1
|
Calcino A, Cooke I, Cowman P, Higgie M, Massault C, Schmitz U, Whittaker M, Field MA. Harnessing genomic technologies for one health solutions in the tropics. Global Health 2024; 20:78. [PMID: 39543642 PMCID: PMC11566161 DOI: 10.1186/s12992-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The targeted application of cutting-edge high-throughput molecular data technologies provides an enormous opportunity to address key health, economic and environmental issues in the tropics within the One Health framework. The Earth's tropical regions are projected to contain > 50% of the world's population by 2050 coupled with 80% of its biodiversity however these regions are relatively less developed economically, with agricultural productivity substantially lower than temperate zones, a large percentage of its population having limited health care options and much of its biodiversity understudied and undescribed. The generation of high-throughput molecular data and bespoke bioinformatics capability to address these unique challenges offers an enormous opportunity for people living in the tropics. MAIN: In this review we discuss in depth solutions to challenges to populations living in tropical zones across three critical One Health areas: human health, biodiversity and food production. This review will examine how some of the challenges in the tropics can be addressed through the targeted application of advanced omics and bioinformatics and will discuss how local populations can embrace these technologies through strategic outreach and education ensuring the benefits of the One Health approach is fully realised through local engagement. CONCLUSION Within the context of the One Health framework, we will demonstrate how genomic technologies can be utilised to improve the overall quality of life for half the world's population.
Collapse
Affiliation(s)
- Andrew Calcino
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Pete Cowman
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Queensland Museum, Townsville, QLD, Australia
| | - Megan Higgie
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Cecile Massault
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University, Townsville, QLD, Australia
| | - Ulf Schmitz
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Maxine Whittaker
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Garvan Institute of Medical Research, Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
2
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
3
|
Kirita K, Matsumoto H, Endo G, Hosokawa S. Total Syntheses of Borolithochromes A, D and G. Angew Chem Int Ed Engl 2024; 63:e202400586. [PMID: 38369567 DOI: 10.1002/anie.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Total syntheses of borolithochromes A, D and G, red pigments isolated from fossils of Jurassic putative red alga Solenopora jurassica, have been achieved. The benzo[gh]tetraphene skeletons of the borate ligands in these substances were constructed using Diels-Alder reactions of aryl dienes with naphthoquinone, followed by intramolecular Corey-Chaykovsky reactions. Complexation of these ligands with trimethyl borate generated homocomplexes, which upon sequential O-demethylation produced borolithochromes A and G. In the route to borolithochrome D, a heterocomplex was prepared by stepwise complexation of the ligands with 2-(dimethylamino)ethyl dimethyl borate. The strategy devised to accomplish the first total synthesis of borolithochromes A, D and G should be applicable to the preparation of other borolithochromes as well as spiroborates possessing two fused polycyclic aromatic ligands.
Collapse
Affiliation(s)
- Kanade Kirita
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hirotake Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Gaku Endo
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
4
|
Jensen RO, Schulz F, Roux S, Klingeman DM, Mitchell WP, Udwary D, Moraïs S, Reynoso V, Winkler J, Nagaraju S, De Tissera S, Shapiro N, Ivanova N, Reddy TBK, Mizrahi I, Utturkar SM, Bayer EA, Woyke T, Mouncey NJ, Jewett MC, Simpson SD, Köpke M, Jones DT, Brown SD. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci Data 2024; 11:432. [PMID: 38693191 PMCID: PMC11063209 DOI: 10.1038/s41597-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Collapse
Affiliation(s)
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | | | | | | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sagar M Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Edward A Bayer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - David T Jones
- Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
5
|
Saito S, Banno T, Arai MA. 3-Hydroxy-3-(2-oxopropyl)indolin-2-one, a product of a human-derived Enterocloster strain, is an inhibitor of nitric oxide production. Biosci Biotechnol Biochem 2024; 88:316-321. [PMID: 38086614 DOI: 10.1093/bbb/zbad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 02/22/2024]
Abstract
When cultured anaerobically, Enterocloster sp. RD014215 was found to produce 1. Using nuclear magnetic resonance and mass spectroscopy, the planar structure of 1 was determined to be 3-hydroxy-3-(2-oxopropyl)indolin-2-one. The chirality of 1 was implied as S by comparing the optical rotation value of 1 with literature reports of the synthesized compounds. To our knowledge, this work represents the first discovery of the metabolite produced by Enterocloster strain. 1 exhibited inhibition of nitric oxide (NO) production, demonstrating a 50% inhibitory activity (IC50) of 34 µm for NO production by murine macrophage cells subjected to lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| | - Tomoya Banno
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Keio University, Kohoku-ku, Yokohama, Japan
