1
|
Zhen S, Xu Z, Suo M, Zhang T, Lyu M, Li T, Zhang T, Li M, Zhao Z, Tang BZ. NIR-II AIE Liposomes for Boosting Type-I Photodynamic and Mild-Temperature Photothermal Therapy in Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411133. [PMID: 39600034 DOI: 10.1002/adma.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Phototheranositcs has recently aroused extreme attention due to its exceptional advantages. However, the poor photothernostic efficiency, limited penetration depth, strong oxygen-dependence, and inevitable damage to normal tissue of conventional photothernostic materials severely hindered their total theranostic efficacy. Herein, a series of near-infrared second (NIR-II) photosensitizers (PSs) featuring aggregation-induced emission (AIE), NIR-II fluorescence imaging (FLI), type I photodynamic therapy (PDT) and mild-temperature photothermal therapy (PTT) are constructed through dual-strategy methods combining donor group engineering and fluorination engineering. Profiting from sufficient molecular rotors and high electronegativity of fluorine, the developed 2-(2-((5-(4-((4-(diphenylamino)phenyl)(phenyl)amino)phenyl)thiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (BTS-2F) and 2-(2-((5-(4-(bis(4-(diphenylamino)phenyl)amino)phenyl)thiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (TTS-2F) are endowed with NIR-II AIE property, high radical reactive oxygen species (ROS) generation ability and mild-temperature photothermal conversion. Through thin film hydration method, the prepared BTS-2F and TTS-2F loaded liposomes exhibit significant NIR-II FLI and improved type-I PDT/mild-temperature PTT therapy under laser irradiation both in vitro and orthotopic 4T1 mice models.
Collapse
Affiliation(s)
- Shijie Zhen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Zhe Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Meng Suo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Teng Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Meng Lyu
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, P. R. China
| | - Tianwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Tianfu Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, P. R. China
| | - Meijing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
2
|
Shupletsov L, Topal S, Schieck A, Helten S, Grünker R, Deka A, De A, Werheid M, Bon V, Weidinger I, Pöppl A, Senkovska I, Kaskel S. Linker Conformation Controls Oxidation Potentials and Electrochromism in Highly Stable Zr-Based Metal-Organic Frameworks. J Am Chem Soc 2024; 146:25477-25489. [PMID: 39226465 DOI: 10.1021/jacs.4c04653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The development of tailor-made electrochromic (EC) materials requires a large variety of available substances with properties that precisely match the task. Since the inception of electrochromic metal-organic frameworks (MOFs), the field relies only on a limited set of building blocks, providing the desired electrochromic effect. Herein, we demonstrate for the first time the implementation of a Piccard-type system (N,N,N',N'-benzidinetetrabenzoate) into Zr-MOFs to obtain electrochromic materials. With fast switching rates, high contrast ratio, long-life stability, and exceptional chemical and physical stability, the novel material is on par with inorganic EC material. The new EC system exhibits an ultrahigh contrast from the bleaching state, with transmittance in the visible region >53%, to the colored state with a transmittance of ca. 3%. The 5 μm thick film attained up to 90% of the coloring in 12.5 s and exhibited high electrochemical reversibility. Moreover, the conformational lability of the electrochromic ligand chosen is locked via the topology design of the framework, which is not attainable in the solution. Locked conformations of the redox active linker in distinct polymorphous frameworks (DUT-65 and DUT-66) feature different redox characteristics and opens the door to the overarching control of the oxidation pathway in the Piccard-type systems.
Collapse
Affiliation(s)
- Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sebahat Topal
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Alina Schieck
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stella Helten
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ronny Grünker
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Antareekshya Deka
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Matthias Werheid
- Chair of Electrochemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Inez Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
3
|
Dai D, Zhan Q, Shi T, Wang D, Zheng Y. Spin characteristics in conjugated stable diradicals. Chem Commun (Camb) 2024; 60:8997-9006. [PMID: 39081131 DOI: 10.1039/d4cc03067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Spin properties are intrinsic characters of electrons. Radical molecules contain unpaired electron(s), and their unique chemical and physical properties make them an ideal platform for investigating spin properties in molecular systems. Among them, the burgeoning interest in stable conjugated diradicals is attributed to their distinctive characteristics, notably the dynamic resonance structures between open-shell and closed-shell forms, the malleability of their spin states, and the profound influence of intermolecular spin-spin interactions. A deep understanding of the spin characteristics of unpaired electrons in stable conjugated diradicals provides guidance for the design, synthesis, and characterization of radical-based materials. In this review, we discuss the unique spin delocalization, spin states, and spin-spin coupling characteristics of conjugated diradicals and emphasize how to precisely control these spin characteristics to understand their role in the molecules and as functional radical materials.
Collapse
Affiliation(s)
- Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Qian Zhan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Tianfang Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
4
|
Kong S, Yang L, Sun Q, Wang T, Pei R, Zhao Y, Wang W, Zhao Y, Cui H, Gu X, Wang X. Metal-Free Catalytic Formation of a Donor-Acceptor-Donor Molecule and Its Lewis Acid-Adduct Singlet Diradical with High-Efficient NIR-II Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202400913. [PMID: 38441914 DOI: 10.1002/anie.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 04/05/2024]
Abstract
We have synthesized a quinone-incorporated bistriarylamine donor-acceptor-donor (D-A-D) semiconductor 1 by B(C6F5)3 (BCF) catalyzed C-H/C-H cross coupling via radical ion pair intermediates. Coordination of Lewis acids BCF and Al(ORF)3 (RF=C(CF3)3) to the semiconductor 1 afforded diradical zwitterions 2 and 3 by integer electron transfer. Upon binding to Lewis acids, the LUMO energy of 1 is significantly lowered and the band gap of the semiconductor is significantly narrowed from 1.93 eV (1) to 1.01 eV (2) and 1.06 eV (3). 2 and 3 are rare near-infrared (NIR) diradical dyes with broad absorption both centered around 1500 nm. By introducing a photo BCF generator, 2 can be generated by light-dependent control. Furthermore, the integer electron transfer process can also be reversibly regulated via the addition of CH3CN. In addition, the temperature of 2 sharply increased and reached as high as 110 °C in 10 s upon the irradiation of near-infrared-II (NIR-II) laser (1064 nm, 0.7 W cm-2), exhibiting a fast response to laser. It displays excellent photothermal stability with a photothermal (PT) conversion efficiency of 62.26 % and high-quality PT imaging.
