1
|
Betcke I, Götzinger AC, Kornet MM, Müller TJJ. Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps. Beilstein J Org Chem 2024; 20:2024-2077. [PMID: 39161713 PMCID: PMC11331544 DOI: 10.3762/bjoc.20.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Pyrazoles are rarely found in nature but are traditionally used in the agrochemical and pharmaceutical industries, while other areas of use are also actively developing. However, they have also found numerous other applications. The search for new and efficient syntheses of these heterocycles is therefore highly relevant. The modular concept of multicomponent reactions (MCR) has paved a broad alley to heteroaromatics. The advantages over traditional methods are the broader scope and increased efficiency of these reactions. In particular, traditional multistep syntheses of pyrazoles have considerably been extended by MCR. Progress has been made in the cyclocondensation of 1,3-dielectrophiles that are generated in situ. Limitations in the regioselectivity of cyclocondensation with 1,3-dicarbonyls were overcome by the addition-cyclocondensation of α,β-unsaturated ketones. Embedding 1,3-dipolar cycloadditions into a one-pot process has additionally been developed for concise syntheses of pyrazoles. The MCR strategy also allows for concatenating classical condensation-based methodology with modern cross-coupling and radical chemistry, as well as providing versatile synthetic approaches to pyrazoles. This overview summarizes the most important MCR syntheses of pyrazoles based on ring-forming sequences in a flashlight fashion.
Collapse
Affiliation(s)
- Ignaz Betcke
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Alissa C Götzinger
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Maryna M Kornet
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Zaporizhzhia National University, Faculty of Biology, Department of Chemistry, Zhukovskogo Street 66, 69600 Zaporizhzhia, Ukraine
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Ke S, Jia Y, Tong Y, Luo W, Wu S, Jiang X, Li Y. Radical N 2-Retention Cyclizations of Aryl Diazoniums: Access to 7/8/9-Membered Heterocycles. Org Lett 2024; 26:3622-3627. [PMID: 38659130 DOI: 10.1021/acs.orglett.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report herein a modular approach to synthesizing diverse functionalized 7/8/9-membered poly-N-containing heterocycles via oxidative radical N2-retention cyclizations of allylic aryl diazonium salts using CF3SO2Na as a CF3 radical source. A range of trifluoromethylated benzotriazepines, benzotriazocines, and benzotriazonines were obtained in moderate to good yields. This transition-metal-free protocol demonstrates atom economy, safe conditions, broad functional group tolerance, and availability of readily accessible reagents.
Collapse
Affiliation(s)
- Sen Ke
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yagang Jia
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ye Tong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wencheng Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Shufeng Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiangwen Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
3
|
Zhang TB, Wang F, Ouyang JY, Luo ZW, Qin JH, Li JH, Ouyang XH. Aryldiazonium-Salt-Triggered Carboxylative Azotization of Pyrroles or Indoles with Polyhalomethanes via Halogen-Atom Transfer (XAT). Org Lett 2024. [PMID: 38175821 DOI: 10.1021/acs.orglett.3c03701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A halogen-atom-transfer (XAT)-based method for carbonylazotization of pyrroles or indoles with aryldiazonium salts and polyhalomethanes via dual C(sp2)-H bond functionalization is described. Using aryldiazonium salts realizes carbonylation/azotization of pyrroles or indoles via polyhalomethyl-radical-mediated and electrophilic substitution, thus providing a green, efficient, and step-economy approach for synthesis of multifunctional pyrroles or indoles from the easily available substrates. Notably, this strategy relies on the use of aryldiazonium salts to extend the well-established iodine atom transfer to bromine or chlorine atom transfer.
Collapse
Affiliation(s)
- Tian-Bao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jun-Yao Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhen-Wei Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
4
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
5
|
Cenalmor A, Pascual E, Gil-Manso S, Correa-Rocha R, Suárez JR, García-Álvarez I. Evaluation of Anti-Neuroinflammatory Activity of Isatin Derivatives in Activated Microglia. Molecules 2023; 28:4882. [PMID: 37375437 DOI: 10.3390/molecules28124882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroinflammation plays a crucial role in the progression of Alzheimer's disease and other neurodegenerative disorders. Overactivated microglia cause neurotoxicity and prolong the inflammatory response in many neuropathologies. In this study, we have synthesised a series of isatin derivatives to evaluate their anti-neuroinflammatory potential using lipopolysaccharide activated microglia as a cell model. We explored four different substitutions of the isatin moiety by testing their anti-neuroinflammatory activity on BV2 microglia cells. Based on the low cytotoxicity and the activity in reducing the release of nitric oxide, pro-inflammatory interleukin 6 and tumour necrosis factor α by microglial cells, the N1-alkylated compound 10 and the chlorinated 20 showed the best results at 25 µM. Taken together, the data suggest that 10 and 20 are promising lead compounds for developing new neuroprotective agents.
