1
|
Tao H, Weng S, Xu L, Ye J, Fan M, Wang Y, Lin Y, Lin D, Wang Q, Feng S. Target-triggered assembly of plasmon resonance nanostructures for quantitative detection of lncRNA in liver cancer cells via surface enhanced Raman spectroscopy. Biosens Bioelectron 2024; 261:116488. [PMID: 38905860 DOI: 10.1016/j.bios.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Long-stranded non-coding RNAs (lncRNA) have important roles in disease as transcriptional regulators, mRNA processing regulators and protein synthesis factors. However, traditional methods for detecting lncRNA are time-consuming and labor-intensive, and the functions of lncRNA are still being explored. Here, we present a surface enhanced Raman spectroscopy (SERS) based biosensor for the detection of lncRNA associated with liver cancer (LC) as well as in situ cellular imaging. Using the dual SERS probes, quantitative detection of lncRNA (DAPK1-215) can be achieved with an ultra-low detection limit of 952 aM by the target-triggered assembly of core-satellite nanostructures. And the reliability of this assay can be further improved with the R2 value of 0.9923 by an internal standard probe that enables the signal dynamic calibration. Meanwhile, the high expression of DAPK1-215 mainly distributed in the cytoplasm was observed in LC cells compared with the normal ones using the SERS imaging method. Moreover, results of cellular function assays showed that DAPK1-215 promoted the migration and invasion of LC by significantly reducing the expression of the structural domain of death associated protein kinase. The development of this biosensor based on SERS can provide a sensitive and specific method for exploring the expression of lncRNA that would be a potential biomarker for the screening of LC.
Collapse
Affiliation(s)
- Hong Tao
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Shuyun Weng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Luyun Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Jianqing Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China
| | - Yong Wang
- Institute of Applied Genomics, Fuzhou University, Fuzhou, 350108, PR China
| | - Yao Lin
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, PR China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China.
| | - Qingshui Wang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, PR China.
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, PR China.
| |
Collapse
|
2
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
4
|
Zheng P, Raj P, Liang L, Wu L, Paidi SK, Kim JH, Barman I. Label-free plasmonic spectral profiling of serum DNA. Biosens Bioelectron 2024; 254:116199. [PMID: 38492362 PMCID: PMC11056035 DOI: 10.1016/j.bios.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Genetic and epigenetic modifications are linked to the activation of oncogenes and inactivation of tumor suppressor genes. Likewise, the associated molecular alternations can best inform precision medicine for personalized tumor treatment. Therefore, performing characterization of genetic and epigenetic alternations at the molecular level represents a crucial step in early diagnosis and/or therapeutics of cancer. However, the prevailing methods for DNA analysis involve a series of tedious and complicated steps, in which important genetic and epigenetic information could be lost or altered. To provide a potential approach for non-invasive, direct, and efficient DNA analysis, herein, we present a promising strategy for label-free molecular profiling of serum DNA in its pristine form by fusing surface-enhanced Raman spectroscopy with machine learning on a superior plasmonic nanostructured platform. Using DNA methylation and single-point mutation as two case studies, the presented strategy allows a well-balanced sensitive and specific detection of epigenetic and genetic changes at the single-nucleotide level in serum. We envision the presented label-free strategy could serve as a versatile tool for direct molecular profiling in pristine forms of a wide range of biological markers and aid biomedical diagnostics as well as therapeutics.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
5
|
Majzner K, Deckert-Gaudig T, Baranska M, Deckert V. DOX-DNA Interactions on the Nanoscale: In Situ Studies Using Tip-Enhanced Raman Scattering. Anal Chem 2024; 96:8905-8913. [PMID: 38771097 PMCID: PMC11154666 DOI: 10.1021/acs.analchem.3c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Chemotherapeutic anthracyclines, like doxorubicin (DOX), are drugs endowed with cytostatic activity and are widely used in antitumor therapy. Their molecular mechanism of action involves the formation of a stable anthracycline-DNA complex, which prevents cell division and results in cell death. It is known that elevated DOX concentrations induce DNA chain loops and overlaps. Here, for the first time, tip-enhanced Raman scattering was used to identify and localize intercalated DOX in isolated double-stranded calf thymus DNA, and the correlated near-field spectroscopic and morphologic experiments locate the DOX molecules in the DNA and provide further information regarding specific DOX-nucleobase interactions. Thus, the study provides a tool specifically for identifying intercalation markers and generally analyzing drug-DNA interactions. The structure of such complexes down to the molecular level provides mechanistic information about cytotoxicity and the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Majzner
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tanja Deckert-Gaudig
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| | - Malgorzata Baranska
- Department
of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian
Centre for Exper-Imental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Volker Deckert
- Friedrich
Schiller University Jena, Institute of Physical Chemistry and Abbe
Center of Photonics, Helmholtzweg 4, Jena 07743, Germany
- Leibniz
Insti-tute of Photonic Technology, Albert-Einstein-Str.9, Jena 07745, Germany
| |
Collapse
|
6
|
Zhang R, Li L, Guo Y, Shi Y, Li JF, Long YT, Fang J. Confined-Enhanced Raman Spectroscopy. NANO LETTERS 2023; 23:11771-11777. [PMID: 38088915 DOI: 10.1021/acs.nanolett.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In 1997, the discovery of single molecule-surface enhanced Raman spectroscopy (SM-SERS) rekindled broad interests owing to its ultrahigh enhancement factor up to the 1014-1015 level. However, regretfully, the advantage of SM-SERS with an ultralow detection limit has not yet been fully utilized in commercialized applications. Here, we report a strategy, which we name confined-enhanced Raman spectroscopy, in which the overall Raman properties can be remarkably improved with in situ-formed active nanoshell on the surface of silver or gold nanoparticles. The nanoshell can confine and anchor molecules onto the surface of plasmonic nanoparticles and avoid desorption from hot spots so that the "on and off" blinking effect can be eliminated. It is the first time the single-molecule detection of analytes with super sensitivity, high stability, and reproducibility based on gold nanoparticles has been realized. In addition, this strategy is suitable for SERS detection in diverse molecule systems, including biomedical diagnosis, catalytic reaction, etc.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lingwei Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yafei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, and College of Materials, Xiamen University, Xiamen 361005, China