Collapse
Affiliation(s)
- Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Liming Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wenqing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Moleculer-Based Materials, Anhui Normal University, Wuhu, 241002, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, China
| |
Collapse
|
5
|
Jin XY, Wang JY, Yang X, Chen ZN. Attaining Exceptional Stable Copper(I) Metallacyclopentadiene Diradicaloids through Ligand Engineering. Inorg Chem 2023; 62:19323-19331. [PMID: 37955402 DOI: 10.1021/acs.inorgchem.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Diradicaloids are generally high-energy molecules with open-shell configuration and are quite reactive. In this work, we report a feasible synthetic approach to attaining exceptionally stable copper(I) metallacyclopentadiene diradicaloids through ligand engineering. Copper(I)-hybrid cyclopentadiene diradicaloids 1c-6c that absorb intensely in visible regions were successfully prepared in stoichiometrical yields under UV light irradiation. The diradicaloids originate from the C-C bonding coupling of two side-by-side-arranged ethynyl groups in complexes 1-6 upon photocyclization. By rational selection of substituents in triphosphine ligands, we systematically modulate the kinetic behavior of diradicaloids 1c-6c in the thermal decoloration process. With precise ligand design, we are able to obtain exceptionally stable copper(I)-hybrid cyclopentadiene diradicaloids with a half-life as long as ca. 40 h in CH2Cl2 solution at ambient temperature. As demonstrated by electron paramagnetic resonance (EPR) and variable-temperature magnetic studies, the diradicaloids manifest a singlet ground state, but they are readily populated to a triplet excited state through thermal activation in view of a small singlet-triplet energy gap of -0.39 kcal mol-1. The diradicaloids show two-step quasi-reversible reduction waves at about -0.5 and -1.0 V ascribed to successive one-electron-accepting processes, coinciding perfectly with the characteristics of diradicals.
Collapse
Affiliation(s)
- Xu-Yuan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xin Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350100, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
6
|
Hou P, Peschtrich S, Feuerstein W, Schoch R, Hohloch S, Breher F, Paradies J. Imidazolyl-Substituted Benzo- and Naphthodithiophenes as Precursors for the Synthesis of Transient Open-Shell Quinoids. ChemistryOpen 2023; 12:e202300003. [PMID: 36703547 PMCID: PMC10661821 DOI: 10.1002/open.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The synthesis of three novel imidazolyl-substituted sulfur-containing heteroacenes is reported. These heteroacenes consisting of annelated benzo- and naphthothiophenes serve as precursors for the generation of open-shell quinoid heteroacenes by oxidation with alkaline ferric cyanide. Spectroscopic and computational experiments support the formation of reactive open-shell quinoids, which, however, quickly produce paramagnetic polymeric material.
Collapse
Affiliation(s)
- Peng Hou
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Sebastian Peschtrich
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Roland Schoch
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jan Paradies
- Chemistry DepartmentPaderborn UniversityWarburger Strasse 10033098PaderbornGermany
| |
Collapse
|
7
|
Abdurahman A, Wang J, Zhao Y, Li P, Shen L, Peng Q. A Highly Stable Organic Luminescent Diradical. Angew Chem Int Ed Engl 2023; 62:e202300772. [PMID: 36781392 DOI: 10.1002/anie.202300772] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
It is very challenging to obtain stable room-temperature luminescent open-shell singlet diradicals. Herein we report the first stable Müller's hydrocarbon TTM-PhTTM with luminescent properties. Variable-temperature electron paramagnetic resonance spectroscopy measurements and theoretical calculations show that TTM-PhTTM has an open-shell singlet ground state with a diradical character of 90 %. Because of a small singlet-triplet energy gap, the open-shell singlet ground state can be thermally excited to a triplet state. TTM-PhTTM shows room-temperature deep-red emission in various solutions. Unusually high stability of TTM-PhTTM was also observed owing to effective steric hindrance and spin delocalization. Our results are beneficial to the rational design and discovery of more stable luminescent diradical materials.
Collapse
Affiliation(s)
- Alim Abdurahman
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Jingmin Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yihan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Ping Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Li Shen
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang, 261061, China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
8
|
Dai Y, Xie Z, Bao M, Liu C, Su Y. Multiple stable redox states and tunable ground states via the marriage of viologens and Chichibabin's hydrocarbon †. Chem Sci 2023; 14:3548-3553. [PMID: 37006684 PMCID: PMC10056129 DOI: 10.1039/d3sc00102d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Chichibabin's hydrocarbon and viologens are among the most famous diradicaloids and organic redox systems, respectively. However, each has its own disadvantages: the instability of the former and its charged species, and the closed-shell nature of the neutral species derived from the latter, respectively. Herein, we report that terminal borylation and central distortion of 4,4′-bipyridine allow us to readily isolate the first bis-BN-based analogues (1 and 2) of Chichibabin's hydrocarbon with three stable redox states and tunable ground states. Electrochemically, both compounds exhibit two reversible oxidation processes with wide redox ranges. One- and two-electron chemical oxidations of 1 afford the crystalline radical cation 1˙+ and dication 12+, respectively. Moreover, the ground states of 1 and 2 are tunable with 1 as a closed-shell singlet and the tetramethyl-substituted 2 as an open-shell singlet, the latter of which could be thermally excited to its triplet state because of the small singlet-triplet gap. Herein, we report the isolation of bis-BN-based species 1 and 2 with multiple stable redox states. Their ground states are tunable with 1 as a closed-shell singlet and 2 as an open-shell singlet with a small singlet-triplet gap.![]()
Collapse
Affiliation(s)
- Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Zhuofeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow UniversitySuzhou 215123China
- State Key Laboratory of Coordination Chemistry, Nanjing UniversityNanjing 210023China
| |
Collapse
|
9
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler H, Andrada DM, Ghadwal RS. Isolation of an Arsenic Diradicaloid with a Cyclic C 2 As 2 -Core. Angew Chem Int Ed Engl 2022; 61:e202207415. [PMID: 35652361 PMCID: PMC9545666 DOI: 10.1002/anie.202207415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Herein, we report on the synthesis, characterization, and reactivity studies of the first cyclic C2 As2 -diradicaloid {(IPr)CAs}2 (6) (IPr = C{N(Dipp)CH}2 ; Dipp = 2,6-iPr2 C6 H3 ). Treatment of (IPr)CH2 (1) with AsCl3 affords the Lewis adduct {(IPr)CH2 }AsCl3 (2). Compound 2 undergoes stepwise dehydrochlorination to yield {(IPr)CH}AsCl2 (3) and {(IPr)CAsCl}2 (5 a) or [{(IPr)CAs}2 Cl]OTf (5 b). Reduction of 5 a (or 5 b) with magnesium turnings gives 6 as a red crystalline solid in 90% yield. Compound 6 featuring a planar C2 As2 ring is diamagnetic and exhibits well resolved NMR signals. DFT calculations reveal a singlet ground state for 6 with a small singlet-triplet energy gap of 8.7 kcal mol-1 . The diradical character of 6 amounts to 20% (CASSCF, complete active space self consistent field) and 28% (DFT). Treatments of 6 with (PhSe)2 and Fe2 (CO)9 give rise to {(IPr)CAs(SePh)}2 (7) and {(IPr)CAs}2 Fe(CO)4 (8), respectively.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
10
|
Badía-Domínguez I, Canola S, Hernández Jolín V, López Navarrete JT, Sancho-García JC, Negri F, Ruiz Delgado MC. Tuning the Diradical Character of Indolocarbazoles: Impact of Structural Isomerism and Substitution Position. J Phys Chem Lett 2022; 13:6003-6010. [PMID: 35737902 PMCID: PMC9272443 DOI: 10.1021/acs.jpclett.2c01325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a set of 10 positional indolocarbazole (ICz) isomers substituted with dicyanomethylene groups connected via para or meta positions are computationally investigated with the aim of exploring the efficiency of structural isomerism and substitution position in controlling their optical and electronic properties. Unrestricted density functional theory (DFT), a spin-flip time-dependent DFT approach, and the multireference CASSCF/NEVPT2 method have been applied to correlate the diradical character with the energetic trends (i.e., singlet-triplet energy gaps). In addition, the nucleus-independent chemical shift together with ACID plots and Raman intensity calculations were used to strengthen the relationship between the diradical character and (anti)aromaticity. Our study reveals that the substitution pattern and structural isomerism represent a very effective way to tune the diradical properties in ICz-based systems with meta-substituted systems with a V-shaped structure displaying the largest diradical character. Thus, this work contributes to the elucidation of the challenging chemical reactivity and physical properties of diradicaloid systems, guiding experimental chemists to produce new molecules with desirable properties.