Collapse
Affiliation(s)
- Alejandro Cenalmor
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Elena Pascual
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Sergio Gil-Manso
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), 28009 Madrid, Spain
| | - José Ramón Suárez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel García-Álvarez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
6
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
7
|
Zou X, Zheng L, Zhuo X, Zhong Y, Wu Y, Yang B, He Q, Guo W. Copper-Promoted Aerobic Oxidative [3+2] Cycloaddition Reactions of N,N-Disubstituted Hydrazines with Alkynoates: Access to Substituted Pyrazoles. J Org Chem 2023; 88:2190-2206. [PMID: 36724037 DOI: 10.1021/acs.joc.2c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A copper-promoted aerobic oxidative [3+2] cycloaddition reaction for the synthesis of various substituted pyrazoles from N,N-disubstituted hydrazines with alkynoates in the presence of bases is developed. This work involves a direct C(sp3)-H functionalization and the formation of new C-C/C-N bonds. In this strategy, inexpensive and easily available Cu2O serves as the promoter and air acts as the green oxidant. The reaction exhibits the advantages of high atom and step economy, high regioselectivity, and easy operation.
Collapse
Affiliation(s)
- Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yingying Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Beining Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Qifang He
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
8
|
Chen D, Jiang J, Wan J. Advances in the Transition Metal‐Free C‐H Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Demao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jianwen Jiang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education. College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
9
|
He J, Liu Y, Feng Y, Li X, Liu P, Dai B. Cs 2CO 3-Promoted [3 + 2] Cyclization of Chalcone and N-Tosylhydrazone. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2078845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jing He
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yali Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Yijiao Feng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Xuezhen Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Dong L, Feng T, Xiong D, Xu Z, Cheng J, Xu X, Shao X, Li Z. Copper(II)-Catalyzed Direct C-H Trifluoroethylation of Heteroarenes. Org Lett 2022; 24:1913-1917. [PMID: 35261242 DOI: 10.1021/acs.orglett.2c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Trifluoroethyl (CH2CF3) is an important functional group in many pharmaceutical and agrochemical compounds. Herein, we report an efficient method for the copper-catalyzed direct trifluoroethylation of heteroarenes. The reaction exhibited good compatibility to various substrates, and the desired products were obtained in good yields. Preliminary mechanistic investigations indicate the trifluoroethyl radical is involved in the catalytic circle. Moreover, the late-stage modification of bioactive molecules further confirmed the practical applications of this method.
Collapse
Affiliation(s)
- Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tingting Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Dongdong Xiong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
11
|
Guo H, Tian L, Liu Y, Wan JP. DMSO as a C 1 Source for [2 + 2 + 1] Pyrazole Ring Construction via Metal-Free Annulation with Enaminones and Hydrazines. Org Lett 2021; 24:228-233. [PMID: 34908420 DOI: 10.1021/acs.orglett.1c03879] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cascade reaction between enaminones, hydrazines, and dimethyl sulfoxide (DMSO) for the synthesis of 1,4-disubstituted pyrazoles catalyzed by molecular iodine in the presence of Selectfluor has been realized. DMSO plays a dual role as the C1 source and the reaction medium. In addition, the synthesis of 1,3,4-trisubstituted pyrazoles using aldehydes as alternative C1 building blocks has also been achieved.
