1
|
Cruz FT, Rosa DP, Vasconcelos AVB, de Oliveira JS, Bleicher L, Santos AMC. Purification and partial physical-chemical characterization of a new bovine trypsin proteoform (zeta-trypsin). Int J Biol Macromol 2024; 268:131860. [PMID: 38670206 DOI: 10.1016/j.ijbiomac.2024.131860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Recent advancements in enzyme research have unveiled a new proteoform of bovine trypsin, expanding our understanding of this well-characterized enzyme. While generally similar to other trypsins, this novel proteoform comprises three polypeptide chains, marking a significant difference in activity, kinetic properties, and conformational stability. Compared with the already known bovine trypsin proteoforms, the results showed a lower: activity, kcat and kcat.KM-1 and protein 'foldedness' ratio for the new proteoform. Molecular autolysis, a common feature in trypsin and chymotrypsin, has been explored through comparative physical chemistry properties with other proteoforms. This new proteoform of trypsin not only enriches the existing enzyme repertoire but also promises to shed light on the intricate physiological pathway for enzyme inactivation. Our results suggest that the new trypsin proteoform is one of the likely final pathways for enzyme inactivation in a physiological environment. This discovery opens up new avenues for further research into the functional implications of this new trypsin proteoform.
Collapse
Affiliation(s)
- Fabiano Torres Cruz
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Dayanne Pinho Rosa
- Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Jamil Silvano de Oliveira
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bleicher
- Department of Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Pos-Graduate at Biochemistry and Immunology - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Martins Costa Santos
- Pos-Graduate Program of Biotechnology - Federal University of Espírito Santo, Vitória, ES, Brazil; Pos-Graduate Program of Biochemistry - Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Dey P, Biswas P. Effect of caffeine on the aggregation of amyloid-β-A 3D RISM study. J Chem Phys 2024; 160:125101. [PMID: 38516974 DOI: 10.1063/5.0202636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
Alzheimer's disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-β peptide. The primary therapeutic approaches for treating Alzheimer's disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-β using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-β dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-β, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-β dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Zhang L, Ge H, Zhao J, Liu C, Wang Y. L-Theanine Improves the Gelation of Ginkgo Seed Proteins at Different pH Levels. Gels 2024; 10:131. [PMID: 38391461 PMCID: PMC10887952 DOI: 10.3390/gels10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
L-theanine (L-Th), a non-protein amino acid naturally found in teas and certain plant leaves, has garnered considerable attention due to its health benefits and potential to modify proteins such as ginkgo seed proteins, which have poor gelling properties, thereby expanding their applications in the food industry. The objective of this study was to investigate the impact of varying concentrations of L-Th (0.0%, 0.5%, 1.0%, and 2.0%) on the gelling properties of ginkgo seed protein isolate (GSPI) at various pH levels (5.0, 6.0, and 7.0). The GSPI gels exhibited the highest strength at a pH of 5.0 (132.1 ± 5.6 g), followed by a pH of 6.0 (95.9 ± 3.9 g), while a weak gel was formed at a pH of 7.0 (29.5 ± 0.2 g). The incorporation of L-Th increased the hardness (58.5-231.6%) and springiness (3.0-9.5%) of the GSPI gels at a pH of 7.0 in a concentration-dependent manner. However, L-Th did not enhance the gel strength or water holding capacity at a pH of 5.0. The rheological characteristics of the GSPI sols were found to be closely related to the textural properties of L-Th-incorporated gels. To understand the underlying mechanism of L-Th's effects, the physicochemical properties of the sols were analyzed. Specifically, L-Th promoted GSPI solubilization (up to 7.3%), reduced their hydrophobicity (up to 16.2%), reduced the particle size (up to 40.9%), and increased the ζ potential (up to 21%) of the sols. Overall, our findings suggest that L-Th holds promise as a functional ingredient for improving gel products.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Dey P, Biswas P. Exploring the aggregation of amyloid-β 42 through Monte Carlo simulations. Biophys Chem 2023; 297:107011. [PMID: 37037120 DOI: 10.1016/j.bpc.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Coarse-grained Monte Carlo simulations are performed for a disordered protein, amyloid-β 42 to identify the interactions and understand the mechanism of its aggregation. A statistical potential is developed from a selected dataset of intrinsically disordered proteins, which accounts for the respective contributions of the bonded and non-bonded potentials. While, the bonded potential comprises the bond, bend, and dihedral constraints, the nonbonded interactions include van der Waals interactions, hydrogen bonds, and the two-body potential. The two-body potential captures the features of both hydrophobic and electrostatic interactions that brings the chains at a contact distance, while the repulsive van der Waals interactions prevent them from a collapse. Increased two-body hydrophobic interactions facilitate the formation of amorphous aggregates rather than the fibrillar ones. The formation of aggregates is validated from the interchain distances, and the total energy of the system. The aggregate is structurally characterized by the root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. The aggregates are characterized by a decrease in SASA, an increase in the non-local interactions and a distinct free energy minimum relative to that of the monomeric state of amyloid-β 42. The hydrophobic residues help in nucleation, while the charged residues help in oligomerization and aggregation.
Collapse
|
5
|
Dey P, Biswas P. Aggregation propensities of proteins with varying degrees of disorder. J Comput Chem 2023; 44:874-886. [PMID: 36468418 DOI: 10.1002/jcc.27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/10/2022]
Abstract
The hydration thermodynamics of a globular protein (AcP), three intrinsically disordered protein regions (1CD3, 1MVF, 1F0R) and a fully disordered protein (α-synuclein) is studied by an approach that combines an all-atom explicit water molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. The variation in hydration free energy with percentage disorder of the selected proteins is investigated through its nonelectrostatic and electrostatic components. A decrease in hydration free energy is observed with an increase in percentage disorder, indicating favorable interactions of the disordered proteins with the solvent. This confirms the role of percentage disorder in determining the aggregation propensity of proteins which is measured in terms of the hydration free energy in addition to their respective mean net charge and mean hydrophobicity. The hydration free energy is decoupled into energetic and entropic terms. A residue-wise decomposition analysis of the hydration free energy for the selected proteins is evaluated. The decomposition shows that the disordered regions contribute more than the ordered ones for the intrinsically disordered protein regions. The dominant role of electrostatic interactions is confirmed from the residue-wise decomposition of the hydration free energy. The results depict that the negatively charged residues contribute more to the total hydration free energy for the proteins with negative mean net charge, while the positively charged residues contribute more for proteins with positive mean net charge.
Collapse
Affiliation(s)
- Priya Dey
- Department of Chemistry, University of Delhi, Delhi, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Lazaric A, Pattni V, Fuegner K, Ben-Naim A, Heyden M. Solvation free energy arithmetic for small organic molecules. J Comput Chem 2023; 44:1263-1277. [PMID: 36866644 DOI: 10.1002/jcc.27081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 03/04/2023]
Abstract
Solvent-mediated interactions contribute to ligand binding affinities in computational drug design and provide a challenge for theoretical predictions. In this study, we analyze the solvation free energy of benzene derivatives in water to guide the development of predictive models for solvation free energies and solvent-mediated interactions. We use a spatially resolved analysis of local solvation free energy contributions and define solvation free energy arithmetic, which enable us to construct additive models to describe the solvation of complex compounds. The substituents analyzed in this study are carboxyl and nitro-groups due to their similar sterical requirements but distinct interactions with water. We find that nonadditive solvation free energy contributions are primarily attributed to electrostatics, which are qualitatively reproduced with computationally efficient continuum models. This suggests a promising route for the development of efficient and accurate models for the solvation of complex molecules with varying substitution patterns using solvation arithmetic.