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
Szymoński K, Skirlińska-Nosek K, Lipiec E, Sofińska K, Czaja M, Wilkosz N, Krupa M, Wanat F, Ulatowska-Białas M, Adamek D. Combined analytical approach empowers precise spectroscopic interpretation of subcellular components of pancreatic cancer cells. Anal Bioanal Chem 2023; 415:7281-7295. [PMID: 37906289 PMCID: PMC10684650 DOI: 10.1007/s00216-023-04997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
The lack of specific and sensitive early diagnostic options for pancreatic cancer (PC) results in patients being largely diagnosed with late-stage disease, thus inoperable and burdened with high mortality. Molecular spectroscopic methodologies, such as Raman or infrared spectroscopies, show promise in becoming a leader in screening for early-stage cancer diseases, including PC. However, should such technology be introduced, the identification of differentiating spectral features between various cancer types is required. This would not be possible without the precise extraction of spectra without the contamination by necrosis, inflammation, desmoplasia, or extracellular fluids such as mucous that surround tumor cells. Moreover, an efficient methodology for their interpretation has not been well defined. In this study, we compared different methods of spectral analysis to find the best for investigating the biomolecular composition of PC cells cytoplasm and nuclei separately. Sixteen PC tissue samples of main PC subtypes (ductal adenocarcinoma, intraductal papillary mucinous carcinoma, and ampulla of Vater carcinoma) were collected with Raman hyperspectral mapping, resulting in 191,355 Raman spectra and analyzed with comparative methodologies, specifically, hierarchical cluster analysis, non-negative matrix factorization, T-distributed stochastic neighbor embedding, principal components analysis (PCA), and convolutional neural networks (CNN). As a result, we propose an innovative approach to spectra classification by CNN, combined with PCA for molecular characterization. The CNN-based spectra classification achieved over 98% successful validation rate. Subsequent analyses of spectral features revealed differences among PC subtypes and between the cytoplasm and nuclei of their cells. Our study establishes an optimal methodology for cancer tissue spectral data classification and interpretation that allows precise and cognitive studies of cancer cells and their subcellular components, without mixing the results with cancer-surrounding tissue. As a proof of concept, we describe findings that add to the spectroscopic understanding of PC.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland.
- Department of Pathomorphology, University Hospital, Kraków, Poland.
| | - Katarzyna Skirlińska-Nosek
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Lipiec
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Kamila Sofińska
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Michał Czaja
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Natalia Wilkosz
- Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Kraków, Poland
| | - Matylda Krupa
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland
| | - Filip Wanat
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland
- Department of Pathomorphology, University Hospital, Kraków, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Yang Y, Wu S, Chen Y, Ju H. Surface-enhanced Raman scattering sensing for detection and mapping of key cellular biomarkers. Chem Sci 2023; 14:12869-12882. [PMID: 38023499 PMCID: PMC10664603 DOI: 10.1039/d3sc04650h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular biomarkers mainly contain proteins, nucleic acids, glycans and many small molecules including small biomolecule metabolites, reactive oxygen species and other cellular chemical entities. The detection and mapping of the key cellular biomarkers can effectively help us to understand important cellular mechanisms associated with physiological and pathological processes, which greatly promote the development of clinical diagnosis and disease treatment. Surface-enhanced Raman scattering (SERS) possesses high sensitivity and is free from the influence of strong self-fluorescence in living systems as well as the photobleaching of the dyes. It exhibits rich and narrow chemical fingerprint spectra for multiplexed detection, and has become a powerful tool to detect and map cellular biomarkers. In this review, we present an overview of recent advances in the detection and mapping of different classes of cellular biomarkers based on SERS sensing. These advances fully confirm that the SERS-based sensors and sensing methods have great potential for the exploration of biological mechanisms and clinical applications. Additionally, we also discuss the limitations of present research and the future developments of the SERS technology in this field.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Papadakis VM, Cheimonidi C, Panagopoulou M, Karaglani M, Apalaki P, Katsara K, Kenanakis G, Theodosiou T, Constantinidis TC, Stratigi K, Chatzaki E. Label-Free Human Disease Characterization through Circulating Cell-Free DNA Analysis Using Raman Spectroscopy. Int J Mol Sci 2023; 24:12384. [PMID: 37569759 PMCID: PMC10418917 DOI: 10.3390/ijms241512384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating cell-free DNA (ccfDNA) is a liquid biopsy biomaterial attracting significant attention for the implementation of precision medicine diagnostics. Deeper knowledge related to its structure and biology would enable the development of such applications. In this study, we employed Raman spectroscopy to unravel the biomolecular profile of human ccfDNA in health and disease. We established reference Raman spectra of ccfDNA samples from healthy males and females with different conditions, including cancer and diabetes, extracting information about their chemical composition. Comparative observations showed a distinct spectral pattern in ccfDNA from breast cancer patients taking neoadjuvant therapy. Raman analysis of ccfDNA from healthy, prediabetic, and diabetic males uncovered some differences in their biomolecular fingerprints. We also studied ccfDNA released from human benign and cancer cell lines and compared it to their respective gDNA, confirming it mirrors its cellular origin. Overall, we explored for the first time Raman spectroscopy in the study of ccfDNA and provided spectra of samples from different sources. Our findings introduce Raman spectroscopy as a new approach to implementing liquid biopsy diagnostics worthy of further elaboration.
Collapse
Affiliation(s)
- Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
| | - Christina Cheimonidi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
| | - Maria Panagopoulou
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Makrina Karaglani
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Paraskevi Apalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
| | - Klytaimnistra Katsara
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013 Heraklion, Greece (G.K.)