Collapse
Affiliation(s)
- Haijin Guo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Lihong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
12
|
Schäfer C, Cho H, Vlocskó B, Xie G, Török B. Recent Advances in the Green Synthesis of Heterocycles: From Building Blocks to Biologically Active Compounds. Curr Org Synth 2021; 19:426-462. [PMID: 34515007 DOI: 10.2174/1570179418666210910110205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022]
Abstract
Recent advances in the environmentally benign synthesis of common heterocycles are described. This account features three main parts; the preparation of non-aromatic heterocycles, one-ring aromatic heterocycles and their condensed analogs. Due to the great variety of and high interest in these compounds, this work focuses on providing representative examples of the preparation of the target compounds.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Hyejin Cho
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd. Boston, MA 02125. United States
| |
Collapse
|
13
|
Zhu J, Durham AC, Wang Y, Corcoran JC, Zuo XD, Geib SJ, Wang YM. Regiocontrolled Coupling of Alkynes and Dipolar Reagents: Iron-Mediated [3 + 2] Cycloadditions Revisited. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Austin C. Durham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James C. Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Dong Zuo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Steven J. Geib
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Shi Y, Ma H, Shao J, Deng C. Theoretical studies on the mechanism of Pd 2+-catalyzed regioselective C-H alkylation of indole with MesICH 2CF 3OTf. J Mol Model 2021; 27:150. [PMID: 33945013 DOI: 10.1007/s00894-021-04773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
The reaction mechanism of Pd2+-catalyzed regioselective C-H alkylation of indole with MesICH2CF3OTf has been investigated by the density functional theory calculations. The reaction mechanism mainly contains four steps: C-H activation, oxidative addition, reductive elimination, and ligands substitution. From our calculations, we find that the C-H activation step was realized by the acetate anion (-OAc) assisted concerted metalation deprotonation (CMD) process and the transition state of C-H activation process is a square planar configuration. Moreover, the calculation results suggest that the regioselectivity of C-H bond alkylation of indole with MesICH2CF3OTf can be ascribed to the different stability of the CMD transition states in C-H activation step and the relative stabilities of deprotonated intermediates.
Collapse
Affiliation(s)
- Yao Shi
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hongsheng Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaxuan Shao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Xu H, Ye R, Li Z, Han M, Meng L. Multicomponent Assembly of α,α‐Bis‐Sulfonyl Arylketones and Multiple Substituted Conjugated Dienes Induced by Visible‐Light Irradiation without Additives and Photocatalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Man‐Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| |
Collapse
|
17
|
Shen J, Xu J, Zhu Q, Zhang P. Hypervalent iodine(iii)-promoted rapid cascade reaction for the synthesis of unsymmetric azo compounds. Org Biomol Chem 2021; 19:3119-3123. [PMID: 33885564 DOI: 10.1039/d1ob00219h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid three-component cascade reaction for the synthesis of unsymmetric azo compounds via a radical activation strategy has been reported. Various aryldiazonium salts and unactivated alkenes are well compatible, providing the corresponding products in good to excellent yields. This strategy gives an efficient and practical solution for the synthesis of unsymmetric azo compounds with two C-N bond formation. A free radical pathway mechanism is advised for this transformation.
Collapse
Affiliation(s)
- Jiabin Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | | | | | | |
Collapse
|
18
|
Misal Castro LC, Sultan I, Nishi K, Tsurugi H, Mashima K. Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. J Org Chem 2021; 86:3287-3299. [DOI: 10.1021/acs.joc.0c02661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Luis C. Misal Castro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ibrahim Sultan
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
19
|
Shen J, Xu J, He L, Ouyang Y, Huang L, Li W, Zhu Q, Zhang P. Photoinduced Rapid Multicomponent Cascade Reaction of Aryldiazonium Salts with Unactivated Alkenes and TMSN3. Org Lett 2021; 23:1204-1208. [DOI: 10.1021/acs.orglett.0c04148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qing Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
20
|
Huang W, Xu C, Yu J, Wang M. ZnI 2-Catalyzed Aminotrifluoromethylation Cyclization of Alkenes Using PhICF 3Cl. J Org Chem 2021; 86:1987-1999. [PMID: 33378195 DOI: 10.1021/acs.joc.0c02637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report here an alternatively catalytic aminotrifluoromethylation of alkenes using PhICF3Cl as a bifunctional reagent along with ZnI2 as a dual catalyst. A combined catalytic strategy was established for the intramolecular aminotrifluoromethylation of 4-pentenamines. As a result, a set of 2-trifluoroethyl-pyrrolidines was obtained in a high selectivity. Mechanism studies revealed that the reaction included an iodine anion-catalyzed radical chlorotrifluoromethylation of alkenes and a sequential Lewis acid-promoted aminocyclization of the resulting chlorotrifluoromethylated intermediates.