Collapse
Affiliation(s)
- Aleksandar Lazaric
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Viren Pattni
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaprao Fuegner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arieh Ben-Naim
- Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Hu K, Shirakashi R. Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein. J Phys Chem B 2023; 127:1376-1384. [PMID: 36749793 DOI: 10.1021/acs.jpcb.2c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
8
|
Kalayan J, Chakravorty A, Warwicker J, Henchman RH. Total free energy analysis of fully hydrated proteins. Proteins 2023; 91:74-90. [PMID: 35964252 PMCID: PMC10087023 DOI: 10.1002/prot.26411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
The total free energy of a hydrated biomolecule and its corresponding decomposition of energy and entropy provides detailed information about regions of thermodynamic stability or instability. The free energies of four hydrated globular proteins with different net charges are calculated from a molecular dynamics simulation, with the energy coming from the system Hamiltonian and entropy using multiscale cell correlation. Water is found to be most stable around anionic residues, intermediate around cationic and polar residues, and least stable near hydrophobic residues, especially when more buried, with stability displaying moderate entropy-enthalpy compensation. Conversely, anionic residues in the proteins are energetically destabilized relative to singly solvated amino acids, while trends for other residues are less clear-cut. Almost all residues lose intraresidue entropy when in the protein, enthalpy changes are negative on average but may be positive or negative, and the resulting overall stability is moderate for some proteins and negligible for others. The free energy of water around single amino acids is found to closely match existing hydrophobicity scales. Regarding the effect of secondary structure, water is slightly more stable around loops, of intermediate stability around β strands and turns, and least stable around helices. An interesting asymmetry observed is that cationic residues stabilize a residue when bonded to its N-terminal side but destabilize it when on the C-terminal side, with a weaker reversed trend for anionic residues.
Collapse
Affiliation(s)
- Jas Kalayan
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Arghya Chakravorty
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jim Warwicker
- Manchester Institute of Biotechnology and School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
10
|
Thu TTM, Li MS. Protein aggregation rate depends on mechanical stability of fibrillar structure . J Chem Phys 2022; 157:055101. [DOI: 10.1063/5.0088689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of the fibrillar structure of amyloid proteins/peptides is believed to be associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, etc. Since the rate of aggregation can influence neurotoxicity, finding the key factors that control this rate is of paramount importance. It was recently found evidence that the rate of protein aggregation is related to the mechanical stability of the fibrillar structure, such that the higher the mechanical stability, the faster the fibril is formed. However, this conclusion was supported by a limited dataset. In this work, we expand the previous study to a larger dataset, including the wild type of Aβ42 peptide and its 20 mutants, the aggregation rate of which was measured experimentally. By using all-atom steered molecular dynamics (SMD) simulations we can access the mechanical stability of the fibril structure, which is characterized by the rupture force, pulling work and unbinding free energy barrier. Our result confirms that mechanical stability is indeed related to the aggregation rate. Since estimation of the aggregation rate using all-atom simulations is almost forbidden by the current computational capabilities, our result is useful for predicting it based on information obtained from fast SMD simulations for fibrils.
Collapse
Affiliation(s)
| | - Mai Suan Li
- Theoretical Physics, Institute of Physics, Polish Academy of Sciences, Poland
| |
Collapse
|
11
|
Rezaei S, Sefidbakht Y, Uskoković V. Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. J Biomol Struct Dyn 2022; 40:4662-4681. [PMID: 33331243 PMCID: PMC7784839 DOI: 10.1080/07391102.2020.1860829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Here, we report on a computational comparison of the receptor-binding domains (RBDs) on the spike proteins of severe respiratory syndrome coronavirus-2 (SARS-CoV-2) and SARS-CoV in free forms and as complexes with angiotensin-converting enzyme 2 (ACE2) as their receptor in humans. The impact of 42 mutations discovered so far on the structure and thermodynamics of SARS-CoV-2 RBD was also assessed. The binding affinity of SARS-CoV-2 RBD for ACE2 is higher than that of SARS-CoV RBD. The binding of COVA2-04 antibody to SARS-CoV-2 RBD is more energetically favorable than the binding of COVA2-39, but also less favorable than the formation of SARS-CoV-2 RBD-ACE2 complex. The net charge, the dipole moment and hydrophilicity of SARS-CoV-2 RBD are higher than those of SARS-CoV RBD, producing lower solvation and surface free energies and thus lower stability. The structure of SARS-CoV-2 RBD is also more flexible and more open, with a larger solvent-accessible surface area than that of SARS-CoV RBD. Single-point mutations have a dramatic effect on distribution of charges, most prominently at the site of substitution and its immediate vicinity. These charge alterations alter the free energy landscape, while X→F mutations exhibit a stabilizing effect on the RBD structure through π stacking. F456 and W436 emerge as two key residues governing the stability and affinity of the spike protein for its ACE2 receptor. These analyses of the structural differences and the impact of mutations on different viral strains and members of the coronavirus genera are an essential aid in the development of effective therapeutic strategies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center, Shahid Behesti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Behesti University, Tehran, Iran
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano, Irvine, CA, USA
| |
Collapse
|
12
|
Norton-Baker B, Mehrabi P, Kwok AO, Roskamp KW, Rocha MA, Sprague-Piercy MA, von Stetten D, Miller RJD, Martin RW. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging. Structure 2022; 30:763-776.e4. [PMID: 35338852 PMCID: PMC9081212 DOI: 10.1016/j.str.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022]
Abstract
Cataract, a clouding of the eye lens from protein precipitation, affects millions of people every year. The lens proteins, the crystallins, show extensive post-translational modifications (PTMs) in cataractous lenses. The most common PTMs, deamidation and oxidation, promote crystallin aggregation; however, it is not clear precisely how these PTMs contribute to crystallin insolubilization. Here, we report six crystal structures of the lens protein γS-crystallin (γS): one of the wild-type and five of deamidated γS variants, from three to nine deamidation sites, after sample aging. The deamidation mutations do not change the overall fold of γS; however, increasing deamidation leads to accelerated disulfide-bond formation. Addition of deamidated sites progressively destabilized protein structure, and the deamidated variants display an increased propensity for aggregation. These results suggest that the deamidated variants are useful as models for accelerated aging; the structural changes observed provide support for redox activity of γS-crystallin in the lens.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA; Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Department for Atomically Resolved Dynamics, Max-Planck-Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; Institute for Nanostructure and Solid-State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ashley O Kwok
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A Rocha
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit C/O Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.