Collapse
Affiliation(s)
- Irene Badía-Domínguez
- Department
of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Sofia Canola
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Víctor Hernández Jolín
- Department
of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Juan T. López Navarrete
- Department
of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | - Fabrizia Negri
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- INSTM, UdR Bologna, 40126 Bologna, Italy
| | - M. Carmen Ruiz Delgado
- Department
of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
11
|
Antoni PW, Golz C, Hansmann MM. Organic Four-Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022; 61:e202203064. [PMID: 35298870 PMCID: PMC9325510 DOI: 10.1002/anie.202203064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Novel organic redox systems that display multistage redox behaviour are highly sought-after for a series of applications such as organic batteries or electrochromic materials. Here we describe a simple strategy to transfer well-known two-electron redox active bipyridine and phenanthroline architectures into novel strongly reducing four-electron redox systems featuring fully reversible redox events with up to five stable oxidation states. We give spectroscopic and structural insight into the changes involved in the redox-events and present characterization data on all isolated oxidation states. The redox-systems feature strong UV/Vis/NIR polyelectrochromic properties such as distinct strong NIR absorptions in the mixed valence states. Two-electron charge-discharge cycling studies indicate high electrochemical stability at strongly negative potentials, rendering the new redox architectures promising lead structures for multi-electron anolyte materials.
Collapse
Affiliation(s)
- Patrick W. Antoni
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| | - Christopher Golz
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| | - Max M. Hansmann
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str.644227DortmundGermany
| |
Collapse
|
12
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, Andrada DM, Ghadwal R. Isolation of an Arsenic Diradicaloid with a Cyclic C2As2‐Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Beate Neumann
- Bielefeld University: Universitat Bielefeld Chemistry GERMANY
| | | | - Diego M. Andrada
- Saarland University: Universitat des Saarlandes Chemistry GERMANY
| | - Rajendra Ghadwal
- Universitat Bielefeld Institut für Anorganische Chemie Universitätstrasse 25 33615 Bielefeld GERMANY
| |
Collapse
|
13
|
Hou P, Peschtrich S, Huber N, Feuerstein W, Bihlmeier A, Krummenacher I, Schoch R, Klopper W, Breher F, Paradies J. Impact of Heterocycle Annulation on NIR Absorbance in Quinoid Thioacene Derivatives. Chemistry 2022; 28:e202200478. [PMID: 35254693 PMCID: PMC9314731 DOI: 10.1002/chem.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The synthesis and characterisation of a homologous series of quinoid sulfur-containing imidazolyl-substituted heteroacenes is described. The optoelectronic and magnetic properties were investigated by UV/vis, fluorescence and EPR spectroscopy as well as quantum-chemical calculations, and were compared to those of the corresponding benzo congener. The room-temperature and atmospherically stable quinoids display strong absorption in the NIR region between 678 and 819 nm. The dithieno[3,2-b:2',3'-d]thiophene and the thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene derivatives were EPR active at room temperature. For the latter, variable-temperature EPR spectroscopy revealed the presence of a thermally accessible triplet state, with a singlet-triplet separation of 14.1 kJ mol-1 .
Collapse
Affiliation(s)
- Peng Hou
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Sebastian Peschtrich
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Nils Huber
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Angela Bihlmeier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Ivo Krummenacher
- Institute of Inorganic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Roland Schoch
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1576131KarlsruheGermany
| | - Jan Paradies
- Chemistry DepartmentPaderborn UniversityWarburger Straße 10033098PaderbornGermany
| |
Collapse
|
14
|
Roy M, Walton JH, Fettinger JC, Balch AL. Direct Crystallization of Diamine Radical Cations: Carbon‐Nitrogen Bond Formation from the Reaction of Triphenylamine with TiCl
4
, TiBr
4
, or SnCl
4
versus Carbon‐Carbon Bond Formation with SbCl
5
**. Chemistry 2022; 28:e202104631. [DOI: 10.1002/chem.202104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Mrittika Roy
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - Jeffrey H. Walton
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| | - Alan L. Balch
- Department of Chemistry, NMR Facility University of California Davis One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
15
|
Antoni PW, Golz C, Hansmann MM. Organic Four‐Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick W. Antoni
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie GERMANY
| | - Christopher Golz
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Organische und Biomolekulare Chemie GERMANY
| | - Max M. Hansmann
- TU Dortmund: Technische Universitat Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn Str.6 44227 Dortmund GERMANY
| |
Collapse
|
16
|
Sun J, Zhao E, Liang J, Li H, Zhao S, Wang G, Gu X, Tang BZ. Diradical-Featured Organic Small-Molecule Photothermal Material with High-Spin State in Dimers for Ultra-Broadband Solar Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108048. [PMID: 34882850 DOI: 10.1002/adma.202108048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Organic materials with radical characteristics are gaining increasing attention, due to their potential implications in highly efficient utilization of solar energy. Manipulating intermolecular interactions is crucial for tuning radical properties, as well as regulating their absorption bands, and thus improving the photothermal conversion efficiency. Herein, a diradical-featured organic small-molecule croconium derivative, CR-DPA-T, is reported for highly efficient utilization of solar energy. Upon aggregation, CR-DPA-T exists in dimer form, stabilized by the strong intermolecular π-π interactions, and exhibits a rarely reported high-spin state. Benefiting from the synergic effects of radical characteristics and strong intermolecular π-π interactions, CR-DPA-T powder absorbs broadly from 300 to 2000 nm. In-depth investigations with transient absorption analysis reveal that the strong intermolecular π-π interactions can promote nonradiative relaxation by accelerating internal conversion and facilitating intermolecular charge transfer (ICT) between dimeric molecules to open up faster internal conversion pathways. Remarkably, CR-DPA-T powder demonstrates a high photothermal efficiency of 79.5% under 808 nm laser irradiation. By employing CR-DPA-T as a solar harvester, a CR-DPA-T-loaded flexible self-healing poly(dimethylsiloxane) (H-PDMS) film, named as H-PDMS/CR-DPA-T self-healing film, is fabricated and employed for solar-thermal applications. These findings provide a feasible guideline for developing highly efficient diradical-featured organic photothermal materials.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
17
|
Li K, Feng Z, Ruan H, Sun Q, Zhao Y, Wang X. The catenation of a singlet diradical dication and modulation of diradical character by metal coordination. Chem Commun (Camb) 2022; 58:6457-6460. [DOI: 10.1039/d2cc01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A singlet bis(triarylamine) diradical dication and its zigzag 1D magnetic chain catenated by silver cations were isolated and characterized by single-crystal X-ray crystallography, EPR spectroscopy, SQUID measurements, cyclic voltammetry and...