| |
Collapse
|
6
|
Takahashi S, Hama T, Nogawa T, Ogawa N, Koshino H. Total Synthesis of Clostrienose. ACS OMEGA 2023; 8:35382-35392. [PMID: 37779990 PMCID: PMC10536848 DOI: 10.1021/acsomega.3c05277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
This paper considers the total synthesis of a cellular differentiation regulator of Clostridium acetobutylicum, clostrienose, which is a unique fatty-acid glycosyl ester consisting of clostrienoic acid, (3R,5E,8E,10E)-3-hydroxy-tetradeca-5,8,10-trienoic acid and α-d-galactofuranosyl-(1 → 2)-α-l-rhamnose. The key features of our synthesis include stereoselective construction of a skipped-triene system in clostrienoic acid and its esterification with a disaccharide residue. The partially protected clostrienoic acid employed for the coupling also served for the preparation of l-rhamnosyl clostrienoate, thus leading to confirmation of the proposed structure unambiguously.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takenori Hama
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Toshihiko Nogawa
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Narihito Ogawa
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Yang Y, Kessler MGC, Marchán-Rivadeneira MR, Han Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023; 28:molecules28104183. [PMID: 37241928 DOI: 10.3390/molecules28104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constantly evolving drug-resistant "superbugs" have caused an urgent demand for novel antimicrobial agents. Natural products and their analogs have been a prolific source of antimicrobial agents, even though a high rediscovery rate and less targeted research has made the field challenging in the pre-genomic era. With recent advancements in technology, natural product research is gaining new life. Genome mining has allowed for more targeted excavation of biosynthetic potential from natural sources that was previously overlooked. Researchers use bioinformatic algorithms to rapidly identify and predict antimicrobial candidates by studying the genome before even entering the lab. In addition, synthetic biology and advanced analytical instruments enable the accelerated identification of novel antibiotics with distinct structures. Here, we reviewed the literature for noteworthy examples of novel antimicrobial agents discovered through various methodologies, highlighting the candidates with potent effectiveness against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yuehan Yang
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Mara Grace C Kessler
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Maria Raquel Marchán-Rivadeneira
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL)-Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
8
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
Peng X, Zhou S, Liu J, Gao Y, Chang J, Ruan H. (±)-Usphenethylones A-C, three pairs of heterodimeric polyketide enantiomers from Aspergillus ustus 3.3904. Org Biomol Chem 2022; 20:694-700. [PMID: 34989382 DOI: 10.1039/d1ob02006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three pairs of new heterodimeric polyketide enantiomers, (±)-usphenethylones A-C (1-3), were isolated from the culture extract of Aspergillus ustus 3.3904. Compounds 1-3 present two heterodimerization patterns by a phenylethyl unit connected to an α-pyrone moiety, of which usphenethylones A-B (1-2) feature a 2,6,18-trioxa-tetracyclo-[8.8.0.03,8.011,16]octadecane core and usphenethylone C (3) possesses a 2-phenyl-3,4-dihydro-pyrano[4,3-b]pyran-5-one scaffold. The structures of (±)-1-3 were elucidated based on spectroscopic data analyses, and their absolute configurations were determined by single-crystal X-ray diffraction analysis and ECD calculation. Plausible biosynthetic pathways for 1-3 were proposed. Compounds (+)-3 and (-)-3 exhibited moderate inhibitory effects against ConA-induced T cell and LPS-induced B cell proliferation.
Collapse
Affiliation(s)
- Xiaogang Peng
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Shuang Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Ying Gao
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Jinling Chang
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China.
| |
Collapse
|
11
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
12
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Bezdekova J, Vodova M, Dolezelikova K, Zitka J, Smerkova K, Zitka O, Adam V, Vaculovicova M. Detection of microbial contamination based on uracil-selective synthetic receptors. Talanta 2021; 224:121813. [PMID: 33379038 DOI: 10.1016/j.talanta.2020.121813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The here presented work is focused on the development of a method for detection of microbial contamination of food based on uracil-selective synthetic receptors. Because uracil may serve as an indicator of bacterial contamination, its selective and on-site detection may prevent spreading of foodborne diseases. The synthetic receptors were created by molecular imprinting. Molecularly imprinted polymers for selective uracil isolation were prepared by a non-covalent imprinting method using dopamine as a functional monomer. Detection of isolated uracil was performed by capillary electrophoresis with absorption detection (λ - 260 nm). The conditions of preparation of molecularly imprinted polymers, their binding properties, adsorption kinetics and selectivity were investigated in detail. Furthermore, the prepared polymer materials were used for selective isolation and detection of uracil from complex samples as tomato products by miniaturized electrophoretic system suggesting the potential of in situ analysis of real samples.