| |
Collapse
|
13
|
Mondal S, Ghanta KP, Bandyopadhyay S. Dynamic Heterogeneity at the Interface of an Intrinsically Disordered Peptide. J Chem Inf Model 2022; 62:1942-1955. [PMID: 35384652 DOI: 10.1021/acs.jcim.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is believed that water around an intrinsically disordered protein or peptide (IDP) in an aqueous environment plays an important role in guiding its conformational properties and aggregation behavior. However, despite its importance, only a handful of studies exploring the correlation between the conformational motions of an IDP and the microscopic properties of water at its surface are reported. Attempts have been made in this work to study the dynamic properties of water present in the vicinity of α-synuclein, an IDP associated with Parkinson's disease (PD). Room temperature molecular dynamics (MD) simulations of eight α-synuclein1-95 peptides with a wide range of initial conformations have been carried out in aqueous media. The calculations revealed that due to solid-like caging motions, the translational and rotational mobility of water molecules near the surfaces of the peptide repeat unit segments R1 to R7 are significantly restricted. A small degree of dynamic heterogeneity in the hydration environment around the repeat units has been observed with water near the hydrophobic R6 unit exhibiting relatively more restricted diffusivity. The time scales involving the overall structural relaxations of peptide-water and water-water hydrogen bonds near the peptide have been found to be correlated with the time scale of diffusion of the interfacial water molecules. We believe that the relatively more hindered dynamic environment near R6 can help create water-mediated contacts centered around R6 between peptide monomers at a higher concentration, thereby enhancing the early stages of peptide aggregation.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
14
|
Kim D, Chong SH, Shin S, Ham S. Mutation effects on FAS1 domain 4 based on structure and solubility. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140746. [PMID: 34942360 DOI: 10.1016/j.bbapap.2021.140746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Mutations in the fasciclin 1 domain 4 (FAS1-4) of transforming growth factor β-induced protein (TGFBIp) are associated with insoluble extracellular deposits and corneal dystrophies (CDs). The decrease in solubility upon mutation has been implicated in CD; however, the exact molecular mechanisms are not well understood. Here, we performed molecular dynamics simulations followed by solvation thermodynamic analyses of the FAS1-4 domain and its three mutants-R555W, R555Q, and A546T-linked to granular corneal dystrophy type 1, Thiel-Behnke corneal dystrophy and lattice corneal dystrophy, respectively. We found that both R555W and R555Q mutants have less affinity toward solvent water relative to the wild-type protein. In the R555W mutant, a remarkable increase in solvation free energy was observed because of the structural changes near the mutation site. The mutation site W555 is buried in other hydrophobic residues, and R557 simultaneously forms salt bridges with E554 and D561. In the R555Q mutant, the increase in solvation free energy is caused by structural rearrangements far from the mutation site. R558 separately forms salt bridges with D575, E576, and E598. Thus, we thus identified the relationship between the decrease in solubility and conformational changes caused by mutations, which may be useful in designing potential therapeutics and in blocking FAS1 aggregation related to CD.
Collapse
Affiliation(s)
- DongGun Kim
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea; Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Song-Ho Chong
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea.
| |
Collapse
|
15
|
Im D, Heo CE, Son MK, Park CR, Kim HI, Choi JM. Kinetic Modulation of Amyloid-β (1–42) Aggregation and Toxicity by Structure-Based Rational Design. J Am Chem Soc 2022; 144:1603-1611. [DOI: 10.1021/jacs.1c10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Chae Ri Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
16
|
Chatterjee P, Cho MK, Bui HTD, Ham S. Atomic Level Investigations of Early Aggregation of Tau43 in Water
II
.
Tau43‐Aβ42
vs.
Tau43‐
Tau43
Dimerizations. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Prathit Chatterjee
- Department of Chemistry, The Research Institute of Natural Sciences Sookmyung Women's University Seoul 04310 Korea
| | - Myung Keun Cho
- Department of Chemistry, The Research Institute of Natural Sciences Sookmyung Women's University Seoul 04310 Korea
- Department of Chemistry, College of Natural Sciences Seoul National University, Gwanak‐ro 1, Gwanak‐ku Seoul 08826 Korea
| | - Huong T. D. Bui
- Department of Chemistry, The Research Institute of Natural Sciences Sookmyung Women's University Seoul 04310 Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences Sookmyung Women's University Seoul 04310 Korea
| |
Collapse
|
17
|
Lim H, Jung Y. MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning. J Cheminform 2021; 13:56. [PMID: 34332634 PMCID: PMC8325294 DOI: 10.1186/s13321-021-00533-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Recent advances in machine learning technologies and their applications have led to the development of diverse structure-property relationship models for crucial chemical properties. The solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic feature vectors from the given chemical structure, while the inner product between the two atomistic feature vectors calculates their interactions. The results of 6239 experimental measurements achieve outstanding performance and transferability for enlarging training data owing to its solvent-non-specific nature. An analysis of the interaction map shows that our model has significant potential for producing group contributions on the solvation energy, which indicates that the model provides not only predictions of target properties but also more detailed physicochemical insights.
Collapse
Affiliation(s)
- Hyuntae Lim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Unexpected organic hydrate luminogens in the solid state. Nat Commun 2021; 12:2339. [PMID: 33879783 PMCID: PMC8058042 DOI: 10.1038/s41467-021-22685-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Developing organic photoluminescent materials with high emission efficiencies in the solid state under a water atmosphere is important for practical applications. Herein, we report the formation of both intra- and intermolecular hydrogen bonds in three tautomerizable Schiff-base molecules which comprise active hydrogen atoms that act as proton donors and acceptors, simultaneously hindering emission properties. The intercalation of water molecules into their crystal lattices leads to structural rearrangement and organic hydrate luminogen formation in the crystalline phase, triggering significantly enhanced fluorescence emission. By suppressing hydrogen atom shuttling between two nitrogen atoms in the benzimidazole ring, water molecules act as hydrogen bond donors to alter the electronic transition of the molecular keto form from nπ* to lower-energy ππ* in the excited state, leading to enhancing emission from the keto form. Furthermore, the keto-state emission can be enhanced using deuterium oxide (D2O) owing to isotope effects, providing a new opportunity for detecting and quantifying D2O. Developing organic photoluminescent materials with high emission efficiencies in the solid state under a water atmosphere is important for practical applications. Here, the authors report the formation of intra- and intermolecular hydrogen bonds in a tautomerizable Schiff base and intercalation of water in the crystal lattice leading to a luminescent organic hydrate.
Collapse
|
19
|
Morphogenic fields: A coming of age. Explore (NY) 2021; 18:187-194. [PMID: 33903061 DOI: 10.1016/j.explore.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Morphogenesis, the coming-into-being of living organisms, was first described in the 4th century BC by Aristotle, progenitor of biology and embryology. Over the centuries it has been the subject of innumerable commentaries by philosophers, theologians and scientists but no consensus has ever been reached as to its causes. In the late 19th century, along with the emergence of cellular and molecular biology, embryology underwent a renaissance and became a topic of great interest and research. Early on the discipline divided into two opposing factions, those who attempted to explain fetal development on the basis of cellular and molecular mechanisms, and those who invoked the presence of organizing fields. The morphogenic field was first articulated in the early decades of the 20th century by multiple researchers independently of each other. The field became an extremely useful conceptual tool by which to explain a wide range of developmental phenomena. While embryology and genetics originally formed a unified discipline, during the 1930s 40 s geneticists became progressively skeptical of the field notion. The discovery of the DNA structure by Watson and Crick in the early 1950s decisively settled matters and thereafter the two disciplines pursued different lines of inquiry. After World War II embryology and the field concept went into a decades-long decline. By the 1980s an increasing number of scientists began to critically reexamine the morphogenic field concept and it underwent a second renaissance. In this paper I examine the development and evolution of the field concept, both experimentally and conceptually, and highlight the failure of genetic mechanisms to explain morphogenesis. I provide three instances from the medical literature of developmental phenomena which are only explainable on the basis of morphogenic field dynamics and argue that the field concept must be readmitted into mainstream scientific discourse.
