1
|
Shao L, Wei H, Liu J, Ma W, Yu P, Wang M, Mao L. Graphdiyne as a Highly Efficient and Neuron-Targeted Photothermal Transducer for in Vivo Neuromodulation. ACS NANO 2024; 18:15607-15616. [PMID: 38838347 DOI: 10.1021/acsnano.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photothermal modulation of neural activity offers a promising approach for understanding brain circuits and developing therapies for neurological disorders. However, the low neuron selectivity and inefficient light-to-heat conversion of existing photothermal nanomaterials significantly limit their potential for neuromodulation. Here, we report that graphdiyne (GDY) can be developed into an efficient neuron-targeted photothermal transducer for in vivo modulation of neuronal activity through rational surface functionalization. We functionalize GDY with polyethylene glycol (PEG) through noncovalent hydrophobic interactions, followed by antibody conjugation to specifically target the temperature-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) on the surface of neural cells. The nanotransducer not only exhibits high photothermal conversion efficiency in the near-infrared region but also shows great TRPV1-targeting capability. This enables photothermal activation of TRPV1, leading to neurotransmitter release in cells and modulation of neural firing in living mice. With its precision and selectivity, the GDY-based transducer provides an innovative avenue for understanding brain function and developing therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Leihou Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Zhang Z, Luo Y, Ma Y, Zhou Y, Zhu D, Shen W, Liu J. Photocatalytic manipulation of Ca 2+ signaling for regulating cellular and animal behaviors via MOF-enabled H 2O 2 generation. SCIENCE ADVANCES 2024; 10:eadl0263. [PMID: 38640246 PMCID: PMC11029810 DOI: 10.1126/sciadv.adl0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The in situ generation of H2O2 in cells in response to external stimulation has exceptional advantages in modulating intracellular Ca2+ dynamics, including high controllability and biological safety, but has been rarely explored. Here, we develop photocatalyst-based metal-organic frameworks (DCSA-MOFs) to modulate Ca2+ responses in cells, multicellular spheroids, and organs. By virtue of the efficient photocatalytic oxygen reduction to H2O2 without sacrificial agents, photoexcited DCSA-MOFs can rapidly trigger Ca2+ outflow from the endoplasmic reticulum with single-cell precision in a repeatable and controllable manner, enabling the propagation of intercellular Ca2+ waves (ICW) over long distances in two-dimensional and three-dimensional cell cultures. After photoexcitation, ICWs induced by DCSA-MOFs can activate neural activities in the optical tectum of tadpoles and thighs of spinal frogs, eliciting the corresponding motor behaviors. Our study offers a versatile optical nongenetic modulation technique that enables remote, repeatable, and controlled manipulation of cellular and animal behaviors.
Collapse
Affiliation(s)
- Zherui Zhang
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yuanhong Ma
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaofeng Zhou
- Westlake University, Shilongshan Rd. Cloud Town, Xihu District, Hangzhou, Zhejiang, China
| | - Dingcheng Zhu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junqiu Liu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Jin J, Li Y, Wang S, Xie J, Yan X. Organic nanomotors: emerging versatile nanobots. NANOSCALE 2024; 16:2789-2804. [PMID: 38231523 DOI: 10.1039/d3nr05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.
Collapse
Affiliation(s)
- Jingjun Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Hirata E, Takano Y, Konishi D, Maeda Y, Ushijima N, Yudasaka M, Yokoyama A. An antibacterial conjugate of carbon nanohorns for NIR-light mediated peri-implantitis treatment. Chem Commun (Camb) 2023; 59:11000-11003. [PMID: 37622238 DOI: 10.1039/d3cc03128d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
This study developed a novel antibacterial conjugate based on carbon nanohorns for peri-implantisis, an inflammatory disease around dental implants, which may result in failing implants by bone loss around them. The conjugate demonstrates much better photodurability than commonly used indocyanine green and a significant antibacterial effect under NIR illumination.
Collapse
Affiliation(s)
- Eri Hirata
- Department of Oral Functional Prosthodontics, Graduate School of Dentistry, Hokkaido University, Sapporo 060-8586, Japan.
| | - Yuta Takano
- Research Institute for Electronic Science and Graduate School of Environmental Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan.
- Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan
| | - Daisuke Konishi
- Department of Oral Functional Prosthodontics, Graduate School of Dentistry, Hokkaido University, Sapporo 060-8586, Japan.
| | - Yukari Maeda
- Department of Oral Functional Prosthodontics, Graduate School of Dentistry, Hokkaido University, Sapporo 060-8586, Japan.
| | - Natsumi Ushijima
- Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Meijo University, Graduate School of Science and Technology 1-501, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan
| | - Atsuro Yokoyama
- Department of Oral Functional Prosthodontics, Graduate School of Dentistry, Hokkaido University, Sapporo 060-8586, Japan.
| |
Collapse
|
5
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Feng A, Cheng X, Huang X, Liu Y, He Z, Zhao J, Duan H, Shi Z, Guo J, Wang S, Yan X. Engineered Organic Nanorockets with Light-Driven Ultrafast Transportability for Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206426. [PMID: 36840673 DOI: 10.1002/smll.202206426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Indexed: 05/25/2023]
Abstract
Nanomedicines confront various complicated physiological barriers limiting the accumulation and deep penetration in the tumor microenvironment, which seriously restricts the efficacy of antitumor therapy. Self-propelled nanocarriers assembled with kinetic engines can translate external energy into orientated motion for tumor penetration. However, achieving a stable ultrafast permeability at the tumor site remains challenging. Here, sub-200 nm photoactivated completely organic nanorockets (NRs), with asymmetric geometry conveniently assembled from photothermal semiconducting polymer payload and thermo-driven macromolecular propulsion through a straightforward nanoprecipitation process, are presented. The artificial NRs can be remotely manipulated by 808 nm near-infrared light to trigger the photothermal conversion and Curtius rearrangement reaction within the particles for robustly pushing nitrogen out into the solution. Such a two-stage light-to-heat-to-chemical energy transition effectively powers the NRs for an ultrafast (≈300 µm s-1 ) and chemical medium-independent self-propulsion in the liquid media. That endows the NRs with high permeability against physiological barriers in the tumor microenvironment to directionally deliver therapeutic agents to target lesions for elevating tumor accumulation, deep penetration, and cellular uptake, resulting in a significant enhancement of antitumor efficacy. This work will inspire the design of advanced kinetic systems for powering intelligent nanomachines in biomedical applications.