Collapse
|
18
|
Chen Z, Li W, Sabuj MA, Li Y, Zhu W, Zeng M, Sarap CS, Huda MM, Qiao X, Peng X, Ma D, Ma Y, Rai N, Huang F. Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors. Nat Commun 2021; 12:5889. [PMID: 34620849 PMCID: PMC8497548 DOI: 10.1038/s41467-021-26173-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Most organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship.
Collapse
Grants
- The authors acknowledge the financial support of the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), Innovation Research Group Project of Fund Committee (No. 51521002), National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOST, Natural Science Foundation of China (51973063, 21733005, 91633301), and the Science and Technology Program of Guangzhou (No. 201707020019). MAS, CSS, MMH, and NR acknowledge the financial support from the National Science Foundation (OIA-1757220) for the computational aspects of this project. This work used supercomputing resources at the high-performance computing center at Mississippi State University and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. This work used XSEDE Stampede 2 at the Texas Advanced Computing Center (TACC) through allocation TG-CHE140141.
Collapse
Affiliation(s)
- Zhongxin Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wenqiang Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Md Abdus Sabuj
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Weiya Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Miao Zeng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chandra S Sarap
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, 39762, United States
| | - Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaobin Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, 39762, United States.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
| |
Collapse
|
19
|
Krauss G, Hochgesang A, Mohanraj J, Thelakkat M. Highly Efficient Doping of Conjugated Polymers Using Multielectron Acceptor Salts. Macromol Rapid Commun 2021; 42:e2100443. [PMID: 34599788 DOI: 10.1002/marc.202100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Chemical doping is a vital tool for tuning electronic properties of conjugated polymers. Most single electron acceptors used for p-doping necessitate high dopant concentrations to achieve good electrical conductivity. However, high-molar doping ratios hamper doping efficiency. Here a new concept of using multielectron acceptor (MEA) salts as dopants for conjugated polymers is presented. Two novel MEA salts are synthesized and their doping efficiency towards two polymers differing in their dielectric properties are compared with two single electron acceptors such as NOPF6 and magic blue. Cutting-edge methods such as ultraviolet photoelectron spectroscopy/X-ray photoelectron spectroscopy (XPS), impedance spectroscopy, and density of states analysis in addition to UV-vis-NIR absorption, spectroelectrochemistry, and Raman spectroscopy methods are used to characterize the doped systems. The tetracation salt improves the conductivity by two orders of magnitude and quadruples the charge carrier concentration compared to single electron acceptors for the same molar ratio. The differences in charge carrier density and activation energy on doping are delineated. Further, a strong dependency of the carrier release on the polymer polarity is observed. High carrier densities at reduced dopant loadings and improved doping efficacies using MEA dopants offer a highly efficient doping strategy for conjugated polymers.
Collapse
Affiliation(s)
- Gert Krauss
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - Adrian Hochgesang
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - John Mohanraj
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany.,Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany
| |
Collapse
|
20
|
Iwanaga T, Komori T, Sato H, Suzuki S, Yamauchi T, Misaki Y, Sato H, Toyota S. Synthesis, Structures, and Electronic Properties of 2,7-Anthrylene-Based Azacyclophanes Bearing o-, m-, and p-Phenylenediamine Linkers. J Org Chem 2021; 86:11370-11377. [PMID: 34324328 DOI: 10.1021/acs.joc.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of novel azacyclophanes consisting of 2,7-anthrylene and phenylene units were designed and synthesized by the Buchwald-Hartwig coupling reaction to investigate their unique electronic properties in multiple oxidized states. Cyclic voltammetry showed that the p-phenylene derivative exhibited three reversible oxidation waves, whereas the o- and m-phenylene derivatives showed two quasi-reversible oxidation waves due to the complicated intramolecular interaction between the oxidized units and neutral units. Moreover, the absorption spectra of the p-phenylene derivative in different oxidation states showed absorption bands at 865 and 1025 nm, which were attributed to intramolecular charge-transfer interactions. The photophysical and electrochemical properties of the p-phenylene analog were also compared with those of the o- and m-phenylene derivatives based on theoretical calculations for further evaluation of the intramolecular electronic interactions.
Collapse
Affiliation(s)
- Tetsuo Iwanaga
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Takashi Komori
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Hiroki Sato
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomokazu Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yohji Misaki
- Department of Applied Chemistry, Graduate School of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyasu Sato
- X-ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
21
|
Deng X, Liu X, Wei L, Ye T, Yu X, Zhang C, Xiao J. Pentagon-Containing π-Expanded Systems: Synthesis and Photophysical Properties. J Org Chem 2021; 86:9961-9969. [PMID: 34279110 DOI: 10.1021/acs.joc.1c00332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have designed and synthesized three novel twistacene-modified enlarged pentagon-containing π-systems (6 and 9) with mismatched structures. The introduction of electron-withdrawing cyclopenta rings in the parent skeleton effectively stabilizes the electron-rich arenes. Their optoelectronic properties were studied via ultraviolet-visible (UV-vis) absorption spectra, fluorescence spectra, cyclic voltammetry, and density functional theory (DFT) calculation. In addition, chemical oxidation of the as-prepared compounds with nitrosonium hexafluoroantimonate could form the corresponding cationic radicals.