- Department of Agriculture, Hellenic Mediterranean University—Hellas, Estavromenos, 71410 Heraklion, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013 Heraklion, Greece (G.K.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
| | - Ekaterini Chatzaki
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
10
|
Peng S, Chang Y, Zeng X, Lai R, Yang M, Wang D, Zhou X, Shao Y. Selectivity of natural isoquinoline alkaloid assembler in programming poly(dA) into parallel duplex by polyvalent synergy. Anal Chim Acta 2023; 1241:340777. [PMID: 36657870 DOI: 10.1016/j.aca.2022.340777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Ligand-induced assembly of disordered DNAs attracts much attention due to its potential action in transcription regulation and molecular switches-based sensors. Among natural isoquinoline alkaloids (NIAs), we screened out nitidine (NIT) as polyvalent-binding assembler to program poly(dA) into a parallel duplex assembly at neutral pH. The molecule planarity of NIAs was believed to be a determinant factor in programming the parallel poly(dA) assembly. Poly(dA) with more than six adenines can initiate the synergistic binding of NIT to generate the parallel assembly. It is expected that one A-A pair in duplex can bind one NIT molecule provided that poly(dA) is long enough, suggesting the pivotal role of the polyvalent synergy of NIT in programming the parallel poly(dA) assembly. A gold nanoparticles-based colorimetric method was also developed to screen NIT out of NIAs having the potential to construct the poly(dA) assembly. Our work will inspire more interest in developing polyadenine-based switches and sensors by concentrating NIT within the polyadenine parallel assembly.
Collapse
Affiliation(s)
- Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
11
|
Zhang Y, Zhan DS, Xu XY, Zhang Z, Hafez ME, He Y, Li Y, Li DW. Label-free detection of DNA methylation by surface-enhanced Raman spectroscopy using zirconium-modified silver nanoparticles. Talanta 2023; 253:123941. [DOI: 10.1016/j.talanta.2022.123941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
12
|
Szymoński K, Chmura Ł, Lipiec E, Adamek D. Vibrational spectroscopy – are we close to finding a solution for early pancreatic cancer diagnosis? World J Gastroenterol 2023; 29:96-109. [PMID: 36683712 PMCID: PMC9850953 DOI: 10.3748/wjg.v29.i1.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal neoplasm, ranking seventh in the world for cancer deaths, with an overall 5-year survival rate of below 10%. The knowledge about PC pathogenesis is rapidly expanding. New aspects of tumor biology, including its molecular and morphological heterogeneity, have been reported to explain the complicated “cross-talk” that occurs between the cancer cells and the tumor stroma or the nature of pancreatic ductal adenocarcinoma-associated neural remodeling. Nevertheless, currently, there are no specific and sensitive diagnosis options for PC. Vibrational spectroscopy (VS) shows a promising role in the development of early diagnosis technology. In this review, we summarize recent reports about improvements in spectroscopic methodologies, briefly explain and highlight the drawbacks of each of them, and discuss available solutions. The important aspects of spectroscopic data evaluation with multivariate analysis and a convolutional neural network methodology are depicted. We conclude by presenting a study design for systemic verification of the VS-based methods in the diagnosis of PC.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Łukasz Chmura
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow 30-348, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
- Department of Neuropathology, Jagiellonian University Medical College, Cracow 33-332, Poland
| |
Collapse
|
13
|
Wang PS, Ma H, Yan S, Lu X, Tang H, Xi XH, Peng XH, Huang Y, Bao YF, Cao MF, Wang H, Huang J, Liu G, Wang X, Ren B. Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy. Chem Sci 2022; 13:13829-13835. [PMID: 36544733 PMCID: PMC9710310 DOI: 10.1039/d2sc04775f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research.
Collapse
Affiliation(s)
- Ping-Shi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xinyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hui Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Hui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yajun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jinglin Huang
- Laser Fusion Research Center, China Academy of Engineering Physics Mianyang 621900 China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University Xiamen 361005 China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
14
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
15
|
Tabb JS, Rapoport E, Han I, Lombardi J, Green O. An antigen-targeting assay for Lyme disease: Combining aptamers and SERS to detect the OspA protein. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102528. [PMID: 35104673 DOI: 10.1016/j.nano.2022.102528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Lyme disease is the fastest growing vector-borne disease in the United States. However, current testing modalities are ill suited to detection of Lyme disease, leading to the diagnosis of many cases after treatment is effective. We present an improved, direct method Lyme disease diagnosis, where the Lyme specific biomarker Outer Surface Protein A (OspA) in clinical serum samples is identified using a diagnostic platform combining surface enhanced Raman scattering (SERS) and aptamers. Employing orthogonal projections to latent structures discriminant analysis, the system accurately identified 91% of serum samples from Lyme patients, and 96% of serum samples from symptomatic controls. In addition, the OspA limit-of-detection, determined to be 1 × 10-4 ng/mL, is greater than four orders of magnitude lower than that found in serum samples from early Lyme disease patients. The application of this platform to detect this difficult-to-diagnose disease suggests its potential for detecting other diseases that present similar difficulties.
Collapse
Affiliation(s)
| | | | - Il Han
- Ionica Sciences, Ithaca, NY, USA
| | - John Lombardi
- Department of Chemistry, The City College of New York, New York, NY, USA
| | | |
Collapse
|
16
|
Dharmalingam P, Venkatakrishnan K, Tan B. Nanoplatform to Investigate Tumor-Initiating Cancer Stem Cells: Breaking the Diagnostic Barrier. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6370-6386. [PMID: 35090345 DOI: 10.1021/acsami.1c21998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Drug-resistant capacity in a small population of tumor-initiating cancer stem cells (tiCSCs) can be due to aberrant epigenetic changes. However, currently available conventional detection methods are inappropriate and cannot be applied to investigate the scarce population (tiCSCs). In addition, selective inhibitor drugs are shown to reverse epigenetic changes; however, each cancer type is discrete. Hence, it is essential to probe the resultant changes in tiCSCs even after therapy. Therefore, we have developed a multimode nanoplatform to investigate tiCSCs, detect epigenetic changes, and subsequently explore their transformation signals following drug therapy. We performed this by developing a surface-enhanced Raman scattering (SERS)-active nanoplatform integrated with n-dopant using an ultrafast laser ionization technique. The dopant functionalization enhances Raman scattering ability and permits label-free analysis of biomarkers in tiCSCs with the resolution down to the cellular level. Here, we investigated epigenetic biomarkers of tiCSCs in pancreatic and lung cancers. An extended study using inhibitor drugs demonstrates an unexpected increase of tiCSCs from lung cancer; this difference can be attributed to transformation changes in lung tiCSC. Thus, our work brings new insight into the differentiation abilities of CSCs upon epigenetic reversal, emphasizing unique perceptions in cancer treatment.