Collapse
|
20
|
Aggarwal L, Biswas P. Hydration Thermodynamics of Familial Parkinson's Disease-Linked Mutants of α-Synuclein. J Chem Inf Model 2021; 61:1850-1858. [PMID: 33749266 DOI: 10.1021/acs.jcim.1c00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hydration thermodynamics of different mutants of α-synuclein (α-syn) related to familial Parkinson's disease (PD) is explored using a computational approach that combines both molecular dynamics simulations in water and integral equation theory of molecular liquids. This analysis focuses on the change in conformational entropy, hydration free energy (HFE), and partial molar volume of α-syn upon mutation. The results show that A53T, A30P, E46K, and H50Q mutants aggregate more readily and display increased HFE and less negative interaction volume than the wild-type α-syn. In contrast, an opposite trend is observed for the G51D mutant with a lower experimental aggregation rate. The residuewise decomposition analysis of the HFE highlights that the dehydration/hydration of the hydrophilic residue-rich N- and C-termini of α-syn majorly contributes to the change upon mutation. The hydration shell contributions of different residues to the interaction volume are consistent with its increase/decrease upon mutation. This work shows that both HFE and interaction volume determine the aggregation kinetics of α-syn upon mutation and may serve as an appropriate benchmark for the treatment of PD.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Mitra D, Das Mohapatra PK. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Appl Biochem Biotechnol 2021; 193:1688-1700. [PMID: 33683551 DOI: 10.1007/s12010-021-03547-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
The plausible explanation behind the stability of thermophilic protein is still yet to be defined more clearly. Here, an in silico study has been undertaken by investigating the sequence and structure of protease from thermophilic (tPro) bacteria and mesophilic (mPro) bacteria. Results showed that charged and uncharged polar residues have higher abundance in tPro. In extreme environment, the tPro is stabilized by high number of isolated and network salt bridges. A novel cyclic salt bridge is also found in a structure of tPro. High number of metal ion-binding site also helps in protein stabilization of thermophilic protease. Aromatic-aromatic interactions also play a crucial role in tPro stabilization. Formation of long network aromatic-aromatic interactions also first time reported here. Finally, the present study provides a major insight with a newly identified cyclic salt bridge in the stability of the enzyme, which may be helpful for protein engineering. It is also used in industrial applications for human welfare.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB, India
| | | |
Collapse
|
22
|
Pyne P, Samanta N, Gohil H, Prabhu SS, Mitra RK. Alteration of water absorption in the THz region traces the onset of fibrillation in proteins. Chem Commun (Camb) 2021; 57:998-1001. [PMID: 33399590 DOI: 10.1039/d0cc06500e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using terahertz spectroscopy, we established the alteration of the collective hydration of water during the fibrillation process (native → intermediate → fibril) of a model protein bovine serum albumin. This label-free study concludes that water dynamics change systematically with protein conformational changes as it experiences a hydrophobic environment during the initial protein unfolding process, followed by the release of bound water during oligomerization and finally the hydrophobic interior of the fibril.
Collapse
Affiliation(s)
- Partha Pyne
- Department of Chemical, Biological & Macro-Molecular Sciences, Satyendra Nath Bose National Centre for Basic Sciences, Block-JD; Sector-III; Salt Lake, Kolkata-700106, India.
| | - Nirnay Samanta
- Department of Chemical, Biological & Macro-Molecular Sciences, Satyendra Nath Bose National Centre for Basic Sciences, Block-JD; Sector-III; Salt Lake, Kolkata-700106, India. and Institute for Physical and Theoretical Chemistry, TU Braunschweig, 38106 Braunschweig, Germany
| | - Himanshu Gohil
- Department of Condensed Matter Physics And Material Science, Tata Institute of Fundamental Research, Homi Bhahba Road, Colaba, Mumbai-400005, India.
| | - S S Prabhu
- Department of Condensed Matter Physics And Material Science, Tata Institute of Fundamental Research, Homi Bhahba Road, Colaba, Mumbai-400005, India.
| | - Rajib Kumar Mitra
- Department of Chemical, Biological & Macro-Molecular Sciences, Satyendra Nath Bose National Centre for Basic Sciences, Block-JD; Sector-III; Salt Lake, Kolkata-700106, India.
| |
Collapse
|
23
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
24
|
Aggarwal L, Biswas P. Hydration Thermodynamics of the N-Terminal FAD Mutants of Amyloid-β. J Chem Inf Model 2021; 61:298-310. [PMID: 33440932 DOI: 10.1021/acs.jcim.0c01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydration thermodynamics of amyloid-β (Aβ) and its pathogenic familial Alzheimer's disease (FAD) mutants such as A2V, Taiwan (D7H), Tottori (D7N), and English (H6R) and the protective A2T mutant is investigated by a combination of all-atom, explicit water molecular dynamics (MD) simulations and the three-dimensional reference interaction site model (3D-RISM) theory. The change in the hydration free energy on mutation is decomposed into the energetic and entropic components, which comprise electrostatic and nonelectrostatic contributions. An increase in the hydration free energy is observed for A2V, D7H, D7N, and H6R mutations that increase the aggregation propensity of Aβ and lead to an early onset of Alzheimer's disease, while a reverse trend is noted for the protective A2T mutation. An antiphase correlation is found between the change in the hydration energy and the internal energy of Aβ upon mutation. A residue-wise decomposition analysis shows that the change in the hydration free energy of Aβ on mutation is primarily due to the hydration/dehydration of the side-chain atoms of the negatively charged residues. The decrease in the hydration of the negatively charged residues on mutation may decrease the solubility of the mutant, which increases the observed aggregation propensity of the FAD mutants. Results obtained from the theory show an excellent match with the experimentally reported data.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
25
|
Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies. Sci Rep 2020; 10:21191. [PMID: 33273506 PMCID: PMC7713239 DOI: 10.1038/s41598-020-78136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Protein aggregation is a major concern in biotherapeutic applications of monoclonal antibodies. Introducing charged mutations is among the promising strategies to improve aggregation resistance. However, the impact of such mutations on solubilizing activity depends largely on the inserting location, whose mechanism is still not well understood. Here, we address this issue from a solvation viewpoint, and this is done by analyzing how the change in solvation free energy upon charged mutation is composed of individual contributions from constituent residues. To this end, we perform molecular dynamics simulations for a number of antibody mutants and carry out the residue-wise decomposition of the solvation free energy. We find that, in addition to the previously identified “global” principle emphasizing the key role played by the protein total net charge, a local net charge within \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼15 Å from the mutation site exerts significant effects. For example, when the net charge of an antibody is positive, the global principle states that introducing a positively charged mutation will lead to more favorable solvation. Our finding further adds that an even more optimal mutation can be done at the site around which more positively charged residues and fewer negatively charged residues are present. Such a “local” design principle accounts for the location dependence of charged mutations, and will be useful in producing aggregation-resistant antibodies.