Collapse
Affiliation(s)
- Xin Deng
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Xinqun Liu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Leping Wei
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Tongtong Ye
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Xiaohui Yu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
22
|
Sharma MK, Rottschäfer D, Glodde T, Neumann B, Stammler H, Ghadwal RS. Ein offenschaliges Singulett‐Sn
I
‐Diradikal und H
2
‐Spaltung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Timo Glodde
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse Anorganische Chemie und Strukturchemie Zentrum für Molekulare Materialien Fakultät für Chemie Universität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
23
|
Sharma MK, Rottschäfer D, Glodde T, Neumann B, Stammler H, Ghadwal RS. An Open-Shell Singlet Sn I Diradical and H 2 Splitting. Angew Chem Int Ed Engl 2021; 60:6414-6418. [PMID: 33460280 PMCID: PMC7986611 DOI: 10.1002/anie.202017078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/17/2022]
Abstract
The first SnI diradical [(ADCPh )Sn]2 (4) based on an anionic dicarbene (ADCPh ={CN(Dipp)}2 CPh; Dipp=2,6-iPr2 C6 H3 ) scaffold has been isolated as a green crystalline solid by KC8 reduction of the corresponding bis-chlorostannylene [(ADCPh )SnCl]2 (3). The six-membered C4 Sn2 -ring of 4 containing six π-electrons shows a diatropic ring current, thus 4 may also be regarded as the first 1,4-distannabenzene derivative. DFT calculations suggest an open-shell singlet (OS) ground state of 4 with a remarkably small singlet-triplet energy gap (ΔEOS-T =4.4 kcal mol-1 ), which is consistent with CASSCF (ΔES-T =6.6 kcal mol-1 and diradical character y=37 %) calculations. The diradical 4 splits H2 at room temperature to yield the bis-hydridostannylene [(ADCPh )SnH]2 (5). Further reactivity of 4 has been studied with PhSeSePh and MeOTf.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Timo Glodde
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
24
|
Tanaka K, Sakamaki D, Fujiwara H. Synthesis and Electronic Properties of Directly Linked Dihydrodiazatetracene Dimers. Chemistry 2021; 27:4430-4438. [PMID: 33427328 DOI: 10.1002/chem.202005005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Indexed: 11/07/2022]
Abstract
5,12-Dihydro-5,12-diazatetracene (DHDAT) dimers with different substitution patterns are synthesized: a symmetric one with a C-C bond between the monomer units (1) and two asymmetric ones with a C-N bond between the monomer units (2 and 3). The DHDAT units are planar in the C-C linked dimer 1 but perpendicularly oriented in the C-N linked dimers 2 and 3 (from X-ray analysis). The electronic ground-state interaction between the two units is large in 1 and small in 2 and 3. The emission behavior of 3 is different from that of other dimers and its monomer; it displays positive solvatochromism, characteristic for electron donor-acceptor molecules, despite its donor-donor type structure. Compound 3 exhibits a unique multi-step thermochromic emission behavior. The emission behavior is attributed to the asymmetric distribution of the HOMO and LUMO of DHDAT.
Collapse
Affiliation(s)
- Katsuki Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai-shi, Osaka, 5998531, Japan
| | - Daisuke Sakamaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai-shi, Osaka, 5998531, Japan
| | - Hideki Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai-shi, Osaka, 5998531, Japan
| |
Collapse
|
25
|
|
26
|
Sharma MK, Ebeler F, Glodde T, Neumann B, Stammler HG, Ghadwal RS. Isolation of a Ge(I) Diradicaloid and Dihydrogen Splitting. J Am Chem Soc 2020; 143:121-125. [DOI: 10.1021/jacs.0c11828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahendra K. Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Falk Ebeler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
27
|
Maiti A, Chandra S, Sarkar B, Jana A. Acyclic diaminocarbene-based Thiele, Chichibabin, and Müller hydrocarbons. Chem Sci 2020; 11:11827-11833. [PMID: 34123209 PMCID: PMC8162802 DOI: 10.1039/d0sc03622f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thiele, Chichibabin and Müller hydrocarbons are considered as classical Kekulé diradicaloids. Herein we report the synthesis and characterization of acyclic diaminocarbene (ADC)-based Thiele, Chichibabin, and Müller hydrocarbons. The calculated singlet–triplet energy gaps are ΔES–T = −27.96, −3.70, −0.37 kcal mol−1, respectively, and gradually decrease with the increasing length of the π-conjugated spacer (p-phenylene vs. p,p′-biphenylene vs. p,p′′-terphenylene) between the two ADC-scaffolds. In agreement with the calculations, we also experimentally observed the enhancement of paramagnetic diradical character as a function of the length of the π-conjugated spacer. ADC-based Thiele's hydrocarbon is EPR silent and exhibits very well resolved NMR spectra, whereas ADC-based Müller's hydrocarbon displays EPR signals and featureless NMR spectra at room temperature. The spacer also has a strong influence on the UV-Vis-NIR spectra of these compounds. Considering that our methodology is modular, these results provide a convenient platform for the synthesis of an electronically modified new class of carbon-centered Kekulé diradicaloids. We report the synthesis of acyclic diaminocarbene (ADC)-scaffold based Thiele, Chichibabin, and Müller hydrocarbons. Studies support that the singlet-triplet energy gap depends on the π-conjugated spacer between the ADC scaffolds.![]()
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500046 Telangana India
| | - Shubhadeep Chandra
- Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Fakultät Chemie, Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500046 Telangana India
| |
Collapse
|
28
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC‐Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Jessica Stubbe
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| | - Nicolás I. Neuman
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Instituto de Desarrollo Tecnológico para laIndustria Química, CCT Santa Fe CONICET-UNL Colectora Ruta Nacional 168, Km 472, Paraje El Pozo 3000 Santa Fe Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Biprajit Sarkar
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| |
Collapse
|
29
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC-Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020; 59:6729-6734. [PMID: 31960562 PMCID: PMC7187164 DOI: 10.1002/anie.201915802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/17/2023]
Abstract
Diradicals have been of tremendous interest for over a century ever since the first reports of p- and m-phenylene-bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non-Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head-to-tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox-active organic compounds.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Jessica Stubbe
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Instituto de Desarrollo Tecnológico para la, Industria Química, CCT Santa Fe CONICET-UNL, Colectora Ruta Nacional 168, Km 472, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| |
Collapse
|
30
|
Sharma MK, Blomeyer S, Glodde T, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-phospha-1,3-butadienes and their sequential one-electron oxidation to radical cations and dications. Chem Sci 2020; 11:1975-1984. [PMID: 34123292 PMCID: PMC8148328 DOI: 10.1039/c9sc05598c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2020] [Indexed: 01/05/2023] Open
Abstract
A synthetic strategy for the 2-phospha-1,3-butadiene derivatives [{(IPr)C(Ph)}P(cAACMe)] (3a) and [{(IPr)C(Ph)}P(cAACCy)] (3b) (IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACMe = C{(NDipp)CMe2CH2CMe2}; cAACCy = C{(NDipp)CMe2CH2C(Cy)}, Cy = cyclohexyl) containing a C[double bond, length as m-dash]C-P[double bond, length as m-dash]C framework has been established. Compounds 3a and 3b have a remarkably small HOMO-LUMO energy gap (3a: 5.09; 3b: 5.05 eV) with a very high-lying HOMO (-4.95 eV for each). Consequently, 3a and 3b readily undergo one-electron oxidation with the mild oxidizing agent GaCl3 to afford radical cations [{(IPr)C(Ph)}P(cAACR)]GaCl4 (R = Me 4a, Cy 4b) as crystalline solids. The main UV-vis absorption band for 4a and 4b is red-shifted with respect to that of 3a and 3b, which is associated with the SOMO related transitions. The EPR spectra of compounds 4a and 4b each exhibit a doublet due to coupling of the unpaired electron with the 31P nucleus. Further one-electron removal from the radical cations 4a and 4b is also feasible with GaCl3, affording the dications [{(IPr)C(Ph)}P(cAACR)](GaCl4)2 (R = Me 5a, Cy 5b) as yellow crystals. The molecular structures of compounds 3-5 have been determined by X-ray diffraction and analyzed by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr D-45470 Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| |
Collapse
|
31
|
Kundu G, De S, Tothadi S, Das A, Koley D, Sen SS. Saturated N-Heterocyclic Carbene Based Thiele's Hydrocarbon with a Tetrafluorophenylene Linker. Chemistry 2019; 25:16533-16537. [PMID: 31609519 DOI: 10.1002/chem.201904421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/06/2019] [Indexed: 01/24/2023]
Abstract
The synthesis of a SIPr [1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene] derived Kekulé diradicaloid with a tetrafluorophenylene spacer (3) has been described. Two synthetic routes have been reported to access 3. The cleavage of C-F bond of C6 F6 by SIPr in the presence of BF3 led to double C-F activated compound with two tetrafluoro borate counter anions (2), which upon reduction by lithium metal afforded 3. Alternatively, 3 can be directly accessed in one step by reacting SIPr with C6 F6 in presence of Mg metal. Compounds 2 and 3 were well characterized spectroscopically and by single-crystal X-ray diffraction studies. Experimental and computational studies support the cumulenic closed-shell singlet state of 3 with a singlet-triplet energy gap (ΔES-T ) of 23.7 kcal mol-1 .