Collapse
Affiliation(s)
- Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Milada Vodova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Jan Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| |
Collapse
|
14
|
Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 2021; 38:782-821. [PMID: 33119013 DOI: 10.1039/d0np00061b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines. and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
15
|
Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G, Gupta TB. Antimicrobial Activity of Soil Clostridium Enriched Conditioned Media Against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front Microbiol 2020; 11:608998. [PMID: 33343553 PMCID: PMC7746556 DOI: 10.3389/fmicb.2020.608998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
The rise of antimicrobial resistant bacteria has fast-tracked the exploration for novel antimicrobial compounds. Reports on antimicrobial producing soil anaerobes such as Clostridium spp. are very limited. In the present study, the antimicrobial activity of soil Clostridium enriched conditioned/spent media (CMs) against Bacillus mycoides, Bacillus cereus and Pseudomonas aeruginosa was assessed by turbidimetric growth inhibition assay. Our results highlighted the antimicrobial potential of soil Clostridium enriched conditioned media against pathogenic and spoilage bacteria. Farm 4 soil conditioned medium (F4SCM) demonstrated a greater growth inhibition activity against all three tested microorganisms in comparison to other soil conditioned media. Non-targeted metabolite profiling of all soil conditioned media revealed distinctive polar and intermediate-polar metabolites in F4SCM, consistent with its strong antimicrobial property. Moreover, 539 significantly abundant metabolites including some unique features were detected in F4SCM suggesting its substantial and specialized chemical diversity. This study putatively identified seven significantly high metabolites in F4SCM; 3-hydroxyphenylacetic acid, γ-aminobutyric acid, creatine, tryptamine, and 2-hydroxyisocaproic acid. Tryptamine and 2-hydroxyisocaproic acid were previously reported to have antimicrobial properties. The present study shows that soil Clostridium spp. are a promising group of bacteria producing metabolites with antimicrobial activity and provides future prospects for clostridial antimicrobial discovery within their metabolic diversity.
Collapse
Affiliation(s)
- Amila Srilal Nawarathna Weligala Pahalagedara
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Arvind Subbaraj
- Proteins and Metabolites team, AgResearch Ltd., Lincoln Research Centre, Lincoln, New Zealand
| | - Gale Brightwell
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree Barua Gupta
- Food Assurance team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
16
|
Neuwirth T, Letzel A, Tank C, Ishida K, Cyrulies M, Schmölz L, Lorkowski S, Hertweck C. Induced Production, Synthesis, and Immunomodulatory Action of Clostrisulfone, a Diarylsulfone from Clostridium acetobutylicum. Chemistry 2020; 26:15855-15858. [PMID: 32996646 PMCID: PMC7756337 DOI: 10.1002/chem.202003500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Indexed: 01/25/2023]
Abstract
The anaerobe Clostridium acetobutylicum belongs to the most important industrially used bacteria. Whereas genome mining points to a high potential for secondary metabolism in C. acetobutylicum, the functions of most biosynthetic gene clusters are cryptic. We report that the addition of supra-physiological concentrations of cysteine triggered the formation of a novel natural product, clostrisulfone (1). Its structure was fully elucidated by NMR, MS and the chemical synthesis of a reference compound. Clostrisulfone is the first reported natural product with a diphenylsulfone scaffold. A biomimetic synthesis suggests that pentamethylchromanol-derived radicals capture sulfur dioxide to form 1. In a cell-based assay using murine macrophages a biphasic and dose-dependent regulation of the LPS-induced release of nitric oxide was observed in the presence of 1.
Collapse
Affiliation(s)
- Toni Neuwirth
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Anne‐Catrin Letzel
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Cedric Tank
- BioPilotPlantLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Michael Cyrulies
- BioPilotPlantLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Lisa Schmölz
- Institute of Nutritional SciencesFriedrich Schiller University JenaDornburger Straße 2507743JenaGermany
| | - Stefan Lorkowski
- Institute of Nutritional SciencesFriedrich Schiller University JenaDornburger Straße 2507743JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
17
|
Li JS, Du Y, Gu D, Cai W, Green A, Ng S, Leung A, Del Rio Flores A, Zhang W. Discovery and Biosynthesis of Clostyrylpyrones from the Obligate Anaerobe Clostridium roseum. Org Lett 2020; 22:8204-8209. [PMID: 33052676 DOI: 10.1021/acs.orglett.0c02656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobic bacteria are a promising new source for natural product discovery. Examination of extracts from the obligate anaerobe Clostridium roseum led to the discovery of a new family of natural products, the clostyrylpyrones. The polyketide synthase-based biosynthetic mechanism of clostyrylpyrones is further proposed on the basis of bioinformatic, gene knockout, biochemical analysis, and heterologous expression studies.
Collapse
Affiliation(s)
- Jeffrey S Li
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Allison Green
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Samuel Ng
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Alexander Leung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Ishida K, Shabuer G, Schieferdecker S, Pidot SJ, Stinear TP, Knuepfer U, Cyrulies M, Hertweck C. Oak-Associated Negativicute Equipped with Ancestral Aromatic Polyketide Synthase Produces Antimycobacterial Dendrubins. Chemistry 2020; 26:13147-13151. [PMID: 32597507 PMCID: PMC7693217 DOI: 10.1002/chem.202001939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Indexed: 11/07/2022]
Abstract
Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.
Collapse
Affiliation(s)
- Keishi Ishida
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gulimila Shabuer
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sebastian Schieferdecker
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, 3000, Melbourne, Australia
| | - Uwe Knuepfer
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Michael Cyrulies
- Biopilot Plant, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Products Chemistry and Infection Biology, Beutenbergstr. 11a, 07745, Jena, Germany.,Institute for Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
19
|
Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. J Ind Microbiol Biotechnol 2020; 47:319-328. [PMID: 32103460 DOI: 10.1007/s10295-020-02266-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.