Collapse
Affiliation(s)
- Priya Dharmalingam
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (I-BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nanocharacterization Laboratory, Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada
- Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Nanocharacterization Laboratory, Faculty of Engineering and Architectural Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
17
|
Hassanain WA, Johnson CL, Faulds K, Graham D, Keegan N. Recent advances in antibiotic resistance diagnosis using SERS: focus on the “ Big 5” challenges. Analyst 2022; 147:4674-4700. [DOI: 10.1039/d2an00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SERS for antibiotic resistance diagnosis.
Collapse
Affiliation(s)
- Waleed A. Hassanain
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Christopher L. Johnson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK
| | - Neil Keegan
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| |
Collapse
|
18
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Kogikoski S, Dutta A, Bald I. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS NANO 2021; 15:20562-20573. [PMID: 34875168 PMCID: PMC8717627 DOI: 10.1021/acsnano.1c09176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule nonadsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double-stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into nanoparticles ensembles enabling the use of surface-enhanced Raman scattering to track the decomposition reaction. To prove the DNA-mediated transfer, the probe molecule was insulated from the source of charge carriers, which hindered the reaction. The results indicate that DNA can be used to study the transfer of hot electrons and the mechanisms of advanced plasmonic catalysts.
Collapse
Affiliation(s)
- Sergio Kogikoski
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Department
of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, 13083-970, Campinas São Paulo, Brazil
| | - Anushree Dutta
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Ilko Bald
- Institute
of Chemistry, Physical Chemistry, University
of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
20
|
Turino M, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA. Positively-charged plasmonic nanostructures for SERS sensing applications. RSC Adv 2021; 12:845-859. [PMID: 35425123 PMCID: PMC8978927 DOI: 10.1039/d1ra07959j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Surface-enhanced Raman (SERS) spectroscopy has been establishing itself as an ultrasensitive analytical technique with a cross-disciplinary range of applications, which scientific growth is triggered by the continuous improvement in the design of advanced plasmonic materials with enhanced multifunctional abilities and tailorable surface chemistry. In this regard, conventional synthetic procedures yield negatively-charged plasmonic materials which can hamper the adhesion of negatively-charged species. To tackle this issue, metallic surfaces have been modified via diverse procedures with a broad array of surface ligands to impart positive charges. Cationic amines have been preferred because of their ability to retain a positive zeta potential even at alkaline pH as well as due to their wide accessibility in terms of structural features and cost. In this review, we will describe and discuss the different approaches for generating positively-charged plasmonic platforms and their applications in SERS sensing.
Collapse
Affiliation(s)
- Mariacristina Turino
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Luca Guerrini
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry - EMaS, Universitat Rovira I Virgili Carrer de Marcel·lí Domingo s/n 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
21
|
Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. BIOPHYSICAL REPORTS 2021; 1:100028. [PMID: 36425454 PMCID: PMC9680810 DOI: 10.1016/j.bpr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- Algorithm379, Laisvės g. 7, LT 12007, Vilnius, Lithuania
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | | | - Darius Widera
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| |
Collapse
|
22
|
Mao J, Huang L, Fan L, Chen F, Lou J, Shan X, Yu D, Zhou J. 60-nt DNA Direct Detection without Pretreatment by Surface-Enhanced Raman Scattering with Polycationic Modified Ag Microcrystal Derived from AgCl Cube. Molecules 2021; 26:molecules26226790. [PMID: 34833883 PMCID: PMC8620099 DOI: 10.3390/molecules26226790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Direct detection of long-strand DNA by surface-enhanced Raman scattering (SERS) is a valuable method for diagnosis of hereditary diseases, but it is currently limited to less than 25-nt DNA strand in pure water, which makes this approach unsuitable for many real-life applications. Here, we report a 60-nt DNA label-free detection strategy without pretreatment by SERS with polyquaternium-modified Ag microcrystals derived from an AgCl cube. Through the reduction-induced decomposition, the size of the about 3 × 3 × 3 μm3 AgCl cube is reduced to Ag, and the surface is distributed with the uniform size of 63 nm silver nanoparticles, providing a large area of a robust and highly electromagnetic enhancement region. The modified polycationic molecule enhances the non-specific electrostatic interaction with the phosphate group, thereby anchoring DNA strands firmly to the SERS enhanced region intactly. As a result, the single-base recognition ability of this strategy reaches 60-nt and is successfully applied to detect thalassemia-related mutation genes.
Collapse
Affiliation(s)
- Jikai Mao
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (J.M.); (L.H.); (L.F.)
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| | - Lvtao Huang
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (J.M.); (L.H.); (L.F.)
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| | - Li Fan
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (J.M.); (L.H.); (L.F.)
| | - Fang Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| | - Jingan Lou
- The Children’s Hospital Zhejiang University School of Medicine, Hangzhou 310000, China;
| | - Xuliang Shan
- Hangzhou Green Environment Science & Technology Co., Ltd., Hangzhou 310000, China;
| | - Dongdong Yu
- Hospital of Zhejiang University, Hangzhou 310027, China;
| | - Jianguang Zhou
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (J.M.); (L.H.); (L.F.)
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
- Correspondence:
| |
Collapse
|
23
|
Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. MICROMACHINES 2021; 12:mi12091094. [PMID: 34577737 PMCID: PMC8465297 DOI: 10.3390/mi12091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.
Collapse
Affiliation(s)
- Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Correspondence: ; Tel.: +39-011-090-43-22
| | - Francesca Legittimo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Marco Allione
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Luciano Scaltrito
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| |
Collapse
|
24
|
Effects of Femtosecond UV Laser Pulses on the Structure and Surface Dynamics of Medicinal Plants DNA, Monitored by Surface-Enhanced Raman Spectroscopy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Safar W, Tatar AS, Leray A, Potara M, Liu Q, Edely M, Djaker N, Spadavecchia J, Fu W, Derouich SG, Felidj N, Astilean S, Finot E, Lamy de la Chapelle M. New insight into the aptamer conformation and aptamer/protein interaction by surface-enhanced Raman scattering and multivariate statistical analysis. NANOSCALE 2021; 13:12443-12453. [PMID: 34251385 DOI: 10.1039/d1nr02180j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the interaction between one aptamer and its analyte (the MnSOD protein) by the combination of surface-enhanced Raman scattering and multivariate statistical analysis. We observe the aptamer structure and its evolution during the interaction under different experimental conditions (in air or in buffer). Through the spectral treatment by principal component analysis of a large set of SERS data, we were able to probe the aptamer conformations and orientations relative to the surface assuming that the in-plane nucleoside modes are selectively enhanced. We demonstrate that the aptamer orientation and thus its flexibility rely strongly on the presence of a spacer of 15 thymines and on the experimental conditions with the aptamer lying on the surface in air and standing in the buffer. We reveal for the first time that the interaction with MnSOD induces a large loss of flexibility and freezes the aptamer structure in a single conformation.