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| | - Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Abhishek Das
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| |
Collapse
|
32
|
Wild U, Hübner O, Himmel H. Redox-Active Guanidines in Proton-Coupled Electron-Transfer Reactions: Real Alternatives to Benzoquinones? Chemistry 2019; 25:15988-15992. [PMID: 31535741 PMCID: PMC7065378 DOI: 10.1002/chem.201903438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Guanidino-functionalized aromatics (GFAs) are readily available, stable organic redox-active compounds. In this work we apply one particular GFA compound, 1,2,4,5-tetrakis(tetramethylguanidino)benzene, in its oxidized form in a variety of oxidation/oxidative coupling reactions to demonstrate the scope of its proton-coupled electron transfer (PCET) reactivity. Addition of an excess of acid boosts its oxidation power, enabling the oxidative coupling of substrates with redox potentials of at least +0.77 V vs. Fc+ /Fc. The green recyclability by catalytic re-oxidation with dioxygen is also shown. Finally, a direct comparison indicates that GFAs are real alternatives to toxic halo- or cyano-substituted benzoquinones.
Collapse
Affiliation(s)
- Ute Wild
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
33
|
Rotthowe N, Zwicker J, Winter RF. Influence of Quinoidal Distortion on the Electronic Properties of Oxidized Divinylarylene-Bridged Diruthenium Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nils Rotthowe
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78453 Konstanz, Germany
| | - Jakob Zwicker
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78453 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, D-78453 Konstanz, Germany
| |
Collapse
|
34
|
Kato K, Osuka A. meta
‐ and
para
‐Phenylenediamine‐Fused Porphyrin Dimers: Synthesis and Magnetic Interactions of Their Dication Diradicals. Angew Chem Int Ed Engl 2019; 58:8546-8550. [DOI: 10.1002/anie.201901939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/07/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
35
|
Nachimuthu S, Shie WR, Liaw DJ, Romashko RV, Jiang JC. Theoretical Study of Electrochemical and Electrochromic Properties of Novel Viologen Derivatives: Effects of Donors and π-Conjugation. J Phys Chem B 2019; 123:4735-4744. [PMID: 31070925 DOI: 10.1021/acs.jpcb.9b00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a linkage approach by merging ambipolar electrochromic (EC) materials in both π-acceptor-π (π-A-π) and donor-acceptor-donor (D-A-D) configurations and investigated their electrochemical and spectroelectrochemical properties using density functional theory calculations. Here, we considered anthracene, toluene, and pyrene as π-conjugated molecules, triphenylamine (TPA) as a donor, and viologen as an acceptor moiety for π-A-π and D-A-D configurations. We have also explored the substitutional effects in the donor moiety on the overall electrochromism during both oxidation and reduction processes. Here, we mainly focused on the relationship between the structure, substitution of functional groups, electronic and spectral properties, as well as redox potential of the designed monomers. Our calculations indicate that the designed monomers have attractive absorption properties and show clear color switching upon the redox process. We find that the substitution of stronger electron-donating and π-spacer groups create new absorption peaks in the oxidation states. These designed viologen derivatives will be potential candidates, which can be used in both oxidation and reduction processes for upcoming EC devices.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Wan-Ru Shie
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Der-Jang Liaw
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Roman V Romashko
- Institute of Automation and Control Processes FEB RAS , Vladivostok 690041 , Russia
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| |
Collapse
|
36
|
Kato K, Osuka A. meta
‐ and
para
‐Phenylenediamine‐Fused Porphyrin Dimers: Synthesis and Magnetic Interactions of Their Dication Diradicals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
37
|
Hirai M, Tanaka N, Sakai M, Yamaguchi S. Structurally Constrained Boron-, Nitrogen-, Silicon-, and Phosphorus-Centered Polycyclic π-Conjugated Systems. Chem Rev 2019; 119:8291-8331. [DOI: 10.1021/acs.chemrev.8b00637] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Naoki Tanaka
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Wang L, Zhang L, Fang Y, Zhao Y, Tan G, Wang X. Orthogonal Oriented Bisanthrancene‐Bridged Bis(Triarylamine) Diradical Dications: Isolation, Characterizations and Crystal Structures. Chem Asian J 2019; 14:1708-1711. [DOI: 10.1002/asia.201801816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
39
|
Wei H, Feng R, Fang Y, Wang L, Chen C, Zhang L, Cui H, Wang X. The Diradical-Dication Strategy for BODIPY- and Porphyrin-Based Dyes with Near-Infrared Absorption Maxima from 1070 to 2040 nm. Chemistry 2018; 24:19341-19347. [PMID: 30285312 DOI: 10.1002/chem.201804449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Indexed: 01/10/2023]
Abstract
Four stable boron dipyrromethene (BODIPY)- and porphyrin-based bis-arylamine diradical dications were synthesized by two-electron oxidation of their neutral molecules. The two BODIPY-based dications have open-shell singlet ground states. UV/Vis absorption spectra of all four dications showed large redshifts in the NIR region compared to their neutral precursors with absorption maxima at 1274 and 1068 nm for the two BODIPY-based dications and 1746 and 2037 nm for the two porphyrin-based dications. Thus, two new types of NIR dyes with longer wavelengths are provided by the diradical-dication strategy, which can be applied for the generation of other NIR dyes with a range of different chromophores and auxochromes.