Collapse
Affiliation(s)
- Wanqiao Huang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianxin Yu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
21
|
Bhattacharjee P, Bora U. Organocatalytic dimensions to the C–H functionalization of the carbocyclic core in indoles: a review update. Org Chem Front 2021. [DOI: 10.1039/d0qo01466d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A review highlighting important research findings in remote C–H activation processes using effectual organocatalytic perspectives. The challenging indole carbocyclic ring positions were successfully accessed with proper regio- and stereocontrols.
Collapse
Affiliation(s)
| | - Utpal Bora
- Department of Chemical Sciences
- Tezpur University
- Tezpur
- India
| |
Collapse
|
22
|
Wu W, Luo B, You Y, Weng Z. Copper-catalyzed one-pot synthesis of 2-(2,2,2-trifluoroethyl)-substituted benzofused heterocycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00157d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A method for copper-catalyzed synthesis of 2-trifluoroethyl-substituted benzofurans and indoles from the reaction of salicylaldehyde/2-aminobenzaldehyde p-tosylhydrazones with 2-bromo-3,3,3-trifluoropropene has been developed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Molecule Synthesis and Function Discovery
- and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Beibei Luo
- Key Laboratory of Molecule Synthesis and Function Discovery
- and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Yi You
- Key Laboratory of Molecule Synthesis and Function Discovery
- and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhiqiang Weng
- Key Laboratory of Molecule Synthesis and Function Discovery
- and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
23
|
Cardinale L, Neumeier M, Majek M, Jacobi von Wangelin A. Aryl Pyrazoles from Photocatalytic Cycloadditions of Arenediazonium. Org Lett 2020; 22:7219-7224. [DOI: 10.1021/acs.orglett.0c02514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Michael Neumeier
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Michal Majek
- Department of Organic Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | | |
Collapse
|
24
|
Liu J, Jiang J, Zheng L, Liu Z. Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| |
Collapse
|
25
|
Zhang F, Chen Z, Cheung CW, Ma J. Aryl Diazonium
Salt‐Triggered
Cyclization and Cycloaddition Reactions: Past, Present, and Future. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fa‐Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| |
Collapse
|
26
|
Abstract
Vicinal alkene carboamination is a highly efficient and practical synthetic strategy for the straightforward preparation of diverse and valuable amine derivatives starting from simple compounds. During the last decade that approach has found continuous research interests and various practical methods have been developed using transition-metal catalysis. Driven by the renaissance of synthetic radical chemistry, intermolecular radical alkene carboamination comprising a C-C bond and a C-N bond forming step has been intensively investigated recently culminating in novel strategies and improved protocols which complement existing methodologies. Radical alkene carboamination can be achieved via three different reaction modes. Such cascades can proceed through N-radical addition to an alkene with subsequent C-C bond formation leading to 2,1-carboamination products. Alternatively, the C-C bond can be installed prior to the C-N bond via initial C-radical addition to the alkene with subsequent β-amination resulting in 1,2-carboamination. The third mode comprises initial single electron oxidation of the alkene to the corresponding alkene radical cation that gets trapped by an N-nucleophile and the cascade is terminated by radical C-C bond formation. In this review, the three different conceptual approaches will be discussed and examples from the recent literature will be presented. Further, the reader will get insights into the mechanism of the different transformations.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany.
| | | |
Collapse
|
27
|
Santschi N, Jelier BJ, Stähelin S, Nauser T. Profiling the oxidative activation of DMSO-F 6 by pulse radiolysis and translational potential for radical C-H trifluoromethylation. Org Biomol Chem 2019; 17:9734-9742. [PMID: 31710060 DOI: 10.1039/c9ob02119a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative activation of the perfluorinated analogue of dimethyl sulfoxide, DMSO-F6, by hydroxyl radicals efficiently produces trifluoromethyl radicals based on pulse radiolysis, laboratory scale experiments, and comparison of rates of reaction for analogous radical systems. In comparison to commercially available precursors, DMSO-F6 proved to be more stable, easier to handle and overall more convenient than leading F3C-reagents and may therefore be an ideal surrogate to study F3C radicals for time-resolved kinetics studies. In addition, we present an improved protocol for the preparation of this largely unexplored reagent.