Collapse
Affiliation(s)
- Ao Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xie Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xing Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yang Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhaoxia He
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Juan Zhao
- Research Centre of Modern Analysis Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Huiyan Duan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhiqing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Zhao D, Huang R, Gan JM, Shen QD. Photoactive Nanomaterials for Wireless Neural Biomimetics, Stimulation, and Regeneration. ACS NANO 2022; 16:19892-19912. [PMID: 36411035 DOI: 10.1021/acsnano.2c08543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, China
| | - Rui Huang
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Min Gan
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210008, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
8
|
Ferdinandus, Suzuki M, Vu CQ, Harada Y, Sarker SR, Ishiwata S, Kitaguchi T, Arai S. Modulation of Local Cellular Activities using a Photothermal Dye-Based Subcellular-Sized Heat Spot. ACS NANO 2022; 16:9004-9018. [PMID: 35675905 PMCID: PMC9245347 DOI: 10.1021/acsnano.2c00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/19/2022] [Indexed: 08/25/2023]
Abstract
Thermal engineering at the microscale, such as the regulation and precise evaluation of the temperature within cellular environments, is a major challenge for basic biological research and biomaterials development. We engineered a polymeric nanoparticle having a fluorescent temperature sensory dye and a photothermal dye embedded in the polymer matrix, named nanoheater-thermometer (nanoHT). When nanoHT is illuminated with a near-infrared laser at 808 nm, a subcellular-sized heat spot is generated in a live cell. Fluorescence thermometry allows the temperature increment to be read out concurrently at individual heat spots. Within a few seconds of an increase in temperature by approximately 11.4 °C from the base temperature (37 °C), we observed the death of HeLa cells. The cell death was observed to be triggered from the exact local heat spot at the subcellular level under the fluorescence microscope. Furthermore, we demonstrate the application of nanoHT for the induction of muscle contraction in C2C12 myotubes by heat release. We successfully showed heat-induced contraction to occur in a limited area of a single myotube based on the alteration of protein-protein interactions related to the contraction event. These results demonstrate that even a single heat spot provided by a photothermal material can be extremely effective in altering cellular functions.
Collapse
Affiliation(s)
- Ferdinandus
- Waseda
Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
| | - Madoka Suzuki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Cong Quang Vu
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Center
for Quantum Information and Quantum Biology, Osaka University, Osaka 565-0871, Japan
| | - Satya Ranjan Sarker
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shin’ichi Ishiwata
- Department
of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsuya Kitaguchi
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Satoshi Arai
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
9
|
Huang X, Liu Y, Feng A, Cheng X, Xiong X, Wang Z, He Z, Guo J, Wang S, Yan X. Photoactivated Organic Nanomachines for Programmable Enhancement of Antitumor Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201525. [PMID: 35560973 DOI: 10.1002/smll.202201525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Limited permeability in solid tumors significantly restricts the anticancer efficacy of nanomedicines. Light-driven nanomotors powered by photothermal converting engines are appealing carriers for directional drug delivery and simultaneous phototherapy. Nowadays, it is still a great challenge to construct metal-free photothermal nanomotors for a programmable anticancer treatment. Herein, one kind of photoactivated organic nanomachines is reported with asymmetric geometry assembled by light-to-heat converting semiconducting polymer engine and macromolecular anticancer payload through a straightforward nanoprecipitation process. The NIR-fueled polymer engine can be remotely controlled to power the nanomachines for light-driven thermophoresis in the liquid media and simultaneously thermal ablating the cancer cells. The great manipulability of the nanomachines allows for programming of their self-propulsion in the tumor microenvironment for effectively improving cellular uptake and tumor penetration of the anticancer payload. Taking the benefit from this behavior, a programmed treatment process is established at a low drug dose and a low photothermal temperature for significantly enhancing the antitumor efficacy.
Collapse
Affiliation(s)
- Xing Huang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yang Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ao Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xie Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiangyu Xiong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zimo Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhaoxia He
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuai Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Liu J, Li J, Zhang S, Ding M, Yu N, Li J, Wang X, Li Z. Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats. NANO CONVERGENCE 2022; 9:13. [PMID: 35312875 PMCID: PMC8938552 DOI: 10.1186/s40580-022-00304-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 05/28/2023]
Abstract
Infrared neural stimulation with the assistance of photothermal transducers holds great promise as a mini-invasive neural modulation modality. Optical nanoparticles with the absorption in the near-infrared (NIR) window have emerged as excellent photothermal transducers due to their good biocompatibility, surface modifiability, and tunable optical absorption. However, poor activation efficiency and limited stimulation depth are main predicaments encountered in the neural stimulation mediated by these nanoparticles. In this study, we prepared a targeted polydopamine (PDA)-coated gold (Au) nanoparticles with specific binding to thermo-sensitive ion channel as nanotransducers for second near-infrared (NIR-II) photo-stimulation of neurons in rats. The targeted Au nanoparticles were constructed via conjugation of anti-TRPV1 antibody with PEGylated PDA-coated Au nanoparticles and thus exhibited potent photothermal performance property in the second NIR (NIR-II) window and converted NIR-II light to heat to rapidly activate Ca2+ influx of neurons in vitro. Furthermore, wireless photothermal stimulation of neurons in living rat successfully evoke excitation in neurons in the targeted brain region as deep as 5 mm beneath cortex. This study thus demonstrates a remote-controlled strategy for neuromodulation using photothermal nanotransducers.