Collapse
Affiliation(s)
- Houjia Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Haiyan Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
40
|
Rottschäfer D, Busch J, Neumann B, Stammler HG, van Gastel M, Kishi R, Nakano M, Ghadwal RS. Diradical Character Enhancement by Spacing: N-Heterocyclic Carbene Analogues of Müller's Hydrocarbon. Chemistry 2018; 24:16537-16542. [DOI: 10.1002/chem.201804524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Jasmin Busch
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Ryohei Kishi
- Department of Materials Engineering Science; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
- Institute for Molecular Science; 38 Nishigo-Naka Myodaiji, Okazaki 444-8585 Japan
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
41
|
Schnaubelt L, Petzold H, Dmitrieva E, Rosenkranz M, Lang H. A solvent- and temperature-dependent intramolecular equilibrium of diamagnetic and paramagnetic states in Co complexes bearing triaryl amines. Dalton Trans 2018; 47:13180-13189. [PMID: 30178800 DOI: 10.1039/c8dt02538j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complexes [Co(L)2](ClO4)2 (L = o-substituted 2-(pyridine-2-yl)-1,10-phenanthrolines 1a-c) containing three redox active centres (a Co2+ ion and two triaryl amine (Tara) units) have been synthesised. The order of oxidation steps in [Co(L)2](ClO4)2 (L = 1a-c) was determined using cyclic voltammetry and EPR/UV-vis-NIR spectroelectrochemistry. In acetonitrile solutions, at room temperature, the first oxidation is Co-centred followed by the Tara oxidation at more anodic potentials. The order of oxidation is inverted in solutions of the less polar solvent dichloromethane. The Co3+/2+-centred redox event leads to a spin transition between the paramagnetic high-spin (HS) Co2+ and the diamagnetic low-spin (LS) Co3+ state, which was proven using 1H NMR and EPR spectroscopy. After one-electron oxidation of [Co(L)2](ClO4)2, an equilibrium between the diamagnetic [Co3+(L)]3+ and paramagnetic [Co2+(L)(L+)]3+ state in [Co(L)2]3+ (L = 1a-c) was found. Cyclic voltammetry showed enhanced intermolecular electron transfer between the [Co2+(L)2]2+ and [Co3+(L)2]3+ redox states mediated by [Co2+(L)(L+)]3+. Variable temperature vis-NIR spectroscopy of in situ generated [Co(L)2]3+ revealed a temperature-dependent redox equilibrium between the [Co3+(L)2]3+ and the [Co2+(L+)(L)]3+ states (L = 1a-c). Magnetic coupling between the HS-Co2+ ion and the Tara+ radical in [HS-Co2+(L+)(L)]3+ (L = 1a,c) was deduced from broad and undetectable lines observed in the corresponding EPR spectra. Complete oxidation to [LS-Co3+(L+)2]5+ (L = 1a,c) leads to characteristic EPR spectra of Tara biradicals with non-interacting spins.
Collapse
Affiliation(s)
- Linda Schnaubelt
- Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany.
| | - Holm Petzold
- Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany.
| | - Evgenia Dmitrieva
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
| | - Marco Rosenkranz
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research (IFW Dresden), Helmholtzstraße 20, 01069 Dresden, Germany
| | - Heinrich Lang
- Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, 09107 Chemnitz, Germany.
| |
Collapse
|
42
|
Messelberger J, Grünwald A, Pinter P, Hansmann MM, Munz D. Carbene derived diradicaloids - building blocks for singlet fission? Chem Sci 2018; 9:6107-6117. [PMID: 30090299 PMCID: PMC6053972 DOI: 10.1039/c8sc01999a] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Organic singlet diradicaloids promise application in non-linear optics, electronic devices and singlet fission. The stabilization of carbon allotropes/cumulenes (C1, C2, C4) by carbenes has been equally an area of high activity. Combining these fields, we showed recently that carbene scaffolds allow as well for the design of diradicaloids. Herein, we report a comprehensive computational investigation (CASSCF/NEVPT2; fractional occupation DFT) on the electronic properties of carbene-bridge-carbene type diradicaloids. We delineate how to adjust the properties of these ensembles through the choice of carbene and bridge and show that already a short C2 bridge results in remarkable diradicaloid character. The choice of the carbene separately tunes the energies of the S1 and T1 excited states, whereas the bridge adjusts the overall energy level of the excited states. Accordingly, we develop guidelines on how to tailor the electronic properties of these molecules. Of particular note, fractional occupation DFT is an excellent tool to predict singlet-triplet gaps.
Collapse
Affiliation(s)
- Julian Messelberger
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| | - Annette Grünwald
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| | - Piermaria Pinter
- Technische Universität Dresden, Physikalische Organische Chemie , Bergstr. 66 , 01069 Dresden , Germany
| | - Max M Hansmann
- Georg-August Universität Göttingen , Institut für Organische und Biomolekulare Chemie , Tammannstraße 2 , 37073 Göttingen , Germany
| | - Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg , Anorganische und Allgemeine Chemie , Egerlandstr. 1 , 91058 Erlangen , Germany .
| |
Collapse
|
43
|
Medina Rivero S, Mayorga Burrezo P, Sandoval-Salinas ME, Li T, Ramírez FJ, Casanova D, Wang X, Casado J. Isomerism, Diradical Signature, and Raman Spectroscopy: Underlying Connections in Diamino Oligophenyl Dications. Chemphyschem 2018; 19:1465-1470. [PMID: 29570949 DOI: 10.1002/cphc.201800085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 11/06/2022]
Abstract
A diradical dication of a 4,4'-di(bis(1,4-methylphenyl)amino)-p-terphenyl oligomer has been characterized in solid-state by Raman spectroscopy and thermo-spectroscopy together with quantum chemical calculations. The diradical character has been evaluated on the basis of the Raman spectra and as a function of temperature. A complete understanding of the nature of the changes in solid state has been provided based on a pseudo-Jahn-Teller effect, which is feasible owing to the fine balance between quinoidal/aromatic extension among consecutive rings and steric crowding. This study contributes to the further comprehension of the molecular and electronic structures of these particular diradical molecules with strong implications on the understanding of the nature of chemical bonds in the limits of high electronic correlation or π-conjugation.
Collapse
Affiliation(s)
- Samara Medina Rivero
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - Paula Mayorga Burrezo
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - María Eugenia Sandoval-Salinas
- 2IKERBASQUE - Basque Foundation for Science (DC) & Donostia, International Physics Center & Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal, 4, 20018, Donostia-San Sebastián, Euskadi, Spain.,Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain
| | - Tao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Francisco J Ramírez
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| | - David Casanova
- 2IKERBASQUE - Basque Foundation for Science (DC) & Donostia, International Physics Center & Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal, 4, 20018, Donostia-San Sebastián, Euskadi, Spain
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, Málaga, 29071, Spain
| |
Collapse
|
44
|
Wang W, Chen C, Shu C, Rajca S, Wang X, Rajca A. S = 1 Tetraazacyclophane Diradical Dication with Robust Stability: A Case of Low-Temperature One-Dimensional Antiferromagnetic Chain. J Am Chem Soc 2018; 140:7820-7826. [PMID: 29863339 DOI: 10.1021/jacs.8b02415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-dimensional (1D) spin-1 ( S = 1) chain of organic radicals with low local magnetic anisotropy may provide a better understanding of the low-dimensional magnetism. We report solid-state studies, including single crystal X-ray crystallography, of air-stable tetraazacyclophane diradical dication salt 12·2+·2[Al(OC(CF3)2CH3)4]- with a triplet ground state (Δ EST ≈ 0.5 kcal mol-1). The magnetic behavior for 12·2+ at low temperature is best modeled by 1D spin S = 1 Heisenberg chain with intrachain antiferromagnetic coupling of J'/ k = -5.4 K, which is associated with the interaryl C···C contacts, including π-π interactions. Zero-field splitting value, | D/ hc| ≈ 5.6 × 10-3 cm-1, for 12·2+ is rather small; thus, the 1D chains are characterized by the high degree of isotropicity | D/2 J'| ≈ 7.5 × 10-4. The diradical dication salt possesses extraordinary stability with onset of decomposition at temperature of about 180 °C (∼450 K), based on thermogravimetric analysis and EPR spectroscopy.