Collapse
Affiliation(s)
- Nico Santschi
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1/2, 8093 Zürich, Switzerland.
| | - Benson J Jelier
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1/2, 8093 Zürich, Switzerland.
| | - Samuel Stähelin
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1/2, 8093 Zürich, Switzerland.
| | - Thomas Nauser
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1/2, 8093 Zürich, Switzerland.
| |
Collapse
|
28
|
Duan Y, Liu W, Tian L, Mao Y, Song C. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Curr Top Med Chem 2019; 19:1289-1304. [PMID: 31210108 DOI: 10.2174/1568026619666190618130008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Microtubules are essential for the mitotic division of cells and have been an attractive target
for antitumour drugs due to the increased incidence of cancer and significant mitosis rate of tumour cells.
In the past few years, tubulin-colchicine binding site, as one of the three binding pockets including taxol-,
vinblastine- and colchicine-binding sites, has been focused on to design tubulin-destabilizing agents including
inhibitors, antibody-drug conjugates and degradation agents. The present review is the first to
cover a systemic and recent synopsis of tubulin-colchicine binding site agents. We believe that it would
provide an increase in our understanding of receptor-ligand interaction pattern and consciousness of a
series of challenges about tubulin target druggability.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Liang Tian
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
29
|
Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev IV, Makhova NN. Renaissance of 1,2,5-Oxadiazolyl Diazonium Salts: Synthesis and Reactivity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Egor S. Zhilin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Dmitry M. Bystrov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Alexander S. Kulikov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Artem O. Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Nina N. Makhova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| |
Collapse
|
30
|
Kurandina D, Yadagiri D, Rivas M, Kavun A, Chuentragool P, Hayama K, Gevorgyan V. Transition-Metal- and Light-Free Directed Amination of Remote Unactivated C(sp 3)-H Bonds of Alcohols. J Am Chem Soc 2019; 141:8104-8109. [PMID: 31046256 PMCID: PMC6873700 DOI: 10.1021/jacs.9b04189] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the great value of amino alcohols, new methods for their synthesis are in high demand. Abundant aliphatic alcohols represent the ideal feedstock for the method development toward this important motif. To date, transition-metal-catalyzed approaches for the directed remote amination of alcohols have been well established. Yet, they have certain disadvantages such as the use of expensive catalysts and limited scope. Very recently, transition-metal-free visible-light-induced radical approaches have emerged as new powerful tools for directed remote amination of alcohols. Relying on 1,5-HAT reactivity, these methods are limited to β - or δ-amination only. Herein, we report a novel transition-metal- and visible-light-free room-temperature radical approach for remote β -, γ-, and δ-C(sp3)-N bond formation in aliphatic alcohols using mild basic conditions and readily available diazonium salt reagents.
Collapse
Affiliation(s)
| | | | | | - Aleksei Kavun
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Rm. 4500, Chicago, Illinois 60607, United States
| | - Padon Chuentragool
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Rm. 4500, Chicago, Illinois 60607, United States
| | - Keiichi Hayama
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Rm. 4500, Chicago, Illinois 60607, United States
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Rm. 4500, Chicago, Illinois 60607, United States
| |
Collapse
|
31
|
Song W, Li M, He J, Li J, Dong K, Zheng Y. Copper-catalyzed tandem annulation/enol nucleophilic addition to access multisubstituted indoles. Org Biomol Chem 2019; 17:2663-2669. [PMID: 30766987 DOI: 10.1039/c9ob00181f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method to access various multisubstituted indoles from propargylic alcohols and readily available enol nucleophiles by copper-catalyzed tandem annulation/enol nucleophilic addition has been developed. Compared to the expensive metal catalysts such as platinum, gold, silver, and palladium used previously, the most economical copper(i) catalyst could achieve this reaction efficiently. The fused heterocyclic compounds, pyrrolo[1,2-a] indoles, could be afforded by further transformation of the products. The allyl cation intermediate may be involved in the mechanism.