Collapse
|
20
|
Pahalagedara ASNW, Flint S, Palmer J, Brightwell G, Gupta TB. Antimicrobial production by strictly anaerobic Clostridium spp. Int J Antimicrob Agents 2020; 55:105910. [PMID: 31991218 DOI: 10.1016/j.ijantimicag.2020.105910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/04/2023]
Abstract
Antimicrobial resistance continues to rise on a global scale, affecting the environment, humans, animals and food systems. Use of natural antimicrobials has been favoured over synthetic molecules in food preservation owing to concerns over the adverse health effects of synthetic chemicals. The continuing need for novel natural antimicrobial compounds has spurred research to investigate natural sources, such as bacteria, for antimicrobials. The antimicrobial-producing potential of bacteria has been investigated in numerous studies. However, the discovery of antimicrobials has been biased towards aerobes and facultative anaerobes, and strict anaerobes such as Clostridium spp. have been largely neglected. In recent years, genomic studies have indicated the genetic potential of strict anaerobes to produce putative bioactive molecules and this has encouraged the exploration of Clostridium spp. for their antimicrobial production. So far, only a limited number of antimicrobial compounds have been isolated, identified and characterised from the genus Clostridium. This review discusses our current knowledge and understanding of clostridial antimicrobial compounds as well as recent genome mining studies of Clostridium spp. focused at identification of putative gene clusters encoding bacterial secondary metabolite groups and peptides reported to possess antimicrobial properties. Furthermore, opportunities and challenges in the identification of antimicrobials from Clostridium spp. using genomic-guided approaches are discussed. The limited studies conducted so far have identified the genus Clostridium as a viable source of antimicrobial compounds for future investigations.
Collapse
Affiliation(s)
- Amila Srilal Nawarathna Weligala Pahalagedara
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand; School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Jon Palmer
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Gale Brightwell
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Tanushree Barua Gupta
- Food Assurance Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|
21
|
Schieferdecker S, Shabuer G, Knuepfer U, Hertweck C. Clostrindolin is an antimycobacterial pyrone alkaloid from Clostridium beijerinckii. Org Biomol Chem 2020; 17:6119-6121. [PMID: 31168541 DOI: 10.1039/c9ob00968j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anaerobic bacteria represent an underexplored source of bioactive natural products with unusual structural features. Here we report the isolation and structure elucidation of an antimycobacterial natural product, clostroindolin, produced by Clostridium beijerinckii. Furthermore, we provide first insights into structure activity relationships, which might guide the development of novel antibiotics against mycobacteria.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstrasse 11, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Sugimoto Y, Camacho FR, Wang S, Chankhamjon P, Odabas A, Biswas A, Jeffrey PD, Donia MS. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 2019; 366:science.aax9176. [DOI: 10.1126/science.aax9176] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
Extensive progress has been made in determining the effects of the microbiome on human physiology and disease, but the underlying molecules and mechanisms governing these effects remain largely unexplored. Here, we combine a new computational algorithm with synthetic biology to access biologically active small molecules encoded directly in human microbiome–derived metagenomic sequencing data. We discover that members of a clinically used class of molecules are widely encoded in the human microbiome and that they exert potent antibacterial activities against neighboring microbes, implying a possible role in niche competition and host defense. Our approach paves the way toward a systematic unveiling of the chemical repertoire encoded by the human microbiome and provides a generalizable platform for discovering molecular mediators of microbiome-host and microbiome-microbiome interactions.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Francine R. Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Arman Odabas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Research Computing, Office of Information Technology, Princeton University, Princeton, NJ 08544, USA
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
23
|
Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 12:828-844. [PMID: 30834674 PMCID: PMC6680616 DOI: 10.1111/1751-7915.13398] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of 'genome mining' aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.
Collapse
Affiliation(s)
- Olga N. Sekurova
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Olha Schneider
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sergey B. Zotchev
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
24
|
An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat Commun 2019; 10:3665. [PMID: 31413323 PMCID: PMC6694145 DOI: 10.1038/s41467-019-11673-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Anaerobic bacteria represent an overlooked rich source of biological and chemical diversity. Due to the challenge of cultivation and genetic intractability, assessing the capability of their biosynthetic gene clusters (BGCs) for secondary metabolite production requires an efficient heterologous expression system. However, this kind of host system is still unavailable. Here, we use the facultative anaerobe Streptococcus mutans UA159 as a heterologous host for the expression of BGCs from anaerobic bacteria. A natural competence based large DNA fragment cloning (NabLC) technique was developed, which can move DNA fragments up to 40-kb directly and integrate a 73.7-kb BGC to the genome of S. mutans UA159 via three rounds of NabLC cloning. Using this system, we identify an anti-infiltration compound, mutanocyclin, from undefined BGCs from human oral bacteria. We anticipate this host system will be useful for heterologous expression of BGCs from anaerobic bacteria. Anaerobic bacteria represent a rich source of biological and chemical diversity but are difficult to cultivate and there is a lack of heterologous expression systems. Here the authors develop an expression system based on S. mutans UA159 for biosynthetic gene clusters from anaerobic bacteria.