Collapse
Affiliation(s)
- Jiansheng Liu
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jiajia Li
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Shu Zhang
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ningyue Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200011, People's Republic of China.
| | - Zhaohui Li
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
11
|
Chen WH, Onoe T, Kamimura M. Noninvasive near-infrared light triggers the remote activation of thermo-responsive TRPV1 channels in neurons based on biodegradable/photothermal polymer micelles. NANOSCALE 2022; 14:2210-2220. [PMID: 35084002 DOI: 10.1039/d1nr07242k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we developed a novel biodegradable/photothermal polymer micelle-based remote-activation method for a temperature-sensitive ion channel, namely transient receptor potential cation channel subfamily V member 1 (TRPV1). Biodegradable/photothermal polymer micelles containing indocyanine green (ICG-micelles) were prepared using a simple one-pod mixing method. The obtained ICG-micelles showed biocompatibility and biodegradability. Furthermore, under tissue-penetrable near-infrared (NIR) laser irradiation, the ICG-micelles exhibited excellent photothermal effects and NIR emission. Moreover, NIR light-induced remote activation of neurons was successfully performed. ICG-micelles loaded with anti-TRPV1 antibodies effectively bound TRPV1 on cell membranes, and accelerated Ca2+ ion influx into neuronal cells was induced under NIR irradiation. Based on these findings, it is anticipated that the ICG-micelles can serve as a novel noninvasive remote-activation tool for neuronal cells.
Collapse
Affiliation(s)
- Wei-Hsu Chen
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Taiki Onoe
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.
| |
Collapse
|
12
|
Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophys Rev 2021; 14:41-54. [PMID: 35340595 PMCID: PMC8921355 DOI: 10.1007/s12551-021-00854-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractCould enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
Collapse
|
13
|
Liu C, Chen G, Zhang Z, You Y. Expanding the Conjugate Structure of Polymeric Carbon Nitride for Enhanced Light Absorption and Photothermal Conversion. Macromol Rapid Commun 2021; 42:e2100502. [PMID: 34587316 DOI: 10.1002/marc.202100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Indexed: 11/08/2022]
Abstract
The development of efficient and inexpensive materials for light energy conversion is very important for achieving sustainable energy supply and carbon neutrality. Polymeric carbon nitride has become a promising material for light energy conversion due to its advantages of simple preparation and high physical and chemical stability. However, the pristine polymeric carbon nitride only absorbs light with a wavelength of less than 450 nm, and the energy conversion for low-energy photons is very limited. Here, by introducing the pyromellitic dianhydride component to construct an in-plane heterostructure, the conjugated structure of polymeric carbon nitride is successfully expanded. This in-plane carbon nitride-carbon nanoribbon (C3 N4 -C) heterostructure has an ultrawide absorption range from 200 to 2000 nm. Compared with the original material, the photothermal conversion performance of C3 N4 -C is significantly improved under the irradiation of Xe lamp or infrared laser. Furthermore, C3 N4 -C exhibits good potential for synergistic photothermal and chemotherapy. This work provides a simple strategy to construct expanded conjugate structure for improved light absorption and energy conversion materials based on polymeric carbon nitride.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Urologic oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ze Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yezi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
14
|
Fu X, Huang Y, Zhao H, Zhang E, Shen Q, Di Y, Lv F, Liu L, Wang S. Near-Infrared-Light Remote-Controlled Activation of Cancer Immunotherapy Using Photothermal Conjugated Polymer Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102570. [PMID: 34278634 DOI: 10.1002/adma.202102570] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Indexed: 06/13/2023]
Abstract
Remote control of the therapeutic process is an ideal strategy for maximizing efficacy and avoiding side effects, especially for cancer immunotherapy. Herein, a conjugated polymer nanoparticles (CPNs)-mediated optogenetic system for in situ activation of immunotherapy under near-infrared laser irradiation is reported. This system is composed of photothermal CPNs and interferon-gamma (IFN-γ) plasmid driven by heat shock promoter HSP70. The photothermally responsive CPNs serve as a photo-heat nanotransducer to trigger the gene transcription of IFN-γ cytokine. The secreted IFN-γ from cancer cells can sufficiently elicit surrounding tumor-associated macrophages activation through IFN-γ-JAK-STAT1 transcription-factor signaling pathway and finally induce cancer cell killing by immunotherapy. Therefore, this synergetic optogenetic system provides a promising approach to remotely control the process of cancer immunotherapy.
Collapse
Affiliation(s)
- Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Yang C, Park S. Nanomaterials-assisted thermally induced neuromodulation. Biomed Eng Lett 2021; 11:163-170. [PMID: 34350045 DOI: 10.1007/s13534-021-00193-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Neuromodulation, as a fast-growing technique in neuroscience, has been a great tool in investigation of the neural pathways and treatments for various neurological disorders. However, the limitations such as constricted penetration depth, low temporal resolution and low spatial resolution hindered the development and clinical application of this technique. Nanotechnology, which refers to the technology that deals with dimension under 100 nm, has greatly influenced the direction of scientific researches within recent years. With the recent advancements in nanotechnology, much attention is being given at applying nanomaterials to address the limitations of the current available techniques in the field of biomedical science including neuromodulation. This mini-review aims to introduce the current state-of-the-art stimuli-responsive nanomaterials used for assisting thermally induced neuromodulation.
Collapse
Affiliation(s)
- Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea.,KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
16
|
Functionalized Carbon Nanohorns as Drug Delivery Platforms. Methods Mol Biol 2020. [PMID: 33113124 DOI: 10.1007/978-1-0716-0920-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Carbon nanohorns (CNHs) resembling a single-layered graphene sheet wrapped in a conical shape can be chemically modified in order to immobilize, carry, and release biologically active molecules. Here, we describe the major routes for the preparation of CNH-based drug delivery platforms, via covalent coupling and encapsulation, proficient to facilitate the design of sophisticated drug nanocarriers.