Collapse
Affiliation(s)
- Wangze Song
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Synthesis of indoles: recent advances. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4844] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
An efficient synthesis of indoles via a CuMgAl-LDH-catalyzed cyclization of 2-alkynylsulfonanilides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Matcha K, Antonchick AP. Transition-Metal-Free Radical Hydrotrifluoromethylation of Alkynes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kiran Matcha
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Andrey P. Antonchick
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Strasse a6 44227 Dortmund Germany
| |
Collapse
|
35
|
Ouyang Y, Xu XH, Qing FL. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry; Chinese Academy of Science; 345 Lingling Lu Shanghai 200032 China
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
36
|
Ouyang Y, Xu XH, Qing FL. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent. Angew Chem Int Ed Engl 2018; 57:6926-6929. [PMID: 29673060 DOI: 10.1002/anie.201803566] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 12/31/2022]
Abstract
A large number of reagents have been developed for the synthesis of trifluoromethylated compounds. However, an ongoing challenge in trifluoromethylation reaction is the use of less expensive and practical trifluoromethyl sources. We report herein the unprecedented direct trifluoromethylation of (hetero)arenes using trifluoromethanesulfonic anhydride as a radical trifluoromethylation reagent by merging photoredox catalysis and pyridine activation. Furthermore, introduction of both the CF3 and OTf groups of the trifluoromethanesulfonic anhydride into internal alkynes to access tetrasubstituted trifluoromethylated alkenes was achieved. Since trifluoromethanesulfonic anhydride is a low-cost and abundant chemical, this method provides a cost-efficient and practical route to trifluoromethylated compounds.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, China
| |
Collapse
|
37
|
Yan SY, Zhang ZZ, Shi BF. Nickel-catalyzed direct C-H trifluoroethylation of heteroarenes with trifluoroethyl iodide. Chem Commun (Camb) 2018; 53:10287-10290. [PMID: 28868560 DOI: 10.1039/c7cc05532c] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly selective nickel-catalyzed C-H trifluoroethylation of heteroarenes was developed with the assistance of a monodentate directing group. This protocol provides efficient access to various trifluoroethyl-substituted heteroarenes, including indoles, pyrroles, furans, and thiophenes, with commercially available CF3CH2I as an alkylation reagent. This robust catalytic procedure is scalable and tolerates a broad range of functional groups. Moreover, multifluoroalkylation of indoles is also viable.
Collapse
Affiliation(s)
- Sheng-Yi Yan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | |
Collapse
|
38
|
Zhang H, Wang HY, Luo Y, Chen C, Cao Y, Chen P, Guo YL, Lan Y, Liu G. Regioselective Palladium-Catalyzed C-H Bond Trifluoroethylation of Indoles: Exploration and Mechanistic Insight. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03220] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Zhang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Hao-Yang Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Yixin Luo
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Chaohuang Chen
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Yimiao Cao
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Pinhong Chen
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Yin-Long Guo
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Guosheng Liu
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling
Road, Shanghai, China, 200032
| |
Collapse
|
39
|
|
40
|
Koziakov D, Wu G, Jacobi von Wangelin A. Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org Biomol Chem 2018; 16:4942-4953. [DOI: 10.1039/c8ob00591e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical aromatic substitutions of arenediazonium salts can be initiated by various methods. The recent developments of weak base-mediated protocols provide great advantages over conventional metal-mediated or photoredox reactions by their operational simplicity, price, hazard potential and scalability.
Collapse
Affiliation(s)
- Denis Koziakov
- Institute of Organic Chemistry
- University of Regensburg
- Germany
| | - Guojiao Wu
- Dept. of Chemistry
- University of Hamburg
- 20146 Hamburg
- Germany
| | - Axel Jacobi von Wangelin
- Institute of Organic Chemistry
- University of Regensburg
- Germany
- Dept. of Chemistry
- University of Hamburg
| |
Collapse
|
41
|
Guyon H, Chachignon H, Cahard D. CF 3SO 2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF 3SO 2Na. Beilstein J Org Chem 2017; 13:2764-2799. [PMID: 30018665 PMCID: PMC5753172 DOI: 10.3762/bjoc.13.272] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/15/2017] [Indexed: 11/23/2022] Open
Abstract
Sodium trifluoromethanesulfinate, CF3SO2Na, and trifluoromethanesulfonyl chloride, CF3SO2Cl, are two popular reagents that are widely used for the direct trifluoromethylation of a large range of substrates. Further, these two reagents are employed for the direct trifluoromethylsulfenylation and trifluoromethylsulfinylation, the introduction of the SCF3 and the S(O)CF3 group, respectively. In addition to the aforementioned reactions, the versatility of these two reagents is presented in other reactions such as sulfonylation and chlorination. This first part is dedicated to sodium trifluoromethanesulfinate.