Collapse
Affiliation(s)
- Wafa Safar
- IMMM - UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nie Y, Jin C, Zhang JXJ. Microfluidic In Situ Patterning of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopic Sensing of Biomolecules. ACS Sens 2021; 6:2584-2592. [PMID: 34148342 DOI: 10.1021/acssensors.1c00117] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work integrates the advantages of microfluidic devices, nanoparticle synthesis, and on-chip sensing of biomolecules. The concept of microreactors brings new opportunities in chemical synthesis, especially for metallic nanoparticles favorable in surface-enhanced Raman spectroscopy (SERS) for high-resolution and low-limit detection of biomolecules. However, still missing is our understanding of reactions at the microscale and how microsystems can be exploited in biosensing applications via precise control of nanomaterial synthesis. We investigate how microfluidic geometry affects nanoparticle patterning for high-resolution SERS-based sensing and propose a spiral-shaped microchannel that can achieve enhanced mixing, rapid reaction at room temperature, and uniform in situ patterning. The roles of channel geometry as the key parameter on patterning have been studied systematically to provide insight into the rational design of continuous microfluidic systems for SERS applications. We also demonstrate potential applications of this integrated system in label-free on-chip detection of 1 pM rhodamine B (enhancement factor, ∼4.3 × 1011) and a 1 nM 41-base single-stranded deoxyribonucleic acid (DNA) sequence (enhancement factor, ∼1.5 × 108). Our ready-to-use multifunctional system provides an alternative strategy for the facile fabrication of SERS-active substrates and promotes system integration, miniaturization, and on-site biological applications.
Collapse
Affiliation(s)
- Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, New Hampshire 03755, United States
| | - John X. J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, New Hampshire 03755, United States
| |
Collapse
|
27
|
Berneschi S, D'Andrea C, Baldini F, Banchelli M, de Angelis M, Pelli S, Pini R, Pugliese D, Boetti NG, Janner D, Milanese D, Giannetti A, Matteini P. Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Anal Bioanal Chem 2021; 413:6171-6182. [PMID: 34278523 DOI: 10.1007/s00216-021-03418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.
Collapse
Affiliation(s)
- Simone Berneschi
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Pelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Roberto Pini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Diego Pugliese
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138, Turin, Italy
| | - Davide Janner
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Daniel Milanese
- Department of Engineering and Architecture and RU INSTM, Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
28
|
Calderon I, Guerrini L, Alvarez-Puebla RA. Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2021; 11:230. [PMID: 34356701 PMCID: PMC8301754 DOI: 10.3390/bios11070230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) merges nanotechnology with conventional Raman spectroscopy to produce an ultrasensitive and highly specific analytical tool that has been exploited as the optical signal read-out in a variety of advanced applications. In this feature article, we delineate the main features of the intertwined relationship between SERS and nucleic acids (NAs). In particular, we report representative examples of the implementation of SERS in biosensing platforms for NA detection, the integration of DNA as the biorecognition element onto plasmonic materials for SERS analysis of different classes of analytes (from metal ions to microorgniasms) and, finally, the use of structural DNA nanotechnology for the precise engineering of SERS-active nanomaterials.
Collapse
Affiliation(s)
- Irene Calderon
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
| | - Luca Guerrini
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
| | - Ramon A. Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Carrer de Marcel∙lí Domingo, s/n, 43007 Tarragona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
29
|
Tapio K, Mostafa A, Kanehira Y, Suma A, Dutta A, Bald I. A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy. ACS NANO 2021; 15:7065-7077. [PMID: 33872513 PMCID: PMC8155336 DOI: 10.1021/acsnano.1c00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA origami technology allows for the precise nanoscale assembly of chemical entities that give rise to sophisticated functional materials. We have created a versatile DNA origami nanofork antenna (DONA) by assembling Au or Ag nanoparticle dimers with different gap sizes down to 1.17 nm, enabling signal enhancements in surface-enhanced Raman scattering (SERS) of up to 1011. This allows for single-molecule SERS measurements, which can even be performed with larger gap sizes to accommodate differently sized molecules, at various excitation wavelengths. A general scheme is presented to place single analyte molecules into the SERS hot spots using the DNA origami structure exploiting covalent and noncovalent coupling schemes. By using Au and Ag dimers, single-molecule SERS measurements of three dyes and cytochrome c and horseradish peroxidase proteins are demonstrated even under nonresonant excitation conditions, thus providing long photostability during time-series measurement and enabling optical monitoring of single molecules.
Collapse
Affiliation(s)
- Kosti Tapio
- Institute
of Chemistry, University of Potsdam, Potsdam DE-14476, Germany
| | - Amr Mostafa
- Institute
of Chemistry, University of Potsdam, Potsdam DE-14476, Germany
| | - Yuya Kanehira
- Institute
of Chemistry, University of Potsdam, Potsdam DE-14476, Germany
| | - Antonio Suma
- Institute
for Computational Molecular Science, Temple
University, Philadelphia, Pennsylvania19122, United States
- Dipartimento
di Fisica, Università di Bari and
Sezione INFN di Bari, 70126 Bari, Italy
| | - Anushree Dutta
- Institute
of Chemistry, University of Potsdam, Potsdam DE-14476, Germany
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Potsdam DE-14476, Germany
| |
Collapse
|
30
|
Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 2021; 224:121852. [DOI: 10.1016/j.talanta.2020.121852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
|
31
|
Zeng J, Dong M, Zhu B, Chen D, Li Y. A new method towards the detection of DNA mutation by Surface-Enhanced Raman Spectroscopy. Talanta 2021; 223:121746. [PMID: 33298270 DOI: 10.1016/j.talanta.2020.121746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
It is generally believed that the self-folding of single-stranded DNA depends on the hydrophobic effect of its internal bases, but the folding of a single-stranded DNA in a solution was not disordered and would be affected by the stacking effect of adjacent bases. In this work, we developed a new method to explore the stacking between adjacent bases using Surface-Enhanced Raman Spectroscopy (SERS) for the first time. Acidic titanium ions were introduced into silver nanoparticles as an aggregating agent (Ag@ITNPs), and obtained a symmetrical spectrum by normalizing the peak to deoxyribose at 955 cm-1. Based on the influence of adjacent base stacking on the spectrum, we first identified the point mutation sites accurately by SERS. Also, the base content and the DNA frameshift mutations in ssDNA were precisely analyzed. This new method has a simple experimental process and can accurately capture the changes in the base ring breathing peak intensity caused by different adjacent bases, and thus will provide potential application value in the field of gene diagnosis.