Collapse
Affiliation(s)
- Wenqing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , China
| | - Chan Shu
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - Suchada Rajca
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210023 , China
| | - Andrzej Rajca
- Department of Chemistry , University of Nebraska , Lincoln , Nebraska 68588 , United States
| |
Collapse
|
45
|
Rottschäfer D, Neumann B, Stammler HG, Andrada DM, Ghadwal RS. Kekulé diradicaloids derived from a classical N-heterocyclic carbene. Chem Sci 2018; 9:4970-4976. [PMID: 29938024 PMCID: PMC5989652 DOI: 10.1039/c8sc01209a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
The direct double carbenylation of 1,4-diiodobenzene and 4,4'-dibromobiphenyl with a classical N-heterocyclic carbene, SIPr (1) (SIPr = :C{N(2,6-iPr2C6H3)}2CH2CH2), by means of nickel catalysis gives rise to 1,3-imidazolinium salts [(SIPr)(C6H4)(SIPr)](I)2 (2) and [(SIPr)(C6H4)2(SIPr)](Br)2 (3) as off-white solids. Two-electron reduction of 2 and 3 with KC8 cleanly yields Kekulé diradicaloid compounds [(SIPr)(C6H4)(SIPr)] (4) and [(SIPr)(C6H4)2(SIPr)] (5), respectively, as crystalline solids. Structural parameters and DFT as well as CASSCF calculations suggest the closed-shell singlet ground state for 4 and 5. Calculations reveal a very low singlet-triplet energy gap ΔES-T for 5 (10.7 kcal mol-1), while ΔES-T for 4 (29.1 kcal mol-1) is rather large.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse , Lehrstuhl für Anorganische Chemie und Strukturchemie , Centrum für Molekulare Materialien , Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany . ; http://www.ghadwalgroup.de ; ; Tel: +49 521 106 6167
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse , Lehrstuhl für Anorganische Chemie und Strukturchemie , Centrum für Molekulare Materialien , Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany . ; http://www.ghadwalgroup.de ; ; Tel: +49 521 106 6167
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse , Lehrstuhl für Anorganische Chemie und Strukturchemie , Centrum für Molekulare Materialien , Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany . ; http://www.ghadwalgroup.de ; ; Tel: +49 521 106 6167
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie , Universität des Saarlandes , Campus C4.1 , D-66123 Saarbrücken , Germany
| | - Rajendra S Ghadwal
- Anorganische Molekülchemie und Katalyse , Lehrstuhl für Anorganische Chemie und Strukturchemie , Centrum für Molekulare Materialien , Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany . ; http://www.ghadwalgroup.de ; ; Tel: +49 521 106 6167
| |
Collapse
|
46
|
Tan G, Wang X. Isolable Radical Ions of Main-Group Elements: Structures, Bonding and Properties. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700802] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing Jiangsu 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing Jiangsu 210023 China
| |
Collapse
|
47
|
Rottschäfer D, Ho NKT, Neumann B, Stammler HG, van Gastel M, Andrada DM, Ghadwal RS. N-Heterocyclic Carbene Analogues of Thiele and Chichibabin Hydrocarbons. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Nga Kim T. Ho
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Maurice van Gastel
- Max Planck Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Diego M. Andrada
- Allgemeine und Anorganische Chemie; Universität des Saarlandes; Campus C4.1 66123 Saarbrücken Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
48
|
Rottschäfer D, Ho NKT, Neumann B, Stammler HG, van Gastel M, Andrada DM, Ghadwal RS. N-Heterocyclic Carbene Analogues of Thiele and Chichibabin Hydrocarbons. Angew Chem Int Ed Engl 2018; 57:5838-5842. [DOI: 10.1002/anie.201713346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Nga Kim T. Ho
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| | - Maurice van Gastel
- Max Planck Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Diego M. Andrada
- Allgemeine und Anorganische Chemie; Universität des Saarlandes; Campus C4.1 66123 Saarbrücken Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
49
|
Li T, Cheng C, Yuan N, Wang L, Chen C, Tan G, Wang X. Nitrogen Analogues of o
-Quinodimethane with Unexpected non-Kekulé Diradical Character. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Cheng Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Ningning Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing 210023 China
| |
Collapse
|
50
|
Zeng W, Hong Y, Medina Rivero S, Kim J, Zafra JL, Phan H, Gopalakrishna TY, Herng TS, Ding J, Casado J, Kim D, Wu J. Stable Nitrogen-Centered Bis(imino)rylene Diradicaloids. Chemistry 2018; 24:4944-4951. [PMID: 29396877 DOI: 10.1002/chem.201706041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 12/11/2022]
Abstract
The synthesis of stable open-shell singlet diradicaloids is critical for their practical material application. So far, most reported examples are based on carbon-centered radicals, which are intrinsically reactive, and there are very few examples of stable nitrogen-centered diradicaloids. In this full paper, a series of soluble and stable bis(imino)rylenes up to octarylene were synthesized on the basis of newly developed dibromorylene intermediates. It was found that from hexarylene onward, these quinoidal rylenes showed open-shell singlet ground states and could be thermally populated to paramagnetic triplet aminyl diradicals. They are stable due to efficient spin delocalization onto the rylene backbone as well as kinetic blocking of the aminyl sites by the bulky and electron-deficient 2,4,6-trichlorophenyl groups. They exhibited very different electronic structures, diradical character, excited-state dynamics, one-photon absorption, two-photon absorption, and electrochemical properties from their respective aromatic rylene counterparts. These bis(imino)rylenes represent a rare class of stable, neutral, nitrogen-centered aminyl diradicaloids.
Collapse
Affiliation(s)
- Wangdong Zeng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Institute of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Samara Medina Rivero
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071, Malaga, Spain
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - José L Zafra
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071, Malaga, Spain
| | - Hoa Phan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Tullimilli Y Gopalakrishna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Tun Seng Herng
- Department of Materials Science & Engineering, National University of Singapore, 119260, Singapore, Singapore
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, 119260, Singapore, Singapore
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071, Malaga, Spain
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|