Collapse
|
17
|
Yu Y, Yang X, Reghu S, Kaul SC, Wadhwa R, Miyako E. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nat Commun 2020; 11:4117. [PMID: 32807785 PMCID: PMC7431860 DOI: 10.1038/s41467-020-17768-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Strategies for eradicating cancer stem cells (CSCs) are urgently required because CSCs are resistant to anticancer drugs and cause treatment failure, relapse and metastasis. Here, we show that photoactive functional nanocarbon complexes exhibit unique characteristics, such as homogeneous particle morphology, high water dispersibility, powerful photothermal conversion, rapid photoresponsivity and excellent photothermal stability. In addition, the present biologically permeable second near-infrared (NIR-II) light-induced nanocomplexes photo-thermally trigger calcium influx into target cells overexpressing the transient receptor potential vanilloid family type 2 (TRPV2). This combination of nanomaterial design and genetic engineering effectively eliminates cancer cells and suppresses stemness of cancer cells in vitro and in vivo. Finally, in molecular analyses of mechanisms, we show that inhibition of cancer stemness involves calcium-mediated dysregulation of the Wnt/β-catenin signalling pathway. The present technological concept may lead to innovative therapies to address the global issue of refractory cancers. Cancer stem cells (CSCs) are known to induce chemotherapy resistance, and cause tumour relapse and metastasis. Here, the authors develop photoactive nanocarbon complexes with second near-infrared photothermal ability to target cancer cells overexpressing the receptor TRPV2 and show it to suppress CSCs through dysregulation of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yue Yu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda, 563-8577, Japan
| | - Xi Yang
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sheethal Reghu
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Cellular and Molecular Biotechnology Research Institute, AIST, Tsukuba, 305-8565, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
18
|
Kagkoura A, Tagmatarchis N. Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1407. [PMID: 32707696 PMCID: PMC7408240 DOI: 10.3390/nano10071407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023]
Abstract
In the context of even more growing energy demands, the investigation of alternative environmentally friendly solutions, like fuel cells, is essential. Given their outstanding properties, carbon nanohorns (CNHs) have come forth as promising electrocatalysts within the nanocarbon family. Carbon nanohorns are conical nanostructures made of sp2 carbon sheets that form aggregated superstructures during their synthesis. They require no metal catalyst during their preparation and they are inexpensively produced in industrial quantities, affording a favorable candidate for electrocatalytic reactions. The aim of this article is to provide a comprehensive overview regarding CNHs in the field of electrocatalysis and especially, in oxygen reduction, methanol oxidation, and hydrogen evolution, as well as oxygen evolution from water splitting, underlining the progress made so far, and pointing out the areas where significant improvement can be achieved.
Collapse
Affiliation(s)
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
19
|
Hanayama H, Yamada J, Harano K, Nakamura E. Cyclodextrins as Surfactants for Solubilization and Purification of Carbon Nanohorn Aggregates. Chem Asian J 2020; 15:1549-1552. [DOI: 10.1002/asia.202000273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Hiroki Hanayama
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Junya Yamada
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Koji Harano
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Eiichi Nakamura
- Department of ChemistryThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
20
|
Pippa N, Stangel C, Kastanas I, Triantafyllopoulou E, Naziris N, Stellas D, Zhang M, Yudasaka M, Demetzos C, Tagmatarchis N. Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110114. [PMID: 31546408 DOI: 10.1016/j.msec.2019.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
In the present work, the convergence of two different drug delivery systems is investigated, namely the combination of carbon nanohorns (CNHs) and liposomes. Our effort initially included the synthesis of two conversely charged carbon nanohorns and their subsequent analysis through various methods. The study of their effect on the thermotropic behavior of artificial membranes provided an essential assistance for the upcoming liposome preparation, which were estimated for their physicochemical properties. The presence of CNHs alters the calorimetric parameters of the lipids. We also prepared CNHs:liposome systems. The characteristic morphology and secondary spherical superstructure of CNHs is retained in the chimeric materials, suggesting that the interactions with the liposomes do not alter the dahlia-flower-like aggregation of CNHs. Both CNHs-liposome systems exhibit a relatively small cellular cytotoxicity in vitro, tested in mouse embryonic fibroblasts. To summarize, we developed CNHs:liposome platforms with a complete knowledge of their thermotropic, physicochemical, morphological and nanotoxicological characteristics.
Collapse
Affiliation(s)
- Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Ioannis Kastanas
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Dimitris Stellas
- Biomedical Research Foundation, Academy of Athens, Athens, Greece; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederic, MD, USA
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|
21
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Multifunctional Cancer Phototherapy Using Fluorophore-Functionalized Nanodiamond Supraparticles. ACS APPLIED BIO MATERIALS 2019; 2:3693-3705. [DOI: 10.1021/acsabm.9b00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation, 2-19-1 Konan, Minato-ku, Tokyo 108-8230, Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
22
|
Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photoregulation, which utilizes light to remotely control biological events, provides a precise way to decipher biology and innovate in medicine; however, its potential is limited by the shallow tissue penetration and/or phototoxicity of ultraviolet (UV)/visible light that are required to match the optical responses of endogenous photosensitive substances. Thereby, biologically friendly near-infrared (NIR) light with improved tissue penetration is desired for photoregulation. Since there are a few endogenous biomolecules absorbing or emitting light in the NIR region, the development of molecular transducers is essential to convert NIR light into the cues for regulation of biological events. In this regard, optical nanomaterials able to convert NIR light into UV/visible light, heat, or free radicals are suitable for this task. Here, the recent developments of optical nanotransducers for NIR-light-mediated photoregulation in medicine are summarized. The emerging applications, including photoregulation of neural activity, gene expression, and visual systems, as well as photochemical tissue bonding, are highlighted, along with the design principles of nanotransducers. Moreover, the current challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
23
|
Zhang D, Zhang C, Lan S, Huang Y, Liu J, Li J, Liu X, Yang H. Near-Infrared Light Activated Thermosensitive Ion Channel to Remotely Control Transgene System for Thrombolysis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901176. [PMID: 31094078 DOI: 10.1002/smll.201901176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Current antithrombotic therapeutic strategies often suffer from severe post-thrombotic syndromes (PTS), inconvenient daily subcutaneous injections for a long time and short circulation times accompanied by a dose-dependent risk of intracranial hemorrhage. Aiming at noninvasive, on-demand, and sustained antithrombotic therapy, a new thrombolysis approach based on the transgene system has been developed to remotely and precisely control the expression of urokinase plasminogen activator (uPA) by bioengineered cells for antithrombotic therapy both in vitro and in vivo. In this design, the near-infrared (NIR) light could activate the expression of the thermosensitive TRPV1 channel in response to photothermal responsive nanotransducers to trigger the synthetic signaling pathway to secret uPA. By encapsulating bioengineered cells in injectable hydrogel to ensure long-term survival and convenience for injection, the engineered cells could noninvasively and precisely control the production of uPA protein in situ via an NIR laser to significantly enhance the thrombolysis therapeutic effects by spatiotemporally controlling the local temperature, in both the microfluidic blood circulation mimic and the murine tail thrombus model. This novel thrombolysis approach could overcome some key limitations that are associated with conventional antithrombotic therapy, thus opening a new direction for developing remotely and precisely controllable continuous thrombolysis through artificially designed signaling.