Collapse
Affiliation(s)
- Jiayu Zeng
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Meiyu Dong
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Bixue Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Dongmei Chen
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China.
| |
Collapse
|
32
|
Zolotoukhina T, Yamada M, Iwakura S. Vibrational Spectra of Nucleotides in the Presence of the Au Cluster Enhancer in MD Simulation of a SERS Sensor. BIOSENSORS 2021; 11:37. [PMID: 33572778 PMCID: PMC7911439 DOI: 10.3390/bios11020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution of 20 to 40 cm-1. The Au20 was optimized by ab initio density functional theory with generalized gradient approximation (DFT GGA) and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and the spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20-nucleotide interaction have been evaluated.
Collapse
Affiliation(s)
- Tatiana Zolotoukhina
- Department of Mechanical Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | |
Collapse
|
33
|
Guerrini L, Alvarez-Puebla RA. Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2021; 11:nano11020326. [PMID: 33513847 PMCID: PMC7912272 DOI: 10.3390/nano11020326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
Direct, label-free analysis of nucleic acids via surface-enhanced Raman spectroscopy (SERS) has been continuously expanding its range of applications as an intriguing and powerful analytical tool for the structural characterization of diverse DNA structures. Still, interrogation of nucleic acid tertiary structures beyond the canonical double helix often remains challenging. In this work, we report for the first time the structural identification of DNA triplex structures. This class of nucleic acids has been attracting great interest because of their intriguing biological functions and pharmacological potential in gene therapy, and the ability for precisely engineering DNA-based functional nanomaterials. Herein, structural discrimination of the triplex structure against its duplex and tertiary strand counterparts is univocally revealed by recognizing key markers bands in the intrinsic SERS fingerprint. These vibrational features are informative of the base stacking, Hoogsteen hydrogen bonding and sugar–phosphate backbone reorganization associated with the triple helix formation. This work expands the applicability of direct SERS to nucleic acids analysis, with potential impact on fields such as sensing, biology and drug design.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry—EMaS, Universitat Rovira I Virgili, Carrer de Marcel∙lí Domingo s/n, 43007 Tarragona, Spain
- Correspondence: (L.G.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical and Inorganic Chemistry—EMaS, Universitat Rovira I Virgili, Carrer de Marcel∙lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (L.G.); (R.A.A.-P.)
| |
Collapse
|
34
|
Zeng J, Dong M, Zhu B, Gao X, Chen D, Li Y. Label-Free Detection of C–T Mutations by Surface-Enhanced Raman Spectroscopy Using Thiosulfate-Modified Nanoparticles. Anal Chem 2021; 93:1951-1956. [DOI: 10.1021/acs.analchem.0c04052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiayu Zeng
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
| | - Meiyu Dong
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
| | - Bixue Zhu
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
| | - Xin Gao
- School of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
| | - Dongmei Chen
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province 550025, China
- College of Pharmacy, Harbin Medical University, No. 157, Health Road, Nangang District, Harbin City, Heilongjiang Province 150086, China
| |
Collapse
|
35
|
Droplet array for open-channel high-throughput SERS biosensing. Talanta 2020; 218:121206. [PMID: 32797932 DOI: 10.1016/j.talanta.2020.121206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
Open-channel and high throughput are two important aspects of clinical diagnosis, correlation biochemical analysis, cell culture techniques and food safety. Here, we propose the mini-pillar based array for open-channel and high-throughput SERS detection of miRNA. The polydimethylsiloxane (PDMS) mini-pillars are used as a high-throughput platform, which have good anchoring and aggregation effects on microdroplets, greatly reducing the amount of analytical solution and facilitate the homogeneous sample distribution after evaporation. The deposited gold nanorods (Au NRs) on the pillars with optimized diameter served as SERS-active substrate, can greatly improve the sensitivity of SERS signal compared to other planar substrates. On the open-channel biological chip, sensitive, simultaneous, and specific detection of breast cancer marker miRNA-1246 can be performed. In this mini-pillar array SERS system, the limit of detection (LOD) is 10-12 M. The mini-pillar array shows enormous potential for open channel, high-throughput biomolecular detection, providing an opportunity for biomedical point-of-care testing (POCT) and drug screening.
Collapse
|
36
|
Martínez-Calvo M, Guerrini L, Rodríguez J, Álvarez-Puebla RA, Mascareñas JL. Surface-Enhanced Raman Scattering Detection of Nucleic Acids Exhibiting Sterically Accessible Guanines Using Ruthenium-Polypyridyl Reagents. J Phys Chem Lett 2020; 11:7218-7223. [PMID: 32787310 DOI: 10.1021/acs.jpclett.0c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report the application of surface-enhanced Raman scattering (SERS) spectroscopy as a rapid and practical tool for assessing the formation of coordinative adducts between nucleic acid guanines and ruthenium polypyridyl reagents. The technology provides a practical approach for the wash-free and quick identification of nucleic acid structures exhibiting sterically accessible guanines. This is demonstrated for the detection of a quadruplex-forming sequence present in the promoter region of the c-myc oncogene, which exhibits a nonpaired, reactive guanine at a flanking position of the G-quartets.
