (chitosan, hyaluronate) and oleic acid with dissolved desired hydrophobic compounds. Efficient fusion of the formed nanocapsules dispersed in an aqueous medium at optimized conditions (pH, ionic strength) is followed using fluorescence microscopy by labeling both their cores and shells with fluorescent dyes. As a proof of concept, a model fluorogenic synthesis is also realized by fusing the capsules containing separated reagents and the catalyst. The nanocapsules and fusion process developed here establish a platform for realization of versatile reactions in a confined environment including model studies on biologically relevant processes taking place in natural systems.
Collapse
Affiliation(s)
- Joanna Odrobińska-Baliś
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow, 30-239, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Elżbieta Gumieniczek-Chłopek
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, A. Mickiewicza Avenue 30, Krakow, 30-059, Poland
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Piotr Banachowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Aneta Medaj
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Lojasiewicza 11, Krakow, 30-348, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| |
Collapse
|
5
|
Li Z, Yu F, Wang S, Cai Y, Xu Y, Li Y, Fei J, Li J. A Well-Coupled Supramolecular System Accelerates Photophosphorylation. Angew Chem Int Ed Engl 2024:e202417474. [PMID: 39323208 DOI: 10.1002/anie.202417474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Supramolecular assembly allows multiple chemical/bio-components integrated as one system for cascade biochemical reactions. Herein the graphitic carbon nitrides (g-C3N4) as photocatalyst trapped in a dipeptide hydrogel covering adenosine triphosphate (ATP) synthase accelerates the photophosphorylation through ATP synthesis. Self-assembled N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) as nanofibrils to allow g-C3N4 nanosheets are embedded as a complex Fmoc-FF/g-C3N4 hydrogel. Fmoc-FF gel exhibits good electronic coupling with g-C3N4, which enables a photo-induced proton generation. The transmembrane proton gradient can be established by ATP synthase-lipid reconstituted on the surface of the Fmoc-FF/g-C3N4 hydrogel to enhance the ATP synthesis. It indicates that the Fmoc-FF/g-C3N4/ATP synthase-lipid film can possess a longer-term ATP production capability and allow repeated immersion for sustained ATP production. Such a hydrogel-supported ATP synthesis platform is achieved by a procedure at a larger scale.
Collapse
Affiliation(s)
- Zibo Li
- School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuhao Wang
- School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Yuyang Cai
- School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yue Li
- School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
6
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
7
|
Sun Z, Wu C. Pickering Emulsions Biocatalysis: Recent Developments and Emerging Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402208. [PMID: 38716793 DOI: 10.1002/smll.202402208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
Biocatalysis within biphasic systems is gaining significant attention in the field of synthetic chemistry, primarily for its ability to solve the problem of incompatible solubilities between biocatalysts and organic compounds. By forming an emulsion from these two-phase systems, a larger surface area is created, which greatly improves the mass transfer of substrates to the biocatalysts. Among the various types of emulsions, Pickering emulsions stand out due to their excellent stability, compatibility with biological substances, and the ease with which they can be formed and separated. This makes them ideal for reusing both the emulsifiers and the biocatalysts. This review explores the latest developments in biocatalysis using Pickering emulsions. It covers the structural features, methods of creation, innovations in flow biocatalysis, and the role of interfaces in these processes. Additionally, the challenges and future directions are discussed in combining chemical and biological catalysts within Pickering emulsion frameworks to advance synthetic methodologies.
Collapse
Affiliation(s)
- Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang road 18, Hangzhou, 310014, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| |
Collapse
|
8
|
Karchilakis G, Varlas S, Johnson EC, Norvilaite O, Farmer MAH, Sanderson G, Leggett GJ, Armes SP. Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14086-14098. [PMID: 38934738 PMCID: PMC11238591 DOI: 10.1021/acs.langmuir.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Georgios Karchilakis
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Oleta Norvilaite
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Matthew A. H. Farmer
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
9
|
Schvartzman C, Ibarboure E, Martin A, Garanger E, Mutschler A, Lecommandoux S. Protocells Featuring Membrane-Bound and Dynamic Membraneless Organelles. Biomacromolecules 2024; 25:4087-4094. [PMID: 38828905 DOI: 10.1021/acs.biomac.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)-block-poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Emmanuel Ibarboure
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Anouk Martin
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Angela Mutschler
- Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
10
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
11
|