Collapse
|
26
|
Li Y, Qiao B, Olvera de la Cruz M. Protein Surface Printer for Exploring Protein Domains. J Chem Inf Model 2020; 60:5255-5264. [PMID: 32846088 DOI: 10.1021/acs.jcim.0c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The surface of proteins is vital in determining protein functions. Herein, a program, Protein Surface Printer (PSP), is built that performs multiple functions in quantifying protein surface domains. Two proteins, PETase and cytochrome P450, are used to validate that the program supports atomistic simulations with different combinations of programs and force fields. A case study is conducted on the structural analysis of the spike proteins of SARS-CoV-2 and SARS-CoV and the human cell receptor ACE2. Although the surface domains of both spike proteins are highly similar, their receptor-binding domains (RBDs) and the O-linked glycan domains are structurally different. The O-linked glycan domain of SARS-CoV-2 is highly positively charged, which may promote binding to negatively charged human cells.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Baofu Qiao
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Monica Olvera de la Cruz
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60201, United States.,Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| |
Collapse
|
27
|
Qiao B, Olvera de la Cruz M. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites. ACS NANO 2020; 14:10616-10623. [PMID: 32806067 PMCID: PMC7409923 DOI: 10.1021/acsnano.0c04798] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/01/2020] [Indexed: 05/18/2023]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a crucial role in binding the human cell receptor ACE2 that is required for viral entry. Many studies have been conducted to target the structures of RBD-ACE2 binding and to design RBD-targeting vaccines and drugs. Nevertheless, mutations distal from the SARS-CoV-2 RBD also impact its transmissibility and antibody can target non-RBD regions, suggesting the incomplete role of the RBD region in the spike protein-ACE2 binding. Here, in order to elucidate distant binding mechanisms, we analyze complexes of ACE2 with the wild-type spike protein and with key mutants via large-scale all-atom explicit solvent molecular dynamics simulations. We find that though distributed approximately 10 nm away from the RBD, the SARS-CoV-2 polybasic cleavage sites enhance, via electrostatic interactions and hydration, the RBD-ACE2 binding affinity. A negatively charged tetrapeptide (GluGluLeuGlu) is then designed to neutralize the positively charged arginine on the polybasic cleavage sites. We find that the tetrapeptide GluGluLeuGlu binds to one of the three polybasic cleavage sites of the SARS-CoV-2 spike protein lessening by 34% the RBD-ACE2 binding strength. This significant binding energy reduction demonstrates the feasibility to neutralize RBD-ACE2 binding by targeting this specific polybasic cleavage site. Our work enhances understanding of the binding mechanism of SARS-CoV-2 to ACE2, which may aid the design of therapeutics for COVID-19 infection.
Collapse
Affiliation(s)
- Baofu Qiao
- Department of Materials Science and
Engineering, Department of Chemical &
Biological Engineering, Department of Chemistry, and
Department of Physics and Astronomy,
Northwestern University, Evanston,
Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and
Engineering, Department of Chemical &
Biological Engineering, Department of Chemistry, and
Department of Physics and Astronomy,
Northwestern University, Evanston,
Illinois 60208, United States
| |
Collapse
|
28
|
Boopathi S, Dinh Quoc Huy P, Gonzalez W, Theodorakis PE, Li MS. Zinc binding promotes greater hydrophobicity inAlzheimer's Aβ42peptide than copper binding: Molecular dynamics and solvation thermodynamics studies. Proteins 2020; 88:1285-1302. [DOI: 10.1002/prot.25901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Subramanian Boopathi
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
| | | | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD)Universidad de Talca Talca Chile
| | | | - Mai Suan Li
- Institute of PhysicsPolish Academy of Sciences Warsaw Poland
- Institute for Computational Science and Technology, Quang Trung Software City Tan Chanh Hiep Ward Ho Chi Minh City Vietnam
| |
Collapse
|
29
|
Aggarwal L, Biswas P. Interaction Volume Is a Measure of the Aggregation Propensity of Amyloid-β. J Phys Chem Lett 2020; 11:3993-4000. [PMID: 32352786 DOI: 10.1021/acs.jpclett.0c00922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study highlights the significance of the partial molar volume of amino acids in predicting the aggregation propensity of an intrinsically disordered protein, amyloid-β (Aβ), and its mutants in aqueous solution. The change in the interaction volume of the protein or mutant is quantitatively correlated with its calculated experimental aggregation propensity. This method also reveals how the interaction volume may be tuned by changing the charge and hydrophobicity of Aβ. While a positive change in the interaction volume and a higher aggregation propensity are observed for mutants with a decrease in the overall charge and/or an increase in hydrophobicity, a reverse trend is observed for the mutants with a decrease in the hydrophobicity and/or an increase in its charge. Hence, the interaction volume may be considered as a key parameter for monitoring protein aggregation that bridges the gap between the experimental aggregation kinetics and solvation thermodynamics.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
30
|
Aggarwal L, Biswas P. Effect of Alzheimer’s Disease Causative and Protective Mutations on the Hydration Environment of Amyloid-β. J Phys Chem B 2020; 124:2311-2322. [DOI: 10.1021/acs.jpcb.9b10425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
31
|
Aguayo-Ortiz R, Dominguez L. Effects of Mutating Trp42 Residue on γD-Crystallin Stability. J Chem Inf Model 2020; 60:777-785. [PMID: 31747273 DOI: 10.1021/acs.jcim.9b00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oligomerization and aggregation of γD-crystallins (HγDC) in the eye lens is one of the main causes of cataract development. To date, several congenital mutations related to this protein are known to promote the formation of aggregates. Previous studies have demonstrated that mutations in W42 residue of HγDC lead to the generation of partially unfolded intermediates that are more prone to aggregate. To understand the role of W42 in the stability of HγDC, we performed alchemical free-energy calculations and all-atom molecular dynamics simulations of different W42 mutant models. Our results suggest that substitution of W42 by small size and/or polar residues promotes HγDC denaturation due to the entry of water molecules into the hydrophobic core of the N-terminal domain. Similar behavior was observed in the C-terminal domain of HγDC when mutating the W130 residue located in a homologous position. Moreover, the exposure of the hydrophobic core residues could lead to the formation of aggregation-prone partially unfolded species. Overall, this study takes a step toward understanding the role of HγDC in cataract development.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico.,Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico
| |
Collapse
|
32
|
Sarkar D, Chakraborty I, Condorelli M, Ghosh B, Mass T, Weingarth M, Mandal AK, La Rosa C, Subramanian V, Bhunia A. Self‐Assembly and Neurotoxicity of β‐Amyloid (21–40) Peptide Fragment: The Regulatory Role of GxxxG Motifs. ChemMedChem 2019; 15:293-301. [DOI: 10.1002/cmdc.201900620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Ipsita Chakraborty
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | | | - Baijayanti Ghosh
- Division of Molecular Medicine Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Thorben Mass
- Department of Chemistry Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Markus Weingarth
- Department of Chemistry Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Atin K Mandal
- Division of Molecular Medicine Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Carmelo La Rosa
- Department of Chemical Sciences University of Catania 95125 Catania Italy
| | | | - Anirban Bhunia
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| |
Collapse
|
33
|