Collapse
Affiliation(s)
- Miguel Martínez-Calvo
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Centro de Investigaciones Avanzadas (CICA), AE CICA-INIBIC, Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, Rúa As Carballeiras s/n, 15071 A Coruña, Galicia, Spain
| | - Luca Guerrini
- Universitat Rovira i Virgili, Departament de Quı́mica Fı́sica i Inorgànica, EmaS. Carrer de Marcel-lí Domingo s/n, 43007 Tarragona, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ramón A Álvarez-Puebla
- Universitat Rovira i Virgili, Departament de Quı́mica Fı́sica i Inorgànica, EmaS. Carrer de Marcel-lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluı́s Companys 23, 08010 Barcelona, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Qi G, Wang D, Li C, Ma K, Zhang Y, Jin Y. Plasmonic SERS Au Nanosunflowers for Sensitive and Label-Free Diagnosis of DNA Base Damage in Stimulus-Induced Cell Apoptosis. Anal Chem 2020; 92:11755-11762. [PMID: 32786448 DOI: 10.1021/acs.analchem.0c01799] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular diagnosis and accurate damage analysis of complex genomic DNAs in tumor cells are crucial to the theranostics of cancers but still a huge challenge. Herein, by designed preparation of a uniform plasmonic sunflower-like assembly gold (Au) nanostructure that is capable of efficient DNA capture and providing high-density gap-plasmon "hot spots" for adequate surface-enhanced Raman spectroscopy (SERS) enhancement, we succeeded in sensitive and reliable label-free SERS detection of DNA damage in electrostimulus-induced apoptotic cancer cells at the DNA base level for the first time. The SERS results showed that the external electrostimulus (at 1.2 V, for 5 min) was almost harmless to normal healthy cells, but it caused pronounced double strand break and adenine base damage in cancer cell DNAs, which effectively destroyed the reproduction and transcription of DNAs and ultimately induced cell apoptosis. The developed sensing platform and method are promising for cell study of genetically related diseases.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Dandan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
38
|
Chi H, Wang C, Wang Z, Zhu H, Mesias VSD, Dai X, Chen Q, Liu W, Huang J. Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. Analyst 2020; 145:5158-5165. [PMID: 32725005 DOI: 10.1039/d0an00999g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) enables pesticide detection at the point-of-need, but its practical application is limited by expensive and disposable SERS substrates. Here, we report a reusable nanoporous silver (NPAg) sheet for the SERS detection of organochlorine pesticides, aiming to maximize the cost-efficiency of substrate regeneration. The NPAg sheet is prepared by a reduction-induced decomposition method without chemical induced random aggregations. This SERS substrate is sensitive to various analytes regardless of their affinity to a metal surface such as rhodamine B, dichlorodiphenyl-trichloroethane (DDT), and lindane due to its large surface area and the coral rock-like morphology. The SERS signal of lindane, a typical organochlorine pesticide, is identified and quantified with a minimum detectable concentration of 3 × 10-7 M (87 ppb), which is below the maximum residue limits in various foods set by the regulators across the world. More importantly, after a few minutes of ultrasonic cleaning in water, the NPAg sheet can be reused at least 20 times with a reproducible SERS activity. Furthermore, the NPAg sheet remains stable in terms of its sensitivity and reusability after several months of bare strorage. Therefore, the NPAg sheet as a SERS substrate holds great promise for mass production and convenient applications in low-cost pesticide analysis.
Collapse
Affiliation(s)
- Huanyu Chi
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Congcheng Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhien Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongni Zhu
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qing Chen
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. .,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
39
|
Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens Bioelectron 2020; 167:112480. [PMID: 32798805 DOI: 10.1016/j.bios.2020.112480] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is being considered as a powerful technique in the area of food safety due to its rapidity, sensitivity, portability, and non-destructive features. This review aims to provide a comprehensive understanding of SERS applications in fast detection of toxic and harmful substances in food matrix. The enhancement mechanism of SERS, classification of active substrates, detection methods, and their advantages and disadvantages are briefly discussed in the review. The latest research progress of fast SERS detection of food-borne pathogens, mycotoxins, shellfish toxins, illegal food additives, and drug residues are highlighted in sections of the review. According to the current status of SERS detection of food-derived toxic and harmful substances, the review comes up with certain problems to be urgently resolved in SERS and brings up the perspectives on the future directions of SERS based biosensors.
Collapse
|
40
|
Surface dynamics of genomic DNAs upon lowering the pH, in the presence of graphene/AgNPs-based SERS detection platform. J Mol Model 2020; 26:211. [PMID: 32691163 DOI: 10.1007/s00894-020-04477-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Graphene/AgNPs-based surface dynamics of native DNA functional groups at different acidic pH values was discussed using surface-enhanced Raman spectroscopy (SERS). Also, ab initio dynamics of Verlet type was investigated for nucleic acid nitrogenous bases adsorbed on a graphene surface, respectively. The experimental dynamical parameters were given in terms of full widths at half-maximum (FWHMs) and (sub)picosecond global relaxation times, associated with SERS bands. Furthermore, using density functional theory (DFT) as implemented in SIESTA and the velocity autocorrelation function (VACF), we have obtained the vibrational density of states (VDOS) for each of the four DNA bases placed on a pristine graphene layer. Graphical abstract Top: computed VbDOS for guanine. Bottom: Verlet temperature as a function of time.
Collapse
|
41
|
Safar W, Lequeux M, Solard J, Fischer APA, Felidj N, Gucciardi PG, Edely M, Lamy de la Chapelle M. Gold Nanocylinders on Gold Film as a Multi-spectral SERS Substrate. NANOMATERIALS 2020; 10:nano10050927. [PMID: 32403295 PMCID: PMC7279415 DOI: 10.3390/nano10050927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
Abstract
The surface enhanced Raman scattering (SERS) efficiency of gold nanocylinders deposited on gold thin film is studied. Exploiting the specific plasmonic properties of such substrates, we determine the influence of the nanocylinder diameter and the film thickness on the SERS signal at three different excitation wavelengths (532, 638 and 785 nm). We demonstrate that the highest signal is reached for the highest diameter of 250 nm due to coupling between the nanocylinders and for the lowest thickness (20 nm) as the excited plasmon is created at the interface between the gold and glass substrate. Moreover, even if we show that the highest SERS efficiency is obtained for an excitation wavelength of 638 nm, a large SERS signal can be obtained at all excitation wavelengths and on a wide spectral range. We demonstrate that it can be related with the nature of the plasmon (propagative plasmon excited through the nanocylinder grating) and with its angular dependence (tuning of the plasmon position with the excitation angle). Such an effect allows the excitation of plasmon on nearly the whole visible range, and paves the way to multispectral SERS substrates.