Bera S, Bej R, Kanjilal P, Sinha S, Ghosh S. Bioreducible Amphiphilic Hyperbranched Polymer-Drug Conjugate for Intracellular Drug Delivery. Bioconjug Chem 2024; 35:480-488. [PMID: 38514383 DOI: 10.1021/acs.bioconjchem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
This paper reports synthesis of a bioreducible hyperbranched (HB) polymer by A2+B3 approach from commercially available dithiothreitol (DTT) (A2) and an easily accessible trifunctional monomer (B3) containing three reactive pyridyl-disulfide groups. Highly efficient thiol-activated disulfide exchange reaction leads to the formation of the HB polymer (Mw = 21000; Đ = 2.3) with bioreducible disulfide linkages in the backbone and two different functional groups, namely, hydroxyl and pyridyl-disulfide in the core and periphery, respectively, of the HB-polymer. Postpolymerization functionalization of the hydroxyl-groups with camptothecin (CPT), a topoisomerase inhibitor and known anticancer drug, followed by replacing the terminal pyridyl-disulfide groups with oligo-oxyethylene-thiol resulted in easy access to an amphiphilic HB polydisulfide-CPT conjugate (P1) with a very high drug loading content of ∼40%. P1 aggregated in water (above ∼10 μg/mL) producing drug-loaded nanoparticles (Dh ∼ 135 nm), which showed highly efficient glutathione (GSH)-triggered release of the active CPT. Mass spectrometry analysis of the GSH-treated P1 showed the presence of the active CPT drug as well as a cyclic monothiocarbonate product, which underpins the cascade-degradation mechanism involving GSH-triggered cleavage of the labile disulfide linkage, followed by intramolecular nucleophilic attack by the in situ generated thiol to the neighboring carbonate linkage, resulting in release of the active CPT drug. The P1 nanoparticle showed excellent cellular uptake as tested by confocal fluorescence microscopy in HeLa cells by predominantly endocytosis mechanism, resulting in highly efficient cell killing (IC50 ∼ 0.6 μg/mL) as evident from the results of the MTT assay, as well as the apoptosis assay. Comparative studies with an analogous linear polymer-CPT conjugate showed much superior intracellular drug delivery potency of the hyperbranched polymer.
Collapse
Affiliation(s)
- Sukanya Bera
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pintu Kanjilal
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Satyaki Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Technical Research Center (TRC),Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024:10.1002/cm.21855. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
13
|
Pan T, Wang Y, Zhang C. A method for in situ self-assembly of the catalytic peptide in enzymatic compartments of glucan particles. Methods Enzymol 2024; 697:247-268. [PMID: 38816125 DOI: 10.1016/bs.mie.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Drawing inspiration from cellular compartmentalization, enzymatic compartments play a pivotal role in bringing enzymes and substrates into confined environments, offering heightened catalytic efficiency and prolonged enzyme lifespan. Previously, we engineered bioinspired enzymatic compartments, denoted as TPE-Q18H@GPs, achieved through the spatiotemporally controllable self-assembly of the catalytic peptide TPE-Q18H within hollow porous glucan particles (GPs). This design strategy allows substrates and products to freely traverse, while retaining enzymatic aggregations. The confined environment led to the formation of catalytic nanofibers, resulting in enhanced substrate binding affinity and a more than two-fold increase in the second-order kinetic constant (kcat/Km) compared to TPE-Q18H nanofibers in a dispersed system. In this work, we will introduce how to synthesize the above-mentioned enzymatic compartments using salt-responsive catalytic peptides and GPs.
Collapse
Affiliation(s)
- Tiezheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China; School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
14
|
Li G, Huang Y, Zhao L, Yang B, Guo J, Hu J, Wang J, Wang H, Liu B, Zhang A, Sun F, Luo Q. Targeting and Microenvironment-Activated Nanoreactor for Diabetic Chronic Wound Healing via Multienzyme Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6315-6326. [PMID: 38277498 DOI: 10.1021/acsami.3c12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The development of cell-like nanoreactors with the ability to initiate biocatalytic cascades under special conditions holds tremendous potential for therapeutic applications. Herein, conformationally gated nanoreactors that respond to the acidic microenvironment of infected diabetic wounds were developed by cucur[8]bituril (CB[8])-based supramolecular assembly. The bioinspired nanoreactors exhibit not only self-regulated permeability and selectivity to control internal enzyme activities by substance exchange but also distinct binding specificities toward Gram-positive and Gram-negative bacteria via noncovalent modification with different ligands. The encapsulation of glucose oxidase (GOx), Fe3O4 nanozyme, and l-arginine (l-Arg) into the nanocarriers enables intelligent activation of multienzyme cascade reactions upon glucose (Glu) uptake to produce gluconic acid (GA) and hydrogen peroxide (H2O2), which is further converted into highly toxic hydroxyl radicals (·OH) for selective antibacterial activity. Moreover, acidic H2O2 promotes the oxidization of l-Arg, leading to the release of nitric oxide (NO). Consequently, this nanoreactor provides a multifunctional and synergistic platform for diabetic chronic wound healing by combining enzyme dynamic therapy with NO gas therapy to combat bacterial infections and inflammation under high blood Glu levels.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linlu Zhao