Collapse
|
25
|
Schieferdecker S, Shabuer G, Letzel AC, Urbansky B, Ishida-Ito M, Ishida K, Cyrulies M, Dahse HM, Pidot S, Hertweck C. Biosynthesis of Diverse Antimicrobial and Antiproliferative Acyloins in Anaerobic Bacteria. ACS Chem Biol 2019; 14:1490-1497. [PMID: 31243958 DOI: 10.1021/acschembio.9b00228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metabolic profiling and genome mining revealed that anaerobic bacteria have the potential to produce acyloin natural products. In addition to sattazolin A and B, three new sattazolin congeners and a novel acyloin named clostrocyloin were isolated from three strains of Clostridium beijerinckii, a bacterium used for industrial solvent production. Bioactivity profiling showed that the sattazolin derivatives possess antimicrobial activities against mycobacteria and pseudomonads with only low cytotoxicity. Clostrocyloin was found to be mainly active against fungi. The thiamine diphosphate (ThDP)-dependent sattazolin-producing synthase was identified in silico and characterized both in vivo and in in vitro enzyme assays. A related acyloin synthase from the clostrocyloin producer was shown to be responsible for the production of the acyloin core of clostrocyloin. The biotransformation experiments provided first insights into the substrate scope of the clostrocyloin synthase and revealed biosynthetic intermediates.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gulimila Shabuer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Anne-Catrin Letzel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Barbara Urbansky
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Michael Cyrulies
- BioPilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sacha Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Victoria 3010, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
26
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
27
|
Personal account: Heinz Falk’s contributions to geosciences. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Dunbar KL, Büttner H, Molloy EM, Dell M, Kumpfmüller J, Hertweck C. Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyle L. Dunbar
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Hannah Büttner
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Evelyn M. Molloy
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry; Leibniz Institute for Natural Product Research and Infection Biology, HKI; Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry; Friedrich Schiller University; 07743 Jena Germany
| |
Collapse
|
29
|
Dunbar KL, Büttner H, Molloy EM, Dell M, Kumpfmüller J, Hertweck C. Genome Editing Reveals Novel Thiotemplated Assembly of Polythioamide Antibiotics in Anaerobic Bacteria. Angew Chem Int Ed Engl 2018; 57:14080-14084. [PMID: 30193003 DOI: 10.1002/anie.201807970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Closthioamide (CTA) is a unique symmetric nonribosomal peptide with six thioamide moieties that is produced by the Gram-positive obligate anaerobe Ruminiclostridium cellulolyticum. CTA displays potent inhibitory activity against important clinical pathogens, making it a promising drug candidate. Yet, the biosynthesis of this DNA gyrase-targeting antibiotic has remained enigmatic. Using a combination of genome mining, genome editing (targeted group II intron, CRISPR/Cas9), and heterologous expression, we show that CTA biosynthesis involves specialized enzymes for starter unit biosynthesis, amide bond formation, thionation, and dimerization. Surprisingly, CTA biosynthesis involves a novel thiotemplated peptide assembly line that markedly differs from known nonribosomal peptide synthetases. These findings provide the first insights into the biosynthesis of thioamide-containing nonribosomal peptides and offer a starting point for the discovery of related natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hannah Büttner
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Evelyn M Molloy
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Maria Dell
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jana Kumpfmüller
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Dept. of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| |
Collapse
|
30
|
Li JS, Barber CC, Zhang W. Natural products from anaerobes. J Ind Microbiol Biotechnol 2018; 46:375-383. [PMID: 30284140 DOI: 10.1007/s10295-018-2086-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
Natural product discovery in the microbial world has historically been biased toward aerobes. Recent in silico analysis demonstrates that genomes of anaerobes encode unexpected biosynthetic potential for natural products, however, chemical data on natural products from the anaerobic world are extremely limited. Here, we review the current body of work on natural products isolated from strictly anaerobic microbes, including recent genome mining efforts to discover polyketides and non-ribosomal peptides from anaerobes. These known natural products of anaerobes have demonstrated interesting molecular scaffolds, biosynthetic logic, and/or biological activities, making anaerobes a promising reservoir for future natural product discovery.