Maruyama Y, Takano H, Mitsutake A. Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: Relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 2019; 16:407-429. [PMID: 31984194 PMCID: PMC6975981 DOI: 10.2142/biophysico.16.0_407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular dynamics simulation is a fruitful tool for investigating the structural stability, dynamics, and functions of biopolymers at an atomic level. In recent years, simulations can be performed on time scales of the order of milliseconds using special purpose systems. Since the most stable structure, as well as meta-stable structures and intermediate structures, is included in trajectories in long simulations, it is necessary to develop analysis methods for extracting them from trajectories of simulations. For these structures, methods for evaluating the stabilities, including the solvent effect, are also needed. We have developed relaxation mode analysis to investigate dynamics and kinetics of simulations based on statistical mechanics. We have also applied the three-dimensional reference interaction site model theory to investigate stabilities with solvent effects. In this paper, we review the results for designing amino-acid substitution of the 10-residue peptide, chignolin, to stabilize the misfolded structure using these developed analysis methods.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Takano
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
34
|
Chao WC, Lu JF, Wang JS, Chiang TH, Lin LJ, Lee YL, Chou PT. Unveiling the structural features of nonnative trimers of human superoxide dismutase 1. Biochim Biophys Acta Gen Subj 2019; 1864:129483. [PMID: 31734464 DOI: 10.1016/j.bbagen.2019.129483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Human SOD1 contains a single tryptophan residue (W32) which has been identified as a site of oxidative modification and a potentiator of aggregation involving in familial amyotrophic lateral sclerosis (fALS). In situ substitution of a tryptophan analog, 2,6-diazatryptophan ((2,6-aza)Trp) with its unique water-catalyzed proton transfer property, into proteins exhibits extraordinary sensitivity in the detection of subtle water-associated structural changes with only a few micro-molar concentration of samples. METHODS A combination of size-exclusion chromatography and water-catalyzed fluorescent emission was utilized to probe the structural features of metastable SOD1 nonnative trimers, the potential neurotoxic species in the fALS. RESULTS The monomer of apo-A4V SOD1 exhibits variable conformations and the fastest trimeric formation rate compared to that of wild type and I113T. The trimeric A4V SOD1 exhibits the least water molecules surrounding the W32, while I113T and the wild type appear to have more water molecules in the proximity of W32. A small molecule stabilizer, 5-fluorouridine, effects the structural conformation of SOD1 nonnative trimers. CONCLUSIONS Our studies unveil new insights into water-associated structural changes of SOD1 nonnative trimers and demonstrate that in situ incorporation of (2,6-aza)Trp is a sensitive and powerful tool for probing subtle changes of water environments during protein aggregation. GENERAL SIGNIFICANCE The water-sensitive probe, (2,6-aza)Trp, demonstrates superior sensitivity for detecting modulation of water microsolvation, structural conformation during oligomer formation and 5FUrd binding to both wild type and mutant SOD1.
Collapse
Affiliation(s)
- Wei-Chih Chao
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jyh-Feng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Tzu-Hsuan Chiang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Lin Lee
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Chong SH, Ham S. Folding Free Energy Landscape of Ordered and Intrinsically Disordered Proteins. Sci Rep 2019; 9:14927. [PMID: 31624293 PMCID: PMC6797787 DOI: 10.1038/s41598-019-50825-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Folding funnel is the essential concept of the free energy landscape for ordered proteins. How does this concept apply to intrinsically disordered proteins (IDPs)? Here, we address this fundamental question through the explicit characterization of the free energy landscapes of the representative α-helical (HP-35) and β-sheet (WW domain) proteins and of an IDP (pKID) that folds upon binding to its partner (KIX). We demonstrate that HP-35 and WW domain indeed exhibit the steep folding funnel: the landscape slope for these proteins is ca. −50 kcal/mol, meaning that the free energy decreases by ~5 kcal/mol upon the formation of 10% native contacts. On the other hand, the landscape of pKID is funneled but considerably shallower (slope of −24 kcal/mol), which explains why pKID is disordered in free environments. Upon binding to KIX, the landscape of pKID now becomes significantly steep (slope of −54 kcal/mol), which enables otherwise disordered pKID to fold. We also show that it is the pKID–KIX intermolecular interactions originating from hydrophobic residues that mainly confer the steep folding funnel. The present work not only provides the quantitative characterization of the protein folding free energy landscape, but also establishes the usefulness of the folding funnel concept to IDPs.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul, 04310, Korea.
| |
Collapse
|
36
|
Lyu Y, Wang Y, Wang S, Liu B, Du H. Potassium Hydroxide Concentration-Dependent Water Structure on the Quartz Surface Studied by Combining Sum-Frequency Generation (SFG) Spectroscopy and Molecular Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11651-11661. [PMID: 31414813 DOI: 10.1021/acs.langmuir.9b01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational sum-frequency generation (SFG) spectroscopy and molecular simulations were used to investigate the molecular structures at the quartz surface, and the influence of bulk potassium hydroxide concentration was systematically examined. It was found that when the potassium hydroxide concentration was less than 10-2 M, the structure of water molecules at the quartz surface was dependent on the quartz surface potential as evidenced by the increase of SFG signal as a function of the alkaline concentration. However, when the alkaline concentration was more than 10-2 M, a monotonic decrease of interfacial water SFG spectra intensity was observed, which has been proposed to be due to the decreased number of interfacial water molecules and proton disordering caused by the screening effect originated from the adsorption of cations. Furthermore, besides the typical hydrogen-bonded interfacial water peaks (3200 and 3400 cm-1), the quartz/H2O interface showed an additional red-shifted peak centered at ∼2930 cm-1. The results of SFG spectra and chemistry calculations confirmed that the red-shifted vibrational peak was due to the O-H stretch vibration of water molecules strongly hydrogen bonded with the OH- adsorbed at the surface.
Collapse
Affiliation(s)
- Yeqing Lyu
- CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yaru Wang
- CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shaona Wang
- CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Biao Liu
- CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Hao Du
- CAS Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
37
|
Abstract
The conformation of water around proteins is of paramount importance, as it determines protein interactions. Although the average water properties around the surface of proteins have been provided experimentally and computationally, protein surfaces are highly heterogeneous. Therefore, it is crucial to determine the correlations of water to the local distributions of polar and nonpolar protein surface domains to understand functions such as aggregation, mutations, and delivery. By using atomistic simulations, we investigate the orientation and dynamics of water molecules next to 4 types of protein surface domains: negatively charged, positively charged, and charge-neutral polar and nonpolar amino acids. The negatively charged amino acids orient around 98% of the neighboring water dipoles toward the protein surface, and such correlation persists up to around 16 Å from the protein surface. The positively charged amino acids orient around 94% of the nearest water dipoles against the protein surface, and the correlation persists up to around 12 Å. The charge-neutral polar and nonpolar amino acids are also orienting the water neighbors in a quantitatively weaker manner. A similar trend was observed in the residence time of the nearest water neighbors. These findings hold true for 3 technically important enzymes (PETase, cytochrome P450, and organophosphorus hydrolase). Our results demonstrate that the water-amino acid degree of correlation follows the same trend as the amino acid contribution in proteins solubility, namely, the negatively charged amino acids are the most beneficial for protein solubility, then the positively charged amino acids, and finally the charge-neutral amino acids.