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bo Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiale Guo
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Juntao Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jinli Wang
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hui Wang
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, No.2699 Yiju Road, Changchun 130103, China
| | - Aiguo Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, No.2699 Yiju Road, Changchun 130103, China
| | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Zangi R. Breakdown of Langmuir Adsorption Isotherm in Small Closed Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38315174 PMCID: PMC10883037 DOI: 10.1021/acs.langmuir.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
For more than a century, monolayer adsorptions in which adsorbate molecules and adsorbing sites behave ideally have been successfully described by Langmuir's adsorption isotherm. For example, the amount of adsorbed material, as a function of concentration of the material which is not adsorbed, obeys Langmuir's equation. In this paper, we argue that this relation is valid only for macroscopic systems. However, when particle numbers of adsorbate molecules and/or adsorbing sites are small, Langmuir's model fails to describe the chemical equilibrium of the system. This is because the kinetics of forming, or the probability of observing, occupied sites arises from two-body interactions, and as such, ought to include cross-correlations between particle numbers of the adsorbate and adsorbing sites. The effect of these correlations, as reflected by deviations in predicting composition when correlations are ignored, increases with decreasing particle numbers and becomes substantial when only few adsorbate molecules, or adsorbing sites, are present in the system. In addition, any change that augments the fraction of occupied sites at equilibrium (e.g., smaller volume, lower temperature, or stronger adsorption energy) further increases the discrepancy between observed properties of small systems and those predicted by Langmuir's theory. In contrast, for large systems, these cross-correlations become negligible, and therefore when expressing properties involving two-body processes, it is possible to consider independently the concentration of each component. By applying statistical mechanics concepts, we derive a general expression of the equilibrium constant for adsorption. It is also demonstrated that in ensembles in which total numbers of particles are fixed, the magnitudes of fluctuations in particle numbers alone can predict the average chemical composition of the system. Moreover, an alternative adsorption equation, predicting the average fraction of occupied sites from the value of the equilibrium constant, is proposed. All derived relations were tested against results obtained by Monte Carlo simulations.
Collapse
Affiliation(s)
- Ronen Zangi
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
17
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
18
|
Jung SH, Meyer F, Hörnig S, Bund M, Häßel B, Guerzoni LPB, De Laporte L, Ben Messaoud G, Centeno SP, Pich A. On-Chip Fabrication of Colloidal Suprastructures by Assembly and Supramolecular Interlinking of Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303444. [PMID: 37705132 DOI: 10.1002/smll.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Indexed: 09/15/2023]
Abstract
In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.
Collapse
Affiliation(s)
- Se-Hyeong Jung
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Fabian Meyer
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Sven Hörnig
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Michelle Bund
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | | | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Advanced Materials for Biomedicine, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ghazi Ben Messaoud
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen, 6167, The Netherlands
| |
Collapse
|
19
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
20
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
21
|
Qiao X, Wang X, Chen H, Huang Y, Li S, Li L, Sun Y, Liu X, Huang X. Cholesterol-Mediated Anchoring of Phospholipids onto Proteinosomes for Switching Membrane Permeability. Biomacromolecules 2023; 24:5749-5758. [PMID: 37934168 DOI: 10.1021/acs.biomac.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Modulated membrane functionalization is a necessary and overarching step for hollow microcompartments toward their application as nanoreactors or artificial cells. In this study, we show a way to generate phospholipid hybrid proteinosomes that could show superposed virtues of liposomes and proteinosomes. In comparison to pure proteinosomes, both the membrane fluidity and permeability are improved obviously after forming the phospholipid hybrid proteinosomes. Specifically, the integration of phospholipids also endows the hybrid proteinosomes demonstrating a stepwise release of the encapsulants of FITC-dextran (70 and 150 kDa) triggered sequentially by phospholipase and protease, and then a modulated cascaded enzymatic reaction between two different populations of proteinosomes are achieved. Therefore, it is anticipated that such constructed phospholipid hybrid proteinosomes could be employed as an improved microcompartmental model for further advanced artificial cell design toward achieving logic signal communication within the various artificial cellular populations as well as potential applications in the field of microreactors.