Collapse
Affiliation(s)
- Hélène Guyon
- UMR 6014 CNRS COBRA, Normandie Université, 1 rue Tesnière, 76821 Mont Saint Aignan, France
| | - Hélène Chachignon
- UMR 6014 CNRS COBRA, Normandie Université, 1 rue Tesnière, 76821 Mont Saint Aignan, France
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, 1 rue Tesnière, 76821 Mont Saint Aignan, France
| |
Collapse
|
42
|
Krüll J, Hubert A, Nebel N, Prante O, Heinrich MR. Microwave‐Assisted Rapid One‐Pot Synthesis of Fused and Non‐Fused Indoles and 5‐[
18
F]Fluoroindoles from Phenylazocarboxylates. Chemistry 2017; 23:16174-16178. [DOI: 10.1002/chem.201703890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander Universität Erlangen-Nürnberg Schuhstraße 19 91052 Erlangen Germany
| | - Anja Hubert
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander Universität Erlangen-Nürnberg Schuhstraße 19 91052 Erlangen Germany
| | - Natascha Nebel
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 6 91054 Erlangen Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 6 91054 Erlangen Germany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander Universität Erlangen-Nürnberg Schuhstraße 19 91052 Erlangen Germany
| |
Collapse
|
43
|
Dhiman S, Rhodes S, Kumar D, Kumar A, Jha M. Copper-Catalyzed Tandem Imine Formation, Sonogashira Coupling and Intramolecular Hydroamination: A Facile Synthesis of 3-Aryl-γ−carbolines. ChemistrySelect 2017. [DOI: 10.1002/slct.201702025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shiv Dhiman
- Department of Biology and Chemistry; Nipissing University; North Bay, ON P1B 8 L7 Canada, Fax: +1-705-4741947, Tel: +1-705-4743450 ex 4814
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Pilani 333031 India, Tel: +91-1596-515663, Fax: +91-1596-244183
| | - Steven Rhodes
- Department of Biology and Chemistry; Nipissing University; North Bay, ON P1B 8 L7 Canada, Fax: +1-705-4741947, Tel: +1-705-4743450 ex 4814
| | - Dalip Kumar
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Pilani 333031 India, Tel: +91-1596-515663, Fax: +91-1596-244183
| | - Anil Kumar
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Pilani 333031 India, Tel: +91-1596-515663, Fax: +91-1596-244183
| | - Mukund Jha
- Department of Biology and Chemistry; Nipissing University; North Bay, ON P1B 8 L7 Canada, Fax: +1-705-4741947, Tel: +1-705-4743450 ex 4814
| |
Collapse
|
44
|
Andrey P. Antonchick. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Andrey P. Antonchick. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201704212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Intramolecular cyclization of N-propargyl anilines: a new synthetic entry into highly substituted indoles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1170-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Li X, Xing Q, Li P, Zhao J, Li F. Three-Component Povarov Reaction with Alcohols as Alkene Precursors: Efficient Access to 2-Arylquinolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinjian Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; 730000 Lanzhou P. R. China
- University of Chinese Academy of Sciences; 100049 Beijing P. R. China
| | - Qi Xing
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Pan Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Jingjing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; 730000 Lanzhou P. R. China
| |
Collapse
|
48
|
Borah AJ, Shi Z. Palladium-catalyzed regioselective C–H fluoroalkylation of indoles at the C4-position. Chem Commun (Camb) 2017; 53:3945-3948. [DOI: 10.1039/c7cc01274h] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An exclusive catalytic C4-selective fluoroalkylation of indoles with highly active (1H, 1H-perfluoroalkyl)mesityliodonium triflate has been described.
Collapse
Affiliation(s)
- Arun Jyoti Borah
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
49
|
Song Z, Antonchick AP. Catching α-aminoalkyl radicals: cyclization between tertiary alkylanilines and alkenes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Yadav KK, Ahmad S, Narang U, Bhattacharya S, Chauhan SMS. Xanthenedione Substituted Metallophthalocyanines as an Efficient and Recyclable Catalyst for One-pot Three Component Synthesis of 3-Substituted Indoles. ChemistrySelect 2016. [DOI: 10.1002/slct.201600654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sohail Ahmad
- Department of Chemistry; University of Delhi; Delhi- 110007
| | - Uma Narang
- Department of Chemistry; University of Delhi; Delhi- 110007
| | | | | |
Collapse
|