Collapse
Affiliation(s)
- Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yanbing Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
24
|
Antognazza MR, Abdel Aziz I, Lodola F. Use of Exogenous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2867516. [PMID: 31049131 PMCID: PMC6462332 DOI: 10.1155/2019/2867516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.
Collapse
Affiliation(s)
- Maria Rosa Antognazza
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Ilaria Abdel Aziz
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Politecnico di Milano, Dipartimento di Fisica, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| |
Collapse
|
25
|
Chen P, Ma Y, Zheng Z, Wu C, Wang Y, Liang G. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat Commun 2019; 10:1192. [PMID: 30867429 PMCID: PMC6416255 DOI: 10.1038/s41467-019-09226-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Development of photothermal materials which are able to harness sunlight and convert it to thermal energy seems attractive. Besides carbon-based nanomaterials, conjugated polymers are emerging promising photothermal materials but their facile syntheses remain challenging. In this work, by modification of a CBT-Cys click condensation reaction and rational design of the starting materials, we facilely synthesize conjugated polymers poly-2-phenyl-benzobisthiazole (PPBBT) and its dihexyl derivative with good photothermal properties. Under the irradiation of either sunlight-mimicking Xe light or near-infrared laser, we verify that PPBBT has comparable photothermal heating-up speed to that of star material single-wall carbon nanotube. Moreover, PPBBT is used to fabricate water-soluble NPPPBBT nanoparticles which maintain excellent photothermal properties in vitro and photothermal therapy effect on the tumours exposed to laser irradiation. We envision that our synthetic method provides a facile approach to fabricate conjugated polymers for more promising applications in biomedicine or photovoltaics in the near future.
Collapse
Affiliation(s)
- Peiyao Chen
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Yinchu Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Zhen Zheng
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Chengfan Wu
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Gaolin Liang
- Hefei National Laboratory of Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui, China.
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Jiang BP, Zhou B, Lin Z, Liang H, Shen XC. Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry 2019; 25:3993-4004. [PMID: 30328167 DOI: 10.1002/chem.201804383] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials have received great attention from the scientific community over the past few decades because of their unique physical and chemical properties. In this minireview, we will summarize the recent progress of the use of various carbon nanomaterials in the field of cancer phototherapy. The structural characteristics of each category and the surface functionalization strategies of these nanomaterials will be briefly introduced before focusing on their therapeutic applications. Recent advances on their use in photothermal therapy, photodynamic therapy, and combined phototherapies are presented. Moreover, a few challenges and perspectives on the development of carbon nanomaterials for future theranostics are also discussed.
Collapse
Affiliation(s)
- Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Bo Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Zhaoxing Lin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P.R. China
| |
Collapse
|
27
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
28
|
Bossio C, Abdel Aziz I, Tullii G, Zucchetti E, Debellis D, Zangoli M, Di Maria F, Lanzani G, Antognazza MR. Photocatalytic Activity of Polymer Nanoparticles Modulates Intracellular Calcium Dynamics and Reactive Oxygen Species in HEK-293 Cells. Front Bioeng Biotechnol 2018; 6:114. [PMID: 30211158 PMCID: PMC6119808 DOI: 10.3389/fbioe.2018.00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Optical modulation of living cells activity by light-absorbing exogenous materials is gaining increasing interest, due to the possibility both to achieve high spatial and temporal resolution with a minimally invasive and reversible technique and to avoid the need of viral transfection with light-sensitive proteins. In this context, conjugated polymers represent ideal candidates for photo-transduction, due to their excellent optoelectronic and biocompatibility properties. In this work, we demonstrate that organic polymer nanoparticles, based on poly(3-hexylthiophene) conjugated polymer, establish a functional interaction with an in vitro cell model (Human Embryonic Kidney cells, HEK-293). They display photocatalytic activity in aqueous environment and, once internalized within the cell cytosol, efficiently generate reactive oxygen species (ROS) upon visible light excitation, without affecting cell viability. Interestingly, light-activated ROS generation deterministically triggers modulation of intracellular calcium ion flux, successfully controlled at the single cell level. In perspective, the capability of polymer NPs to produce ROS and to modulate Ca2+ dynamics by illumination on-demand, at non-toxic levels, may open the path to the study of biological processes with a gene-less approach and unprecedented spatio-temporal resolution, as well as to the development of new biotechnology tools for cell optical modulation.
Collapse
Affiliation(s)
- Caterina Bossio
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Elena Zucchetti
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Genova, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity, CNR-ISOF, Bologna, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity, CNR-ISOF, Bologna, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
29
|
Gao C, Dong P, Lin Z, Guo X, Jiang BP, Ji S, Liang H, Shen XC. Near-Infrared Light Responsive Imaging-Guided Photothermal and Photodynamic Synergistic Therapy Nanoplatform Based on Carbon Nanohorns for Efficient Cancer Treatment. Chemistry 2018; 24:12827-12837. [DOI: 10.1002/chem.201802611] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Pei Dong
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Zhaoxing Lin
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of, Medical Resources; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004 P. R. China
| |
Collapse
|
30
|
Rodríguez-Pérez L, Ramos-Soriano J, Pérez-Sánchez A, Illescas BM, Muñoz A, Luczkowiak J, Lasala F, Rojo J, Delgado R, Martín N. Nanocarbon-Based Glycoconjugates as Multivalent Inhibitors of Ebola Virus Infection. J Am Chem Soc 2018; 140:9891-9898. [DOI: 10.1021/jacs.8b03847] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Rodríguez-Pérez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Javier Ramos-Soriano
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Alfonso Pérez-Sánchez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Beatriz M. Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Antonio Muñoz
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Fátima Lasala
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC−Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Seville, Spain
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
- IMDEA-Nanoscience, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem Soc Rev 2018; 47:4757-4780. [PMID: 29663003 DOI: 10.1039/c7cs00860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical-physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.