Collapse
Affiliation(s)
- Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
22
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
23
|
Wang Z, Zhang M, Zhou Y, Zhang Y, Wang K, Liu J. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. SMALL METHODS 2023; 7:e2300042. [PMID: 36908048 DOI: 10.1002/smtd.202300042] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Synthetic protocells are minimal systems that mimic certain properties of natural cells and are used to research the emergence of life from a nonliving chemical network. Currently, coacervate microdroplets, which are formed via liquid-liquid phase separation, are receiving wide attention in the context of cell biology and protocell research; these microdroplets are notable because they can provide liquid-like compartment structures for biochemical reactions by creating highly macromolecular crowded local environments. In this review, an overview of recent research on the formation of coacervate microdroplets through phase separation; the design of coacervate-based stimuli-responsive protocells, multichamber protocells, and membranized protocells; and their cell mimic behaviors, is provided. The simplified protocell models with precisely defined and tunable compositions advance the understanding of the requirements for cellular structure and function. Efforts are then discussed to establish signal communication systems in protocell and protocell consortia, as communication is a fundamental feature of life that coordinates matter exchanges and energy fluxes dynamically in space and time. Finally, some perspectives on the challenges and future developments of synthetic protocell research in biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Zefeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
24
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
25
|
Ivanov T, Cao S, Bohra N, de Souza Melchiors M, Caire da Silva L, Landfester K. Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50755-50764. [PMID: 37903081 PMCID: PMC10636718 DOI: 10.1021/acsami.3c09196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Lipid and polymer vesicles provide versatile means of creating systems that mimic the architecture of cells. However, these constructs cannot mimic the adaptive compartmentalization observed in cells, where the assembly and disassembly of subcompartments are dynamically modulated by environmental cues. Here, we describe a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The system was fabricated by microfluidic generation of semipermeable biomimetic polymer vesicles within 1 min using oleyl alcohol as the oil phase. The polymersomes allowed for the diffusion of protons and substrates acting as external signals. Using this method, we were able to construct adaptive microreactors containing internal polyelectrolyte-based catalytic organelles capable of sequestering and localizing enzymes and reaction products in a dynamic process driven by an external stimulus. This approach provides a platform for the rapid and efficient construction of robust adaptive microreactors that can be used in catalysis, biosensing, and cell mimicry.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shoupeng Cao
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nitin Bohra
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marina de Souza Melchiors
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Department of Physical Chemistry
of Polymers, Max Planck Institute for Polymer
Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
26
|
Wang R, Yu Y, Gai M, Mateos-Maroto A, Morsbach S, Xia X, He M, Fan J, Peng X, Landfester K, Jiang S, Sun W. Liposomal Enzyme Nanoreactors Based on Nanoconfinement for Efficient Antitumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202308761. [PMID: 37496129 DOI: 10.1002/anie.202308761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Enzymatic reactions can consume endogenous nutrients of tumors and produce cytotoxic species and are therefore promising tools for treating malignant tumors. Inspired by nature where enzymes are compartmentalized in membranes to achieve high reaction efficiency and separate biological processes with the environment, we develop liposomal nanoreactors that can perform enzymatic cascade reactions in the aqueous nanoconfinement of liposomes. The nanoreactors effectively inhibited tumor growth in vivo by consuming tumor nutrients (glucose and oxygen) and producing highly cytotoxic hydroxyl radicals (⋅OH). Co-compartmentalization of glucose oxidase (GOx) and horseradish peroxidase (HRP) in liposomes could increase local concentration of the intermediate product hydrogen peroxide (H2 O2 ) as well as the acidity due to the generation of gluconic acid by GOx. Both H2 O2 and acidity accelerate the second-step reaction by HRP, hence improving the overall efficiency of the cascade reaction. The biomimetic compartmentalization of enzymatic tandem reactions in biocompatible liposomes provides a promising direction for developing catalytic nanomedicines in antitumor therapy.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Yingjie Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Meiyu Gai
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo, 315016, China
| |
Collapse
|
27
|
Xu C, Fracassi A, Baryiames CP, Bhattacharya A, Devaraj NK, Baiz CR. Sponge-phase Lipid Droplets as Synthetic Organelles: An Ultrafast Study of Hydrogen Bonding and Interfacial Environments. Chemphyschem 2023; 24:e202300404. [PMID: 37486881 DOI: 10.1002/cphc.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.
Collapse
Affiliation(s)
- Cong Xu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Christopher P Baryiames
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, 92093, La Jolla, CA, USA
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St. Stop A5300, 78712-1224, Austin, TX, USA
| |
Collapse
|
28
|
Let S, K Dam G, Fajal S, Ghosh SK. Organic porous heterogeneous composite with antagonistic catalytic sites as a cascade catalyst for continuous flow reaction. Chem Sci 2023; 14:10591-10601. [PMID: 37799985 PMCID: PMC10548525 DOI: 10.1039/d3sc03525e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
One-pot cascade catalytic reactions easily allow the circumvention of pitfalls of traditional catalytic reactions, such as multi-step syntheses, longer duration, waste generation, and high operational cost. Despite advances in this area, the facile assimilation of chemically antagonistic bifunctional sites in close proximity inside a well-defined scaffold via a process of rational structural design still remains a challenge. Herein, we report the successful fusion of incompatible acid-base active sites in an ionic porous organic polymer (iPOP), 120-MI@OH, via a simple ion-exchange strategy. The fabricated polymer catalyst, 120-MI@OH, performed exceedingly well as a cascade acid-base catalyst in a deacetylation-Knoevenagel condensation reaction under mild and eco-friendly continuous flow conditions. In addition, the abundance of spatially isolated distinct acidic (imidazolium cations) and basic (hydroxide anions) catalytic sites give 120-MI@OH its excellent solid acid and base catalytic properties. To demonstrate the practical relevance of 120-MI@OH, stable millimeter-sized spherical composite polymer bead microstructures were synthesized and utilized in one-pot cascade catalysis under continuous flow, thus illustrating promising catalytic activity. Additionally, the heterogeneous polymer catalyst displayed good recyclability, scalability, as well as ease of fabrication. The superior catalytic activity of 120-MI@OH can be rationalized by its unique structure that reconciles close proximity of antagonistic catalytic sites that are sufficiently isolated in space.