Collapse
|
38
|
Austerberry JI, Thistlethwaite A, Fisher K, Golovanov AP, Pluen A, Esfandiary R, van der Walle CF, Warwicker J, Derrick JP, Curtis R. Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry 2019; 58:3413-3421. [DOI: 10.1021/acs.biochem.9b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James I. Austerberry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Angela Thistlethwaite
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alexander P. Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Reza Esfandiary
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
39
|
Aguayo-Ortiz R, González-Navejas A, Palomino-Vizcaino G, Rodriguez-Meza O, Costas M, Quintanar L, Dominguez L. Thermodynamic Stability of Human γD-Crystallin Mutants Using Alchemical Free-Energy Calculations. J Phys Chem B 2019; 123:5671-5677. [PMID: 31199646 DOI: 10.1021/acs.jpcb.9b01818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γD-Crystallin (HγDC) is a key structural protein in the human lens, whose aggregation has been associated with the development of cataracts. Single-point mutations and post-translational modifications destabilize HγDC interactions, forming partially folded intermediates, where hydrophobic residues are exposed and thus triggering its aggregation. In this work, we used alchemical free-energy calculations to predict changes in thermodynamic stability (ΔΔG) of 10 alanine-scanning variants and 12 HγDC mutations associated with the development of congenital cataract. Our results show that W42R is the most destabilizing mutation in HγDC. This has been corroborated through experimental determination of ΔΔG employing differential scanning calorimetry. Calculations of hydration free energies from the HγDC WT and the W42R mutant suggested that the mutant has a higher aggregation propensity. Our combined theoretical and experimental results contribute to understand HγDC destabilization and aggregation mechanisms in age-onset cataracts.
Collapse
Affiliation(s)
| | | | - Giovanni Palomino-Vizcaino
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | | | | - Liliana Quintanar
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | |
Collapse
|
40
|
Pattni V, Heyden M. Pressure Effects on Protein Hydration Water Thermodynamics. J Phys Chem B 2019; 123:6014-6022. [DOI: 10.1021/acs.jpcb.9b04094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viren Pattni
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
41
|
Carballo-Amador MA, McKenzie EA, Dickson AJ, Warwicker J. Surface patches on recombinant erythropoietin predict protein solubility: engineering proteins to minimise aggregation. BMC Biotechnol 2019; 19:26. [PMID: 31072369 PMCID: PMC6507049 DOI: 10.1186/s12896-019-0520-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein solubility characteristics are important determinants of success for recombinant proteins in relation to expression, purification, storage and administration. Escherichia coli offers a cost-efficient expression system. An important limitation, whether for biophysical studies or industrial-scale production, is the formation of insoluble protein aggregates in the cytoplasm. Several strategies have been implemented to improve soluble expression, ranging from modification of culture conditions to inclusion of solubility-enhancing tags. RESULTS Surface patch analysis has been applied to predict amino acid changes that can alter the solubility of expressed recombinant human erythropoietin (rHuEPO) in E. coli, a factor that has importance for both yield and subsequent downstream processing of recombinant proteins. A set of rHuEPO proteins (rHuEPO E13K, F48D, R150D, and F48D/R150D) was designed (from the framework of wild-type protein, rHuEPO WT, via amino acid mutations) that varied in terms of positively-charged patches. A variant predicted to promote aggregation (rHuEPO E13K) decreased solubility significantly compared to rHuEPO WT. In contrast, variants predicted to diminish aggregation (rHuEPO F48D, R150D, and F48D/R150D) increased solubility up to 60% in relation to rHuEPO WT. CONCLUSIONS These findings are discussed in the wider context of biophysical calculations applied to the family of EPO orthologues, yielding a diverse range of calculated values. It is suggested that combining such calculations with naturally-occurring sequence variation, and 3D model generation, could lead to a valuable tool for protein solubility design.
Collapse
Affiliation(s)
- M. Alejandro Carballo-Amador
- Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana–Ensenada, Pedregal Playitas, 22860 Ensenada, Baja California Mexico
| | - Edward A. McKenzie
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Alan J. Dickson
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| |
Collapse
|
42
|
La Manna S, Scognamiglio PL, Roviello V, Borbone F, Florio D, Di Natale C, Bigi A, Cecchi C, Cascella R, Giannini C, Sibillano T, Novellino E, Marasco D. The acute myeloid leukemia-associated Nucleophosmin 1 gene mutations dictate amyloidogenicity of the C-terminal domain. FEBS J 2019; 286:2311-2328. [PMID: 30921500 DOI: 10.1111/febs.14815] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasm shuttling protein ubiquitously expressed and highly conserved. It is involved in many cellular processes and its gene is mutated in ~ 50-60% of Acute Myeloid Leukemia (AML) patients. These mutations cause its cytoplasmic mislocation and accumulation (referred to as NPM1c+) and open the door to rational targeted therapy for AML diseases with mutated NPM1. Currently, there is limited knowledge on the mechanism of action of NPM1c+ and on structural determinants of the leukemogenic potential of AML mutations. Numerous previous studies outlined an unexpected amyloid-like aggregation tendency of several regions located in the C-terminal domain that, in wild-type form, fold as a three-helical-bundle. Here, using a combination of different techniques including Thioflavin T fluorescence, congo red absorbance, CD spectroscopy, Scanning Electron Microscopy (SEM) and wide-angle X-ray scattering on a series of peptides bearing mutations, we evidence that the amyloidogenicity of NPM1 mutants is directly linked to AML. Noticeably, AML point mutations strongly affect the amyloid cytotoxic effects in neuroblastoma cells and the morphologies of deriving fibrils. This study paves the way to deepen our understanding of AML-associated NPM1 mutants, and could help to break new ground for the identification of novel drugs targeting NPM1c+ for treatment of AML.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples "Federico II", Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| |
Collapse
|
43
|
Heyden M. Heterogeneity of water structure and dynamics at the protein-water interface. J Chem Phys 2019; 150:094701. [PMID: 30849897 DOI: 10.1063/1.5081739] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this molecular dynamics simulation study, we analyze the local structural and dynamic properties of water hydrating the protein ubiquitin on a spatial grid with 1 Å resolution. This allows for insights into the spatial distribution of water number densities, molecular orientations, translations, and rotations as a function of distance from the protein surface. Water molecule orientations follow a heterogeneous distribution with preferred local orientations of water dipoles and O-H bond vectors up to 10-15 Å distances from the protein, while local variations of the water number density converge to homogeneous bulk-like values within less than 8 Å. Interestingly, we find that the long-ranged orientational structure of water does not impact either the translational or rotational dynamics of water. Instead, heterogeneous distributions of local dynamical parameters and averaged dynamical retardation factors are only found close to the protein surface and follow a distance dependence comparable to heterogeneities in the local water number density. This study shows that the formation of nanodomains of preferred water orientations far from the protein does not significantly impact dynamical processes probed as a non-local average in most experiments.