Collapse
|
32
|
Wang Y, Li S, Zhang P, Bai H, Feng L, Lv F, Liu L, Wang S. Photothermal-Responsive Conjugated Polymer Nanoparticles for Remote Control of Gene Expression in Living Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705418. [PMID: 29327394 DOI: 10.1002/adma.201705418] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Remote control and noninvasive manipulation of cellular bioprocess has received intensive attention as a powerful technology to control cell functions. Here, a strategy is developed to remotely control intracellular gene expression with high spatial and temporal resolutions by using photothermal-responsive conjugated polymer nanoparticles (CPNs) as the transducer under near-infrared light irradiation. After being modified with positive charged peptide, the CPNs with superior photothermal conversion capacity could effectively coat on the surface of living cells and generate localized heat to trigger target gene expression. The heat-inducible heat shock protein-70 promoter starts transcription of downstream EGFP gene in response to heat shock, thus producing green fluorescent protein in the living cells. The combination of heat-inducible gene promoter and photothermal-responsive CPNs provides a method for the development of thermogenetics.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pengbo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
33
|
Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine. Front Bioeng Biotechnol 2017; 5:80. [PMID: 29326928 PMCID: PMC5741658 DOI: 10.3389/fbioe.2017.00080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
With the increasing advances in the fabrication and in monitoring approaches of nanotechnology devices, novel materials are being synthesized and tested for the interaction with biological environments. Among them, smart materials in particular provide versatile and dynamically tunable platforms for the investigation and manipulation of several biological activities with very low invasiveness in hardly accessible anatomical districts. In the following, we will briefly recall recent examples of nanotechnology-based materials that can be remotely activated and controlled through different sources of energy, such as electromagnetic fields or ultrasounds, for their relevance to both basic science investigations and translational nanomedicine. Moreover, we will introduce some examples of hybrid materials showing mutually beneficial components for the development of multifunctional devices, able to simultaneously perform duties like imaging, tissue targeting, drug delivery, and redox state control. Finally, we will highlight challenging perspectives for the development of theranostic agents (merging diagnostic and therapeutic functionalities), underlining open questions for these smart nanotechnology-based devices to be made readily available to the patients in need.
Collapse
Affiliation(s)
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
34
|
Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot. Adv Colloid Interface Sci 2017; 249:163-180. [PMID: 28527520 DOI: 10.1016/j.cis.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehensive understanding of the processes involved in the self-assembly of the colloidal structures discussed therein is essential for the development of relevant biomedical applications. In this review we report the most promising and best performing platforms for specific classes of bioactive molecules and related target, spanning from siRNAs, gene/plasmids, proteins/growth factors, small synthetic therapeutics and bioimaging probes.
Collapse
|
35
|
Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017; 8:15432. [PMID: 28561016 PMCID: PMC5460022 DOI: 10.1038/ncomms15432] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
Room temperature liquid metals (LMs) represent a class of emerging multifunctional
materials with attractive novel properties. Here, we show that photopolymerized LMs
present a unique nanoscale capsule structure characterized by high water
dispersibility and low toxicity. We also demonstrate that the LM nanocapsule
generates heat and reactive oxygen species under biologically neutral near-infrared
(NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation
in LM shape, destruction of the nanocapsules, contactless controlled release of the
loaded drugs, optical manipulations of a microfluidic blood vessel model and
spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and
a living mouse. By exploiting the physicochemical properties of LMs, we achieve
effective cancer cell elimination and control of intercellular calcium ion flux. In
addition, LMs display a photoacoustic effect in living animals during NIR laser
treatment, making this system a powerful tool for bioimaging. Liquid metals are excellent candidate materials for biomedicine, owing to their
intriguing optical properties and chemical stability. Here, the authors design
multifunctional theranostic liquid metal nanocapsules that, upon irradiation, generate
heat and reactive oxygen species and change shape to release drugs.
Collapse
Affiliation(s)
- Svetlana A Chechetka
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore 637457, Singapore
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
36
|
Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Adv Healthc Mater 2017; 6. [PMID: 28338285 DOI: 10.1002/adhm.201700002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The remote control of cellular functions through smart nanomaterials represents a biomanipulation approach with unprecedented potential applications in many fields of medicine, ranging from cancer therapy to tissue engineering. By actively responding to external stimuli, smart nanomaterials act as real nanotransducers able to mediate and/or convert different forms of energy into both physical and chemical cues, fostering specific cell behaviors. This report describes those classes of nanomaterials that have mostly paved the way to a "wireless" control of biological phenomena, focusing the discussion on some examples close to the clinical practice. In particular, magnetic fields, light irradiation, ultrasound, and pH will be presented as means to manipulate the cellular fate, due to the peculiar physical/chemical properties of some smart nanoparticles, thus providing realistic examples of "nanorobots" approaching the visionary ideas of Richard Feynman.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Agostina Grillone
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Ilaria Pezzini
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera (Pisa), Italy
- Politecnico di Torino, Department of Aerospace and Mechanical Engineering, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
37
|