Collapse
Affiliation(s)
- Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India +91 20 2590 8076
- Centre for Water Research, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
29
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
30
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
31
|
Oerlemans RAJF, Shao J, Huisman SGAM, Li Y, Abdelmohsen LKEA, van Hest JCM. Compartmentalized Intracellular Click Chemistry with Biodegradable Polymersomes. Macromol Rapid Commun 2023; 44:e2200904. [PMID: 36607841 DOI: 10.1002/marc.202200904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Polymersome nanoreactors that can be employed as artificial organelles have gained much interest over the past decades. Such systems often include biological catalysts (i.e., enzymes) so that they can undertake chemical reactions in cellulo. Examples of nanoreactor artificial organelles that acquire metal catalysts in their structure are limited, and their application in living cells remains fairly restricted. In part, this shortfall is due to difficulties associated with constructing systems that maintain their stability in vitro, let alone the toxicity they impose on cells. This study demonstrates a biodegradable and biocompatible polymersome nanoreactor platform, which can be applied as an artificial organelle in living cells. The ability of the artificial organelles to covalently and non-covalently incorporate tris(triazolylmethyl)amine-Cu(I) complexes in their membrane is shown. Such artificial organelles are capable of effectively catalyzing a copper-catalyzed azide-alkyne cycloaddition intracellularly, without compromising the cells' integrity. The platform represents a step forward in the application of polymersome-based nanoreactors as artificial organelles.
Collapse
Affiliation(s)
- Roy A J F Oerlemans
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sander G A M Huisman
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Bio-medical engineering and Chemical engineering & Chemistry, Eindhoven University of Technology: Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
32
|
Wang D, Moreno S, Boye S, Voit B, Appelhans D. Crosslinked and Multi-Responsive Polymeric Vesicles as a Platform to Study Enzyme-Mediated Undocking Behavior: Toward Future Artificial Organelle Communication. Macromol Rapid Commun 2023; 44:e2200885. [PMID: 36755359 DOI: 10.1002/marc.202200885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using β-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.
Collapse
Affiliation(s)
- Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| |
Collapse
|
33
|
Schvartzman C, Zhao H, Ibarboure E, Ibrahimova V, Garanger E, Lecommandoux S. Control of Enzyme Reactivity in Response to Osmotic Pressure Modulation Mimicking Dynamic Assembly of Intracellular Organelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301856. [PMID: 37149761 DOI: 10.1002/adma.202301856] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Indexed: 05/08/2023]
Abstract
In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Hang Zhao
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Vusala Ibrahimova
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Sébastien Lecommandoux
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
34
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
35
|
Tian D, Hao R, Zhang X, Shi H, Wang Y, Liang L, Liu H, Yang H. Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis. Nat Commun 2023; 14:3226. [PMID: 37270555 DOI: 10.1038/s41467-023-38949-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Bioinspired multi-compartment architectures are desired in synthetic biology and metabolic engineering, as credited by their cell-like structures and intrinsic ability of assembling catalytic species for spatiotemporal control over cascade reactions like in living systems. Herein, we describe a general Pickering double emulsion-directed interfacial synthesis method for the fabrication of multicompartmental MOF microreactors. This approach employs multiple liquid-liquid interfaces as a controllable platform for the self-completing growth of dense MOF layers, enabling the microreactor with tailor-made inner architectures and selective permeability. Importantly, simultaneous encapsulation of incompatible functionalities, including hydrophilic enzyme and hydrophobic molecular catalyst, can be realized in a single MOF microreactor for operating chemo-enzymatic cascade reactions. As exemplified by the Grubb' catalyst/CALB lipase driven olefin metathesis/ transesterification cascade reaction and glucose oxidase (GOx)/Fe-porphyrin catalyzed oxidation reaction, the multicompartmental microreactor exhibits 2.24-5.81 folds enhancement in cascade reaction efficiency in comparison to the homogeneous counterparts or physical mixture of individual analogues, due to the restrained mutual inactivation and substrate channelling effects. Our study prompts further design of multicompartment systems and the development of artificial cells capable of complex cellular transformations.