Collapse
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences and Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
44
|
Fragniere AMC, Stott SRW, Fazal SV, Andreasen M, Scott K, Barker RA. Hyperosmotic stress induces cell-dependent aggregation of α-synuclein. Sci Rep 2019; 9:2288. [PMID: 30783136 PMCID: PMC6381101 DOI: 10.1038/s41598-018-38296-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/01/2018] [Indexed: 12/04/2022] Open
Abstract
The aggregation of alpha-synuclein (α-syn) is a pathological feature of a number of neurodegenerative conditions, including Parkinson’s disease. Genetic mutations, abnormal protein synthesis, environmental stress, and aging have all been implicated as causative factors in this process. The importance of water in the polymerisation of monomers, however, has largely been overlooked. In the present study, we highlight the role of hyperosmotic stress in inducing human α-syn to aggregate in cells in vitro, through rapid treatment of the cells with three different osmolytes: sugar, salt and alcohol. This effect is cell-dependent and not due to direct protein-osmolyte interaction, and is specific for α-syn when compared to other neurodegeneration-related proteins, such as Tau or Huntingtin. This new property of α-syn not only highlights a unique aspect of its behaviour which may have some relevance for disease states, but may also be useful as a screening test for compounds to inhibit the aggregation of α-syn in vitro.
Collapse
Affiliation(s)
- Alexandra M C Fragniere
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, United Kingdom
| | - Simon R W Stott
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, United Kingdom
| | - Shaline V Fazal
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, United Kingdom
| | - Maria Andreasen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kirsten Scott
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Robinson Way, Cambridge, United Kingdom. .,Wellcome Trust-MRC Stem Cell Institute, Cambridge, United Kingdom.
| |
Collapse
|
45
|
Lin Y, Im H, Diem LT, Ham S. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40. Biochem Biophys Res Commun 2019; 510:442-448. [PMID: 30722990 DOI: 10.1016/j.bbrc.2019.01.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/20/2023]
Abstract
The self-assembly of amyloid-beta (Aβ) proteins in aqueous extracellular environments is implicated in Alzheimer's disease. Among several alloforms of Aβ proteins differing in sequence length, the 42- and 40-residue forms (Aβ42 and Aβ40) are the most abundant ones in the human body. Although the only difference is the additional I41A42 residues in the C-terminus, Aβ42 exhibits more aggregation tendency and stronger neurotoxicity than Aβ40. Here, we investigate the molecular factors that confer more aggregation potential to Aβ42 than to Aβ40 based on molecular dynamics simulations combined with solvation thermodynamic analyses. It is observed that the most salient structural feature of Aβ42 relative to Aβ40 is the more enhanced β-sheet forming tendency, in particular in the C-terminal region. While such a structural characteristic of Aβ42 will certainly serve to facilitate the formation of aggregate species rich in β-sheet structure, we also detect its interesting thermodynamic consequence. Indeed, we find from the decomposition analysis that the C-terminal region substantially increases the solvation free energy (i.e., overall "hydrophobicity") of Aβ42, which is caused by the dehydration of the backbone moieties showing the enhanced tendency of forming the β-structure. Together with the two additional hydrophobic residues (I41A42), this leads to the higher solvation free energy of Aβ42, implying the larger water-mediated attraction toward the self-assembly. Thus, our computational results provide structural and thermodynamic grounds on why Aβ42 has more aggregation propensity than Aβ40 in aqueous environments.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Haeri Im
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Le Thi Diem
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea.
| |
Collapse
|
46
|
Franck JM, Han S. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods Enzymol 2018; 615:131-175. [PMID: 30638529 DOI: 10.1016/bs.mie.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, United States.
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States; Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
47
|
Heyden M. Disassembling solvation free energies into local contributions—Toward a microscopic understanding of solvation processes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences Arizona State University Tempe Arizona
| |
Collapse
|
48
|
Choi H, Yoon T, Na S. Length-Dependent Manifestation of Vibration Modes Regulates a Specific Intermediate Morphology of Aβ17-42 in Different Environments. Chemphyschem 2018; 19:1643-1654. [PMID: 29575445 DOI: 10.1002/cphc.201800010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 12/25/2022]
Abstract
Various cytotoxic mechanisms for neurodegenerative disease are induced by specific conformations of Aβ intermediates. The efforts to understand the diverse intermediate forms of amyloid oligomers have been focused on understanding the aggregation mechanism of specific morphologies for Aβ intermediates. However, these are still not easy tasks to be accomplished because the diverse conformations of Aβ intermediates can be altered during the aggregation process, even though the same Aβ monomers are present. Thus, efforts to reveal the conformational change mechanism could be a fundamental process to understand the formation of diverse Aβ intermediate conformations. Here, we evaluate the conformational characteristics of Aβ17-42 fibrillar oligomers in different environments according to the length. We observed that Aβ fibrillar oligomers optimize their inherent hydrogen bonds and configurational entropy to stabilize their structure according to the simulation time and their length increase. In addition, we revealed the role of the expressed vibration mode shape in the fibrillar oligomers' elongation and deformation processes. Our results suggest that limitations in amyloid oligomer growth and transformations of their morphologies can be regulated and controlled by modifying the vibration features.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
49
|
Abstract
Proteins interact with their aqueous surroundings, thereby modifying the physical properties of the solvent. The extent of this perturbation has been investigated by numerous methods in the past half-century, but a consensus has still not emerged regarding the spatial range of the perturbation. To a large extent, the disparate views found in the current literature can be traced to the lack of a rigorous definition of the perturbation range. Stating that a particular solvent property differs from its bulk value at a certain distance from the protein is not particularly helpful since such findings depend on the sensitivity and precision of the technique used to probe the system. What is needed is a well-defined decay length, an intrinsic property of the protein in a dilute aqueous solution, that specifies the length scale on which a given physical property approaches its bulk-water value. Based on molecular dynamics simulations of four small globular proteins, we present such an analysis of the structural and dynamic properties of the hydrogen-bonded solvent network. The results demonstrate unequivocally that the solvent perturbation is short-ranged, with all investigated properties having exponential decay lengths of less than one hydration shell. The short range of the perturbation is a consequence of the high energy density of bulk water, rendering this solvent highly resistant to structural perturbations. The electric field from the protein, which under certain conditions can be long-ranged, induces a weak alignment of water dipoles, which, however, is merely the linear dielectric response of bulk water and, therefore, should not be thought of as a structural perturbation. By decomposing the first hydration shell into polarity-based subsets, we find that the hydration structure of the nonpolar parts of the protein surface is similar to that of small nonpolar solutes. For all four examined proteins, the mean number of water-water hydrogen bonds in the nonpolar subset is within 1% of the value in bulk water, suggesting that the fragmentation and topography of the nonpolar protein-water interface has evolved to minimize the propensity for protein aggregation by reducing the unfavorable free energy of hydrophobic hydration.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
50
|
Hanczyc P, Mikhailovsky A, Boyer DR, Sawaya MR, Heeger A, Eisenberg D. Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils. J Phys Chem B 2018; 122:8-18. [DOI: 10.1021/acs.jpcb.7b07923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - David R. Boyer
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | - Michael R. Sawaya
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | | | - David Eisenberg
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| |
Collapse
|