Collapse
Affiliation(s)
- Jeffrey S Li
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Colin Charles Barber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
31
|
Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW. Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chem Biol 2018; 13:1029-1037. [PMID: 29510029 DOI: 10.1021/acschembio.7b01089] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural products (NPs) are a rich source of medicines, but traditional discovery methods are often unsuccessful due to high rates of rediscovery. Genetic approaches for NP discovery are promising, but progress has been slow due to the difficulty of identifying unique biosynthetic gene clusters (BGCs) and poor gene expression. We previously developed the metabologenomics method, which combines genomic and metabolomic data to discover new NPs and their BGCs. Here, we utilize metabologenomics in combination with molecular networking to discover a novel class of NPs, the tyrobetaines: nonribosomal peptides with an unusual trimethylammonium tyrosine residue. The BGC for this unusual class of compounds was identified using metabologenomics and computational structure prediction data. Heterologous expression confirmed the BGC and suggests an unusual mechanism for trimethylammonium formation. Overall, the discovery of the tyrobetaines shows the great potential of metabologenomics combined with molecular networking and computational structure prediction for identifying interesting biosynthetic reactions and novel NPs.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James H. Tryon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony W. Goering
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy D. Kemball
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sara Zhukovsky
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David P. Labeda
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
32
|
Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. Int J Mol Sci 2018; 19:ijms19041089. [PMID: 29621180 PMCID: PMC5979482 DOI: 10.3390/ijms19041089] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) adaptive immune system has been extensively used for gene editing, including gene deletion, insertion, and replacement in bacterial and eukaryotic cells owing to its simple, rapid, and efficient activities in unprecedented resolution. Furthermore, the CRISPR interference (CRISPRi) system including deactivated Cas9 (dCas9) with inactivated endonuclease activity has been further investigated for regulation of the target gene transiently or constitutively, avoiding cell death by disruption of genome. This review discusses the applications of CRISPR/Cas for genome editing in various bacterial systems and their applications. In particular, CRISPR technology has been used for the production of metabolites of high industrial significance, including biochemical, biofuel, and pharmaceutical products/precursors in bacteria. Here, we focus on methods to increase the productivity and yield/titer scan by controlling metabolic flux through individual or combinatorial use of CRISPR/Cas and CRISPRi systems with introduction of synthetic pathway in industrially common bacteria including Escherichia coli. Further, we discuss additional useful applications of the CRISPR/Cas system, including its use in functional genomics.
Collapse
|
33
|
The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat Commun 2017; 8:1514. [PMID: 29138399 PMCID: PMC5686105 DOI: 10.1038/s41467-017-01809-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications. Polyketides are secondary metabolites mainly found in aerobic organisms with wide applications in medicine and agriculture. Here, the authors uncover new polyketides native to the anaerobic bacterium Clostridium acetobutylicum and show their role in triggering sporulation and granulose accumulation.
Collapse
|
34
|
Yin GP, Wu YR, Yang MH, Li TX, Wang XB, Zhou MM, Lei JL, Kong LY. Citrifurans A-D, Four Dimeric Aromatic Polyketides with New Carbon Skeletons from the Fungus Aspergillus sp. Org Lett 2017; 19:4058-4061. [PMID: 28726414 DOI: 10.1021/acs.orglett.7b01823] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Citrifurans A-D (1-4), metabolized by an Aspergillus sp., are unusual dimers of azaphilone and furanone derivatives. Michael addition was thought to be the pivotal procedure in their biosynthesis, and different addition sites generated two new different carbon skeletons. Their structures were elucidated on the basis of spectroscopic methods, single-crystal X-ray diffraction, chemical conversion, and electronic circular dichroism analyses. Compounds 1-3 showed moderate inhibitory activities against LPS-induced NO production in RAW 264.7 macrophages with IC50 values of 18.3, 22.6, and 25.3 μM, respectively.
Collapse
Affiliation(s)
- Guo-Ping Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ya-Rong Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tian-Xiao Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Miao-Miao Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
35
|
Böhringer N, Fisch KM, Schillo D, Bara R, Hertzer C, Grein F, Eisenbarth JH, Kaligis F, Schneider T, Wägele H, König GM, Schäberle TF. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia. Front Microbiol 2017; 8:1092. [PMID: 28659904 PMCID: PMC5469899 DOI: 10.3389/fmicb.2017.01092] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.
Collapse
Affiliation(s)
- Nils Böhringer
- Institute for Pharmaceutical Biology, University of BonnBonn, Germany.,Institute for Insect Biotechnology, Justus Liebig University of GiessenGiessen, Germany
| | - Katja M Fisch
- Institute for Pharmaceutical Biology, University of BonnBonn, Germany.,Institute for Insect Biotechnology, Justus Liebig University of GiessenGiessen, Germany
| | - Dorothee Schillo
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander KoenigBonn, Germany
| | - Robert Bara
- Faculty of Fisheries and Marine Science, Sam Ratulangi UniversityManado, Indonesia
| | - Cora Hertzer
- Institute for Pharmaceutical Biology, University of BonnBonn, Germany
| | - Fabian Grein
- German Center for Infection Research Partner Site Bonn-CologneBonn, Germany.,Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of BonnBonn, Germany
| | - Jan-Hendrik Eisenbarth
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander KoenigBonn, Germany
| | - Fontje Kaligis
- Faculty of Fisheries and Marine Science, Sam Ratulangi UniversityManado, Indonesia
| | - Tanja Schneider
- German Center for Infection Research Partner Site Bonn-CologneBonn, Germany.,Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of BonnBonn, Germany
| | - Heike Wägele
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander KoenigBonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of BonnBonn, Germany.,Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of BonnBonn, Germany
| | - Till F Schäberle
- Institute for Pharmaceutical Biology, University of BonnBonn, Germany.,Institute for Insect Biotechnology, Justus Liebig University of GiessenGiessen, Germany.,Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of BonnBonn, Germany
| |
Collapse
|
36
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
37
|
Falk H, Wolkenstein K. Natural Product Molecular Fossils. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:1-126. [DOI: 10.1007/978-3-319-45618-8_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Brbić M, Piškorec M, Vidulin V, Kriško A, Šmuc T, Supek F. The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res 2016; 44:10074-10090. [PMID: 27915291 PMCID: PMC5137458 DOI: 10.1093/nar/gkw964] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteria and Archaea display a variety of phenotypic traits and can adapt to diverse ecological niches. However, systematic annotation of prokaryotic phenotypes is lacking. We have therefore developed ProTraits, a resource containing ∼545 000 novel phenotype inferences, spanning 424 traits assigned to 3046 bacterial and archaeal species. These annotations were assigned by a computational pipeline that associates microbes with phenotypes by text-mining the scientific literature and the broader World Wide Web, while also being able to define novel concepts from unstructured text. Moreover, the ProTraits pipeline assigns phenotypes by drawing extensively on comparative genomics, capturing patterns in gene repertoires, codon usage biases, proteome composition and co-occurrence in metagenomes. Notably, we find that gene synteny is highly predictive of many phenotypes, and highlight examples of gene neighborhoods associated with spore-forming ability. A global analysis of trait interrelatedness outlined clusters in the microbial phenotype network, suggesting common genetic underpinnings. Our extended set of phenotype annotations allows detection of 57 088 high confidence gene-trait links, which recover many known associations involving sporulation, flagella, catalase activity, aerobicity, photosynthesis and other traits. Over 99% of the commonly occurring gene families are involved in genetic interactions conditional on at least one phenotype, suggesting that epistasis has a major role in shaping microbial gene content.