Guo L, Liu W, Niu G, Zhang P, Zheng X, Jia Q, Zhang H, Ge J, Wang P. Polymer nanoparticles with high photothermal conversion efficiency as robust photoacoustic and thermal theranostics. J Mater Chem B 2017; 5:2832-2839. [PMID: 32264170 DOI: 10.1039/c7tb00498b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synthesis of photothermal agents with absorption in the near-infrared (NIR) region and featuring excellent photostability, high photothermal conversion efficiency, and good biocompatibility is necessary for the application of photothermal therapy (PTT). In this work, a low band gap thiophene-benzene-diketopyrrolopyrrole (TBD)-based polymer was synthesized and used to fabricate TBD polymer nanoparticles (TBDPNPs) through a one-step nanoprecipitation method. The obtained near-infrared-absorbing TBDPNPs presented good water dispersibility, high photothermal stability, and low toxicity. Significantly, the TBDPNPs exhibited an ultrahigh photothermal conversion efficiency of approximately 68.1% under 671 nm laser irradiation. In addition, photoacoustic (PA) imaging, with high spatial resolution and deep tissue penetration, showed that the TBDPNPs targeted tumor sites through the enhanced permeability and retention effect. Therefore, the robust TBDPNPs with a photothermal conversion efficiency of 68.1% can serve as an excellent therapeutic agent for PA-imaging-guided PTT.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li J, Liu J, Chen C. Remote Control and Modulation of Cellular Events by Plasmonic Gold Nanoparticles: Implications and Opportunities for Biomedical Applications. ACS NANO 2017; 11:2403-2409. [PMID: 28300393 DOI: 10.1021/acsnano.7b01200] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Compared to traditional hyperthermia methods, gold nanoparticles (Au NPs) successfully achieve site-specific incremental temperature in deep tissues. By virtue of near-infrared (NIR) laser-mediated photothermal treatment, Au NPs have been widely explored in clinical and preclinical applications, including cancer therapy and tissue engineering. In this issue of ACS Nano, Suzuki, Ciofani, and colleagues demonstrate how gold nanoshells can remotely activate striated muscle cells via inducing myotube contraction and modulating related gene expression by mild heat stimulation under NIR irradiation. This Perspective provides a brief overview of the current developments and future outlook for multifunctional platforms based on Au NPs for cancer treatment, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100090, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100090, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100090, China
| |
Collapse
|
39
|
Marino A, Arai S, Hou Y, Degl'Innocenti A, Cappello V, Mazzolai B, Chang YT, Mattoli V, Suzuki M, Ciofani G. Gold Nanoshell-Mediated Remote Myotube Activation. ACS NANO 2017; 11:2494-2508. [PMID: 28107625 DOI: 10.1021/acsnano.6b08202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mild heat stimulation of muscle cells within the physiological range represents an intriguing approach for the modulation of their functions. In this work, photothermal conversion was exploited to remotely stimulate striated muscle cells by using gold nanoshells (NSs) in combination with near-infrared (NIR) radiation. Temperature increments of approximately 5 °C were recorded by using an intracellular fluorescent molecular thermometer and were demonstrated to efficiently induce myotube contraction. The mechanism at the base of this phenomenon was thoroughly investigated and was observed to be a Ca2+-independent event directly involving actin-myosin interactions. Finally, chronic remote photothermal stimulations significantly increased the mRNA transcription of genes encoding heat shock proteins and sirtuin 1, a protein which in turn can induce mitochondrial biogenesis. Overall, we provide evidence that remote NIR + NS muscle excitation represents an effective wireless stimulation technique with great potential in the fields of muscle tissue engineering, regenerative medicine, and bionics.
Collapse
Affiliation(s)
- Attilio Marino
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Satoshi Arai
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Yanyan Hou
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Andrea Degl'Innocenti
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, Pisa 56127, Italy
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, MedChem Program of Life Sciences Institute, National University of Singapore , 3 Science Drive 3, 117543 Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR) , Biopolis 138667 Singapore
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Gianni Ciofani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
40
|
Tortiglione C, Antognazza MR, Tino A, Bossio C, Marchesano V, Bauduin A, Zangoli M, Morata SV, Lanzani G. Semiconducting polymers are light nanotransducers in eyeless animals. SCIENCE ADVANCES 2017; 3:e1601699. [PMID: 28138549 PMCID: PMC5266477 DOI: 10.1126/sciadv.1601699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/08/2016] [Indexed: 05/17/2023]
Abstract
Current implant technology uses electrical signals at the electrode-neural interface. This rather invasive approach presents important issues in terms of performance, tolerability, and overall safety of the implants. Inducing light sensitivity in living organisms is an alternative method that provides groundbreaking opportunities in neuroscience. Optogenetics is a spectacular demonstration of this, yet is limited by the viral transfection of exogenous genetic material. We propose a nongenetic approach toward light control of biological functions in living animals. We show that nanoparticles based on poly(3-hexylthiophene) can be internalized in eyeless freshwater polyps and are fully biocompatible. Under light, the nanoparticles modify the light response of the animals, at two different levels: (i) they enhance the contraction events of the animal body, and (ii) they change the transcriptional activation of the opsin3-like gene. This suggests the establishment of a seamless and biomimetic interface between the living organism and the polymer nanoparticles that behave as light nanotransducers, coping with or amplifying the function of primitive photoreceptors.
Collapse
Affiliation(s)
- Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Valentina Marchesano
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Antonella Bauduin
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello,” Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Mattia Zangoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Susana Vaquero Morata
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
41
|
Zucchetti E, Zangoli M, Bargigia I, Bossio C, Di Maria F, Barbarella G, D'Andrea C, Lanzani G, Antognazza MR. Poly(3-hexylthiophene) nanoparticles for biophotonics: study of the mutual interaction with living cells. J Mater Chem B 2017; 5:565-574. [DOI: 10.1039/c6tb02047j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(3-hexylthiophene) nanoparticles interfacing with living cells: a new tool for biophotonics applications.
Collapse
Affiliation(s)
- Elena Zucchetti
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Ilaria Bargigia
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| | - Caterina Bossio
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Giovanna Barbarella
- Institute for Organic Synthesis and Photoreactivity
- CNR-ISOF
- 40129 Bologna
- Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Guglielmo Lanzani
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
- Politecnico di Milano
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@Polimi
- Istituto Italiano di Tecnologia
- 20133 Milano
- Italy
| |
Collapse
|
42
|
Chechetka SA, Doi M, Pichon BP, Bégin-Colin S, Miyako E. Photothermal and mechanical stimulation of cells via dualfunctional nanohybrids. NANOTECHNOLOGY 2016; 27:475102. [PMID: 27779117 DOI: 10.1088/0957-4484/27/47/475102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimulating cells by light is an attractive technology to investigate cellular function and deliver innovative cell-based therapy. However, current techniques generally use poorly biopermeable light, which prevents broad applicability. Here, we show that a new type of composite nanomaterial, synthesized from multi-walled carbon nanotubes, magnetic iron nanoparticles, and polyglycerol, enables photothermal and mechanical control of Ca2+ influx into cells overexpressing transient receptor potential vanilloid type-2. The nanohybrid is simply operated by application of highly biotransparent near-infrared light and a magnetic field. The technology may revolutionize remote control of cellular function.