Collapse
Affiliation(s)
- Danping Tian
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Ruipeng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
36
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
37
|
Javan Nikkhah S, Sammalkorpi M. Single core and multicore aggregates from a polymer mixture: A dissipative particle dynamics study. J Colloid Interface Sci 2023; 635:231-241. [PMID: 36587575 DOI: 10.1016/j.jcis.2022.12.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Multicore block copolymer aggregates correspond to self-assembly such that the polymer system spontaneously phase separates to multiple, droplet-like cores differing in the composition from the polymer surroundings. Such multiple core aggregates are highly useful capsules for different applications, e.g., drug transport, catalysis, controlled solvation, and chemical reactions platforms. We postulate that polymer system composition provides a direct means for designing polymer systems that self-assemble to such morphologies and controlling the assembly response. SIMULATIONS Using dissipative particle dynamics (DPD) simulations, we examine the self-assembly of a mixture of highly and weakly solvophobic homopolymers and an amphiphilic block copolymer in the presence of solvent. We map the multicore vs single core (core-shell particles) assembly response and aggregate structure in terms of block copolymer concentration, polymer component ratios, and chain length of the weakly solvophobic homopolymer. FINDINGS For fixed components and polymer chemistries, the amount of block copolymer is the key to controlling single core vs multicore aggregation. We find a polymer system dependent critical copolymer concentration for the multicore aggregation and that a minimum level of incompatibility between the solvent and the weakly solvophobic component is required for multicore assembly. We discuss the implications for polymer system design for multicore assemblies. In summary, the study presents guidelines to produce multicore aggregates and to tune the assembly from multicore aggregation to single core core-shell particles.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
38
|
Nan L, Mao T, Shum HC. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging. MICROSYSTEMS & NANOENGINEERING 2023; 9:24. [PMID: 36910256 PMCID: PMC9995457 DOI: 10.1038/s41378-023-00502-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Droplet merging serves as a powerful tool to add reagents to moving droplets for biological and chemical reactions. However, unsynchronized droplet pairing impedes high-efficiency merging. Here, we develop a microfluidic design for the self-synchronization of reinjected droplets. A periodic increase in the hydrodynamic resistance caused by droplet blocking a T-junction enables automatic pairing of droplets. After inducing spacing, the paired droplets merge downstream under an electric field. The blockage-based design can achieve a 100% synchronization efficiency even when the mismatch rate of droplet frequencies reaches 10%. Over 98% of the droplets can still be synchronized at nonuniform droplet sizes and fluctuating reinjection flow rates. Moreover, the droplet pairing ratio can be adjusted flexibly for on-demand sample addition. Using this system, we merge two groups of droplets encapsulating enzyme/substrate, demonstrating its capacity to conduct multi-step reactions. We also combine droplet sorting and merging to coencapsulate single cells and single beads, providing a basis for high-efficiency single-cell sequencing. We expect that this system can be integrated with other droplet manipulation systems for a broad range of chemical and biological applications.
Collapse
Affiliation(s)
- Lang Nan
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong China
| | - Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
39
|
Li H, Yan Y, Chen J, Shi K, Song C, Ji Y, Jia L, Li J, Qiao Y, Lin Y. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. SCIENCE ADVANCES 2023; 9:eade5853. [PMID: 36857444 PMCID: PMC9977178 DOI: 10.1126/sciadv.ade5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Engineering artificial cellular systems capable of perceiving and transmitting external signals across membranes to activate downstream targets and coordinate protocellular responses is key to build cell-cell communications and protolife. Here, we report a synthetic photoreceptor-mediated signaling pathway with the integration of light harvesting, photo-to-chemical energy conversion, signal transmission, and amplification in synthetic cells, which ultimately resulted in protocell subcompartmentalization. Key to our design is a ruthenium-bipyridine complex that acts as a membrane-anchored photoreceptor to convert visible light into chemical information and transduce signals across the lipid membrane via flip-flop motion. By coupling receptor-mediated phototransduction with biological recognition and enzymatic cascade reactions, we further develop protocell signaling-encoded Boolean logic gates. Our results illustrate a minimal cell model to mimic the photoreceptor cells that can transduce the energy of light into intracellular responses and pave the way to modular control over the flow of information for complex metabolic and signaling pathways.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuwen Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
40
|
Yang B, Li S, Mu W, Wang Z, Han X. Light-Harvesting Artificial Cells Containing Cyanobacteria for CO 2 Fixation and Further Metabolism Mimicking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201305. [PMID: 35905491 DOI: 10.1002/smll.202201305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The bottom-up constructed artificial cells help to understand the cell working mechanism and provide the evolution clues for organisms. The energy supply and metabolism mimicry are the key issues in the field of artificial cells. Herein, an artificial cell containing cyanobacteria capable of light harvesting and carbon dioxide fixation is demonstrated to produce glucose molecules by converting light energy into chemical energy. Two downstream "metabolic" pathways starting from glucose molecules are investigated. One involves enzyme cascade reaction to produce H2 O2 (assisted by glucose oxidase) first, followed by converting Amplex red to resorufin (assisted by horseradish peroxidase). The other pathway is more biologically relevant. Glucose molecules are dehydrogenated to transfer hydrogens to nicotinamide adenine dinucleotide (NAD+ ) for the production of nicotinamide adenine dinucleotide hydride (NADH) molecules in the presence of glucose dehydrogenase. Further, NADH molecules are oxidized into NAD+ by pyruvate catalyzed by lactate dehydrogenase, meanwhile, lactate is obtained. Therefore, the cascade cycling of NADH/NAD+ is built. The artificial cells built here pave the way for investigating more complicated energy-supplied metabolism inside artificial cells.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
41
|
Scacchi A, Hasheminejad K, Javan Nikkhah S, Sammalkorpi M. Controlling self-assembling co-polymer coatings of hydrophilic polysaccharide substrates via co-polymer block length ratio. J Colloid Interface Sci 2023; 640:809-819. [PMID: 36905890 DOI: 10.1016/j.jcis.2023.02.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
HYPOTHESIS The degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SIMULATIONS We examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FINDINGS Variation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.