Collapse
Affiliation(s)
- Maria Brbić
- Division of Electronics, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Matija Piškorec
- Division of Electronics, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Vedrana Vidulin
- Division of Electronics, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Anita Kriško
- Mediterranean Institute of Life Sciences, 21000 Split, Croatia
| | - Tomislav Šmuc
- Division of Electronics, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Supek
- Division of Electronics, Ruder Boskovic Institute, 10000 Zagreb, Croatia .,EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
39
|
Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp. Appl Environ Microbiol 2016; 82:5795-805. [PMID: 27451447 DOI: 10.1128/aem.01383-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery.
Collapse
|
40
|
Wohlleben W, Mast Y, Stegmann E, Ziemert N. Antibiotic drug discovery. Microb Biotechnol 2016; 9:541-8. [PMID: 27470984 PMCID: PMC4993170 DOI: 10.1111/1751-7915.12388] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 01/25/2023] Open
Abstract
Due to the threat posed by the increase of highly resistant pathogenic bacteria, there is an urgent need for new antibiotics; all the more so since in the last 20 years, the approval for new antibacterial agents had decreased. The field of natural product discovery has undergone a tremendous development over the past few years. This has been the consequence of several new and revolutionizing drug discovery and development techniques, which is initiating a ‘New Age of Antibiotic Discovery’. In this review, we concentrate on the most significant discovery approaches during the last and present years and comment on the challenges facing the community in the coming years.
Collapse
Affiliation(s)
- Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Yvonne Mast
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen, Microbiology/Biotechnology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tuebingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| |
Collapse
|
41
|
Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example. ACS Synth Biol 2016; 5:721-32. [PMID: 27115041 DOI: 10.1021/acssynbio.6b00060] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms.
Collapse
Affiliation(s)
- Yi Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zhong-Tian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Seung-Oh Seo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Patrick Lynn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ting Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Hans P Blaschek
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- The Integrated Bioprocessing Research Laboratory (IBRL), University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Zarins-Tutt JS, Barberi TT, Gao H, Mearns-Spragg A, Zhang L, Newman DJ, Goss RJM. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat Prod Rep 2016; 33:54-72. [DOI: 10.1039/c5np00111k] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the centuries, microbial secondary metabolites have played a central role in the treatment of human diseases and have revolutionised the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | - Hong Gao
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Lixin Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - David J. Newman
- Frederick National Laboratories for Cancer Research
- Natural Products Branch
- Frederick
- USA
| | | |
Collapse
|
43
|
Rinkel J, Dickschat JS. Recent highlights in biosynthesis research using stable isotopes. Beilstein J Org Chem 2015; 11:2493-508. [PMID: 26734097 PMCID: PMC4685789 DOI: 10.3762/bjoc.11.271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/23/2015] [Indexed: 02/03/2023] Open
Abstract
The long and successful history of isotopic labeling experiments within natural products research has both changed and deepened our understanding of biosynthesis. As demonstrated in this article, the usage of isotopes is not at all old-fashioned, but continues to give important insights into biosynthetic pathways of secondary metabolites. This review with 85 cited references is structured by separate discussions of compounds from different classes including polyketides, non-ribosomal peptides, their hybrids, terpenoids, and aromatic compounds formed via the shikimate pathway. The text does not aim at a comprehensive overview, but instead a selection of recent important examples of isotope usage within biosynthetic studies is presented, with a special emphasis on mechanistic surprises.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
44
|
Shabuer G, Ishida K, Pidot SJ, Roth M, Dahse HM, Hertweck C. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory. Science 2015; 350:670-4. [PMID: 26542569 DOI: 10.1126/science.aac9990] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment.