Collapse
Affiliation(s)
- Svetlana A Chechetka
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | | | | | | | | |
Collapse
|
43
|
Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K. Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons. J Am Chem Soc 2016; 138:9049-52. [DOI: 10.1021/jacs.6b05192] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yan Lyu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Chen Xie
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Svetlana A. Chechetka
- Department
of Materials and Chemistry, Nanomaterial Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Eijiro Miyako
- Department
of Materials and Chemistry, Nanomaterial Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kanyi Pu
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| |
Collapse
|
44
|
Serpell C, Kostarelos K, Davis BG. Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS CENTRAL SCIENCE 2016; 2:190-200. [PMID: 27163049 PMCID: PMC4850505 DOI: 10.1021/acscentsci.6b00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 05/31/2023]
Abstract
Carbon nanotubes (CNTs) are cylindrical sheets of hexagonally ordered carbon atoms, giving tubes with diameters on the order of a few nanometers and lengths typically in the micrometer range. They may be single- or multiwalled (SWCNTs and MWCNTs respectively). Since the seminal report of their synthesis in 1991, CNTs have fascinated scientists of all stripes. Physicists have been intrigued by their electrical, thermal, and vibrational potential. Materials scientists have worked on integrating them into ultrastrong composites and electronic devices, while chemists have been fascinated by the effects of curvature on reactivity and have developed new synthesis and purification techniques. However, to date no large-scale, real-life biotechnological CNT breakthrough has been industrially adopted and it is proving difficult to justify taking these materials forward into the clinic. We believe that these challenges are not the end of the story, but that a viable carbon nanotube biotechnology is one in which the unique properties of nanotubes bring about an effect that would be otherwise impossible. In this Outlook, we therefore seek to reframe the field by highlighting those biological applications in which the singular properties of CNTs provide some entirely new activity or biological effect as a pointer to "what could be".
Collapse
Affiliation(s)
- Christopher
J. Serpell
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.
- School
of Physical Sciences, Ingram Building, University
of Kent, Canterbury, Kent, CT2 7NH, U.K.
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Medicine and National Graphene Institute, Faculty of
Medical & Human Sciences, University
of Manchester, AV Hill
Building, Manchester M13
9PT, U.K.
| | - Benjamin G. Davis
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
45
|
Oyama K, Arai T, Isaka A, Sekiguchi T, Itoh H, Seto Y, Miyazaki M, Itabashi T, Ohki T, Suzuki M, Ishiwata S. Directional bleb formation in spherical cells under temperature gradient. Biophys J 2016. [PMID: 26200871 DOI: 10.1016/j.bpj.2015.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm(-1); 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Akira Isaka
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Taku Sekiguchi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Yusuke Seto
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makito Miyazaki
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takeshi Itabashi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Ohki
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore, Singapore; Organization for University Research Initiatives, Waseda University, Tokyo, Japan.
| | - Shin'ichi Ishiwata
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore, Singapore; Organization for University Research Initiatives, Waseda University, Tokyo, Japan.
| |
Collapse
|
46
|
Chechetka SA, Yuba E, Kono K, Yudasaka M, Bianco A, Miyako E. Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angew Chem Int Ed Engl 2016; 55:6476-81. [DOI: 10.1002/anie.201602453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Svetlana A. Chechetka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Masako Yudasaka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire; Laboratoire d'Immunopathologie et Chimie Thérapeutique; 15 Rue René Descartes 67084 Strasbourg France
| | - Eijiro Miyako
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
47
|
Chechetka SA, Yuba E, Kono K, Yudasaka M, Bianco A, Miyako E. Magnetically and Near-Infrared Light-Powered Supramolecular Nanotransporters for the Remote Control of Enzymatic Reactions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Svetlana A. Chechetka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; 1-1 Gakuen-cho, Naka-ku, Sakai Osaka 599-8531 Japan
| | - Masako Yudasaka
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire; Laboratoire d'Immunopathologie et Chimie Thérapeutique; 15 Rue René Descartes 67084 Strasbourg France
| | - Eijiro Miyako
- Nanomaterial Research Institute (NMRI); National Institute of Advanced Industrial Science and Technology; Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
48
|
Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem Rev 2016; 116:4850-83. [PMID: 27074223 DOI: 10.1021/acs.chemrev.5b00611] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carbon nanohorns (sometimes also known as nanocones) are conical carbon nanostructures constructed from an sp(2) carbon sheet. Nanohorns require no metal catalyst in their synthesis, and can be produced in industrial quantities. They provide a realistic and useful alternative to carbon nanotubes, and possibly graphene, in a wide range of applications. They also have their own unique behavior due to their specific conical morphology. However, their research and development has been slowed by several factors, notably during synthesis, they aggregate into spherical clusters ∼100 nm in diameter, blocking functionalization and treatment of individual nanocones. This limitation has recently been overcome with a new approach to separating these "dahlia-like" clusters into individual nanocones. In this review, we describe the structure, synthesis, and topology of carbon nanohorns, and provide a detailed review of nanohorn chemistry.
Collapse
Affiliation(s)
- Nikolaos Karousis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Irene Suarez-Martinez
- Nanochemistry Research Institute, Department of Physics, Curtin University of Technology , P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Christopher P Ewels
- Institut des Materiaux Jean Rouxel, CNRS, Université de Nantes , 2 Rue de la Houssiniere, BP32229, 44322 Nantes, France
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
49
|
Nakamura T, Son A, Umehara Y, Ito T, Kurihara R, Ikemura Y, Tanabe K. Confined Singlet Oxygen in Mesoporous Silica Nanoparticles: Selective Photochemical Oxidation of Small Molecules in Living Cells. Bioconjug Chem 2016; 27:1058-66. [DOI: 10.1021/acs.bioconjchem.6b00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Takuma Nakamura
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aoi Son
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yui Umehara
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takeo Ito
- Department
of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ryohsuke Kurihara
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yuta Ikemura
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
50
|
Oyama K, Zeeb V, Kawamura Y, Arai T, Gotoh M, Itoh H, Itabashi T, Suzuki M, Ishiwata S. Triggering of high-speed neurite outgrowth using an optical microheater. Sci Rep 2015; 5:16611. [PMID: 26568288 PMCID: PMC4645119 DOI: 10.1038/srep16611] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022] Open
Abstract
Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Vadim Zeeb
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | - Yuki Kawamura
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Mizuho Gotoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Takeshi Itabashi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| | - Shin'ichi Ishiwata
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| |
Collapse
|