Collapse
Affiliation(s)
- Alberto Scacchi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland; Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kourosh Hasheminejad
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
42
|
Malatini C, Carbajales C, Luna M, Beltrán O, Amorín M, Masaguer CF, Blanco JM, Barbosa S, Taboada P, Coelho A. 3D-Printing of Capsule Devices as Compartmentalization Tools for Supported Reagents in the Search of Antiproliferative Isatins. Pharmaceuticals (Basel) 2023; 16:310. [PMID: 37259453 PMCID: PMC9965165 DOI: 10.3390/ph16020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 10/29/2023] Open
Abstract
The application of high throughput synthesis methodologies in the generation of active pharmaceutical ingredients (APIs) currently requires the use of automated and easily scalable systems, easy dispensing of supported reagents in solution phase organic synthesis (SPOS), and elimination of purification and extraction steps. The recyclability and recoverability of supported reagents and/or catalysts in a rapid and individualized manner is a challenge in the pharmaceutical industry. This objective can be achieved through a suitable compartmentalization of these pulverulent reagents in suitable devices for it. This work deals with the use of customized polypropylene permeable-capsule devices manufactured by 3D printing, using the fused deposition modeling (FDM) technique, adaptable to any type of flask or reactor. The capsules fabricated in this work were easily loaded "in one step" with polymeric reagents for use as scavengers of isocyanides in the work-up process of Ugi multicomponent reactions or as compartmentalized and reusable catalysts in copper-catalyzed cycloadditions (CuAAC) or Heck palladium catalyzed cross-coupling reactions (PCCCRs). The reaction products are different series of diversely substituted isatins, which were tested in cancerous cervical HeLa and murine 3T3 Balb fibroblast cells, obtaining potent antiproliferative activity. This work demonstrates the applicability of 3D printing in chemical processes to obtain anticancer APIs.
Collapse
Affiliation(s)
- Camilla Malatini
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Carbajales
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mariángel Luna
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Osvaldo Beltrán
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Manuel Amorín
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Christian F Masaguer
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M Blanco
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
43
|
He X, Wu Q, Hou C, Hu M, Wang Q, Wang X. A Compartmentalized Nanoreactor Formed by Interfacial Hydrogelation for Cascade Enzyme Catalytic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218766. [PMID: 36780198 DOI: 10.1002/anie.202218766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Some cellular enzymatic pathways are located within a single organelle, while most others involve enzymes that are located within multiple compartmentalized cellular organelles to realize the efficient multi-step enzymatic process. Herein, bioinspired by enzyme-mediated biosynthesis and biochemical defense, a compartmented nanoreactor (Burr-NCs@GlSOD ) was constructed through a self-confined catalysis strategy with burr defect-engineered molybdenum disulfide/Prussian blue analogues (MoS2 /PBA) and an interfacial diffusion-controlled hydrogel network. The specific catalytic mechanism of the laccase-like superactivity induced hydrogelation and cascade enzyme catalytic therapy were explored. The confined hydrogelation strategy introduces a versatile means for nanointerface functionalization and provides insight into biological construction of simulated enzymes with comparable activity and also the specificity to natural enzymes.
Collapse
Affiliation(s)
- Xingyue He
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qing Wu
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chen Hou
- Shanghai Synchrotron Radiation Facility (SSRF) from Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Min Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qigang Wang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xia Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
44
|
Jobdeedamrong A, Cao S, Harley I, Crespy D, Landfester K, Caire da Silva L. Assembly of biomimetic microreactors using caged-coacervate droplets. NANOSCALE 2023; 15:2561-2566. [PMID: 36601867 DOI: 10.1039/d2nr05101j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complex coacervates are liquid-like droplets that can be used to create adaptive cell-like compartments. These compartments offer a versatile platform for the construction of bioreactors inspired by living cells. However, the lack of a membrane significantly reduces the colloidal stability of coacervates in terms of fusion and surface wetting, which limits their suitability as compartments. Here, we describe the formation of caged-coacervates surrounded by a semipermeable shell of silica nanocapsules. We demonstrate that the silica nanocapsules create a protective shell that also regulates the molecular transport of water-soluble compounds as a function of nanocapasule size. The adjustable semipermeability and intrinsic affinity of enzymes for the interior of the caged-coacervates allowed us to assemble biomimetic microreactors with enhanced colloidal stability.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| |
Collapse
|
45
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
46
|
Konishi H, Nakata E, Komatsubara F, Morii T. Controlled Assembly of Fluorophores inside a Nanoliposome. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020911. [PMID: 36677968 PMCID: PMC9864194 DOI: 10.3390/molecules28020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Cellular compartmentalization plays an essential role in organizing the complex and multiple biochemical reactions in the cell. An artificial compartment would provide powerful strategies to develop new biochemical tools for material production and diagnosis, but it is still a great challenge to synthesize the compartments that encapsulate materials of interest while controlling their accurate locations, numbers, and stoichiometry. In this study, we evaluated chemical characteristics of a liposome-encapsulated compartment, which has great potential to locate various materials of interest with precise control of their locations and numbers in the compartment. A nanoliposome was constructed inside a ring-shaped DNA origami skeleton according to the method of Yang et al., and further equipped with a double-stranded DNA platform to assemble molecules of interest in the nanoliposome. Upon formation of the nanoliposome, a pH-sensitive fluorophore on the bridged platform showed little or no response to the pH change of the outer buffer, ensuring that the molecules assembled on the platform are effectively shielded from the outer environment. The ring-shaped DNA skeleton equipped with a double-stranded DNA platform allows spatial assembly of several functional molecules inside the nanoliposome to isolate them from the outer environment.