Collapse
Affiliation(s)
- Gulimila Shabuer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sacha J Pidot
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany. Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, VIC 3010, Australia
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany. Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
45
|
Wolkenstein K, Sun H, Falk H, Griesinger C. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities. J Am Chem Soc 2015; 137:13460-3. [PMID: 26443920 DOI: 10.1021/jacs.5b08191] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complete structural elucidation of natural products is often challenging due to structural complexity and limited availability. This is true for present-day secondary metabolites, but even more for exceptionally preserved secondary metabolites of ancient organisms that potentially provide insights into the evolutionary history of natural products. Here, we report the full structure and absolute configuration of the borolithochromes, enigmatic boron-containing pigments from a Jurassic putative red alga, from samples of less than 50 μg using microcryoprobe NMR, circular dichroism spectroscopy, and density functional theory calculations and reveal their polyketide origin. The pigments are identified as spiroborates with two pentacyclic sec-butyl-trihydroxy-methyl-benzo[gh]tetraphen-one ligands and less-substituted derivatives. The configuration of the sec-butyl group is found to be (S). Because the exceptional benzo[gh]tetraphene scaffold is otherwise only observed in the recently discovered polyketide clostrubin from a present-day Clostridium bacterium, the Jurassic borolithochromes now can be unambiguously linked to the modern polyketide, providing evidence that the fossil pigments are almost originally preserved secondary metabolites and suggesting that the pigments in fact may have been produced by an ancient bacterium. The borolithochromes differ fundamentally from previously described boronated polyketides and represent the first boronated aromatic polyketides found so far. Our results demonstrate the potential of microcryoprobe NMR in the analysis of previously little-explored secondary metabolites from ancient organisms and reveal the evolutionary significance of clostrubin-type polyketides.
Collapse
Affiliation(s)
- Klaus Wolkenstein
- Department of Geobiology, Geoscience Centre, University of Göttingen , Goldschmidtstraße 3, 37077 Göttingen, Germany
| | - Han Sun
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | - Heinz Falk
- Institute of Organic Chemistry, University of Linz , Altenbergerstraße 69, 4040 Linz, Austria
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci U S A 2015; 112:12175-80. [PMID: 26324907 DOI: 10.1073/pnas.1500873112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.
Collapse
|
47
|
Wu C, Kim HK, van Wezel GP, Choi YH. Metabolomics in the natural products field--a gateway to novel antibiotics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:11-17. [PMID: 26190678 DOI: 10.1016/j.ddtec.2015.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Metabolomics is a high throughput analytical technique used to globally measure low molecular weight metabolites, allowing simultaneous metabolic comparison of different biological samples and thus highlighting differentially produced compounds as potential biomarkers. Although microbes are renowned as prolific sources of antibiotics, the traditional approach for new anti-infectives discovery is time-consuming and labor-intensive. In this review, the use of NMR- or MS-based metabolomics is proposed as an efficient approach to find antimicrobials in microbial single- or co-cultures.
Collapse
Affiliation(s)
- Changsheng Wu
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
48
|
Yang M, Li J, Li A. Total synthesis of clostrubin. Nat Commun 2015; 6:6445. [PMID: 25759087 PMCID: PMC4382683 DOI: 10.1038/ncomms7445] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/29/2015] [Indexed: 01/21/2023] Open
Abstract
Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This polyphenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a considerable challenge for chemical synthesis. Here we report the first total synthesis of clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is exploited based on the inherent structural feature of the natural product. Barton–Kellogg olefination forges the two segments together to form a tetrasubstituted alkene. A photo-induced 6π electrocyclization followed by spontaneous aromatization constructs the hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this approach. Due to rising resistance, efficient routes to new antibiotics is a vital task for human health. Here, the authors report a short, convergent and elegant synthesis of a very recently reported antibiotic, successfully giving access to this material on scale.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
49
|
Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 2014; 15:983. [PMID: 25407095 PMCID: PMC4289311 DOI: 10.1186/1471-2164-15-983] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Background Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a diverse group of biologically active bacterial molecules. Due to the conserved genomic arrangement of many of the genes involved in their synthesis, these secondary metabolite biosynthetic pathways can be predicted from genome sequence data. To date, however, despite the myriad of sequenced genomes covering many branches of the bacterial phylogenetic tree, such an analysis for a broader group of bacteria like anaerobes has not been attempted. Results We investigated a collection of 211 complete and published genomes, focusing on anaerobic bacteria, whose potential to encode RiPPs is relatively unknown. We showed that the presence of RiPP-genes is widespread among anaerobic representatives of the phyla Actinobacteria, Proteobacteria and Firmicutes and that, collectively, anaerobes possess the ability to synthesize a broad variety of different RiPP classes. More than 25% of anaerobes are capable of producing RiPPs either alone or in conjunction with other secondary metabolites, such as polyketides or non-ribosomal peptides. Conclusion Amongst the analyzed genomes, several gene clusters encode uncharacterized RiPPs, whilst others show similarity with known RiPPs. These include a number of potential class II lanthipeptides; head-to-tail cyclized peptides and lactococcin 972-like RiPP. This study presents further evidence in support of anaerobic bacteria as an untapped natural products reservoir. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-983) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr, 11a, Jena 07745, Germany.
| |
Collapse
|
50
|
|