Collapse
|
47
|
Zhang N, Trépout S, Chen H, Li MH. AIE Polymer Micelle/Vesicle Photocatalysts Combined with Native Enzymes for Aerobic Photobiocatalysis. J Am Chem Soc 2023; 145:288-299. [PMID: 36562998 DOI: 10.1021/jacs.2c09933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biocatalytic transformation has attracted increasing attention in the green synthesis of chemicals due to the diversity of enzymes, their high catalytic activities and specificities, and environmentally benign conditions. Most redox enzymes in nature are dependent on nicotinamide cofactors like β-nicotinamide adenine dinucleotide (NAD+)/reduced nicotinamide adenine dinucleotide (NADH). The use of solar energy, especially visible light, in the regeneration of cofactors through the combination of photocatalysis and biocatalysis provides an extraordinary opportunity to make complete green processes. However, the combination of photocatalysts and enzymes has been challenged by the rapid degradation and deactivation of the enzymatic material by photogenerated reactive oxygen species (ROS). Here, we design core-shell structured polymer micelles and vesicles with aggregation-induced emission (AIE) as visible-light-mediated photocatalysts for highly stable and recyclable photobiocatalysis under aerobic conditions. NAD+ from NADH can be efficiently regenerated by the photoactive hydrophobic core of polymer micelles and the hydrophobic membrane of polymer vesicles, while the enzymatic material (glucose 1-dehydrogenase) is screened from the attack of photogenerated ROS by the hydrophilic surface layer of polymer colloids. After at least 10 regeneration cycles, the enzyme keeps its active state; meanwhile, polymer micelles and vesicles maintain their photocatalytic activity. These polymer colloids show the potential to be developed for the implementation of industrially relevant photobiocatalytic systems.
Collapse
Affiliation(s)
- Nian Zhang
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Trépout
- Institut Curie, Inserm US43, CNRS UMS2016, Université Paris-Saclay, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| | - Hui Chen
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Min-Hui Li
- Institut de Recherche de Chimie Paris, UMR8247, CNRS, Chimie ParisTech, PSL Université Paris, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
48
|
Zong W, Shao X, Li J, Chai Y, Hu X, Zhang X. Synthetic Intracellular Environments: From Basic Science to Applications. Anal Chem 2023; 95:535-549. [PMID: 36625127 DOI: 10.1021/acs.analchem.2c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xiaotong Shao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China.,Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar161006, China
| | - Yunhe Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou325035, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar161006, China
| |
Collapse
|
49
|
Toor R, Hourdin L, Shanmugathasan S, Lefrançois P, Arbault S, Lapeyre V, Bouffier L, Douliez JP, Ravaine V, Perro A. Enzymatic cascade reaction in simple-coacervates. J Colloid Interface Sci 2023; 629:46-54. [PMID: 36152580 DOI: 10.1016/j.jcis.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
The design of enzymatic droplet-sized reactors constitutes an important challenge with many potential applications such as medical diagnostics, water purification, bioengineering, or food industry. Coacervates, which are all-aqueous droplets, afford a simple model for the investigation of enzymatic cascade reaction since the reactions occur in all-aqueous media, which preserve the enzymes integrity. However, the question relative to how the sequestration and the proximity of enzymes within the coacervates might affect their activity remains open. Herein, we report the construction of enzymatic reactors exploiting the simple coacervation of ampholyte polymer chains, stabilized with agar. We demonstrate that these coacervates have the ability to sequester enzymes such as glucose oxidase and catalase and preserve their catalytic activity. The study is carried out by analyzing the color variation induced by the reduction of resazurin. Usually, phenoxazine molecules acting as electron acceptors are used to characterize glucose oxidase activity. Resazurin (pink) undergoes a first reduction to resorufin (salmon) and then to dihydroresorufin (transparent) in presence of glucose oxidase and glucose. We have observed that resorufin is partially regenerated in the presence of catalase, which demonstrates the enzymatic cascade reaction. Studying this enzymatic cascade reaction within coacervates as reactors provide new insights into the role of the proximity, confinement towards enzymatic activity.
Collapse
Affiliation(s)
- Ritu Toor
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Lysandre Hourdin
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Sharvina Shanmugathasan
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Pauline Lefrançois
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Jean-Paul Douliez
- UMR 1332, Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre de Bordeaux, 33883 Villenave d'Ornon, France
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| | - Adeline Perro
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France.
| |
Collapse
|
50
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|