Collapse
Affiliation(s)
- Wafa Safar
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France; (W.S.); (M.E.)
| | - Médéric Lequeux
- Laboratoire CSPBAT, Université Sorbonne Paris Nord, CNRS, (UMR 7244), 74 rue Marcel Cachin, 93017 Bobigny, France;
| | - Jeanne Solard
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS, (UMR 7538), 99 av. JB Clément, 93450 Villetaneuse, France; (J.S.); (A.P.A.F.)
| | - Alexis P. A. Fischer
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS, (UMR 7538), 99 av. JB Clément, 93450 Villetaneuse, France; (J.S.); (A.P.A.F.)
| | - Nordin Felidj
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
| | - Pietro Giuseppe Gucciardi
- CNR IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, I-98158 Messina, Italy;
| | - Mathieu Edely
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France; (W.S.); (M.E.)
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM - UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France; (W.S.); (M.E.)
- Correspondence:
| |
Collapse
|
42
|
Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 2020; 11:4563-4577. [PMID: 34122914 PMCID: PMC8159237 DOI: 10.1039/d0sc00809e] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique with sensitivity down to the single molecule level that provides fine molecular fingerprints, allowing for direct identification of target analytes. Extensive theoretical and experimental research, together with continuous development of nanotechnology, has significantly broadened the scope of SERS and made it a hot research field in chemistry, physics, materials, biomedicine, and so on. However, SERS has not been developed into a routine analytical technique, and continuous efforts have been made to address the problems preventing its real-world application. The present minireview focuses on analyzing current and potential strategies to tackle problems and realize the SERS performance necessary for translation to practical applications.
Collapse
Affiliation(s)
- Ana Isabel Pérez-Jiménez
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Danya Lyu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhixuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University Xiamen 361102 China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
43
|
Liu Y, Lyu N, Rajendran VK, Piper J, Rodger A, Wang Y. Sensitive and Direct DNA Mutation Detection by Surface-Enhanced Raman Spectroscopy Using Rational Designed and Tunable Plasmonic Nanostructures. Anal Chem 2020; 92:5708-5716. [PMID: 32223184 DOI: 10.1021/acs.analchem.9b04183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Efficient DNA mutation detection methods are required for diagnosis, personalized therapy development, and prognosis assessment for diseases such as cancer. To address this issue, we proposed a straightforward approach by combining active plasmonic nanostructures, surface-enhanced Raman spectroscopy (SERS), and polymerase chain reaction (PCR) with a statistical tool to identify and classify BRAF wild type (WT) and V600E mutant genes. The nanostructures provide enhanced sensitivity, while PCR offers high specificity toward target DNA. A series of positively charged plasmonic nanostructures including gold/silver nanospheres, nanoshells, nanoflowers, and nanostars were synthesized with a one-pot strategy and characterized. By changing the shape of nanostructures, we are able to vary the surface plasmon resonance from 551 to 693 nm. The gold/silver nanostar showed the highest SERS activity, which was employed for DNA mutation detection. We reproducibly analyzed as few as 100 copies of target DNA sequences using gold/silver nanostars, thus demonstrating the high sensitivity of the direct SERS detection. By means of statistical analysis (principal component analysis-linear discriminant analysis), this method was successfully applied to differentiate the WT and V600E mutant both from whole genome DNA lysed from cell line and from cell-free DNA collected from cell culture media. We further proved that this assay is capable of specifically amplifying and accurately classifying a real plasma sample. Thus, this direct SERS strategy combined with the active plasmonic nanostructures has the potential for wide applications as an alternative tool for sensitively monitoring and evaluating important clinical nucleotide biomarkers.
Collapse
|
44
|
Blanco-Formoso M, Alvarez-Puebla RA. Cancer Diagnosis through SERS and Other Related Techniques. Int J Mol Sci 2020; 21:ijms21062253. [PMID: 32214017 PMCID: PMC7139671 DOI: 10.3390/ijms21062253] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence: (M.B.-F.); (R.A.A.-P.)
| |
Collapse
|
45
|
Ganesh S, Venkatakrishnan K, Tan B. Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression. Nat Commun 2020; 11:1135. [PMID: 32111825 PMCID: PMC7048788 DOI: 10.1038/s41467-020-14774-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSC) can be identified by modifications in their genomic DNA. Here, we report a concept of precisely shrinking an organic semiconductor surface-enhanced Raman scattering (SERS) probe to quantum size, for investigating the epigenetic profile of CSC. The probe is used for tag-free genomic DNA detection, an approach towards the advancement of single-molecule DNA detection. The sensor detected structural, molecular and gene expression aberrations of genomic DNA in femtomolar concentration simultaneously in a single test. In addition to pointing out the divergences in genomic DNA of cancerous and non-cancerous cells, the quantum scale organic semiconductor was able to trace the expression of two genes which are frequently used as CSC markers. The quantum scale organic semiconductor holds the potential to be a new tool for label-free, ultra-sensitive multiplexed genomic analysis.
Collapse
Affiliation(s)
- Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.,Department of Mechanical and Industrial Engineering, Ultrashort Laser Nanomanufacturing Research Facility, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.,Department of Mechanical and Industrial Engineering, Nano Bio Interface facility, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Department of Mechanical and Industrial Engineering, Ultrashort Laser Nanomanufacturing Research Facility, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada. .,Department of Mechanical and Industrial Engineering, Nano Bio Interface facility, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada. .,Keenan Research Center, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
| | - Bo Tan
- Department of Mechanical and Industrial Engineering, Nano Bio Interface facility, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.,Keenan Research Center, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.,Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
46
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
47
|
Pyrak E, Krajczewski J, Kowalik A, Kudelski A, Jaworska A. Surface Enhanced Raman Spectroscopy for DNA Biosensors-How Far Are We? Molecules 2019; 24:E4423. [PMID: 31817059 PMCID: PMC6943648 DOI: 10.3390/molecules24244423] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
A sensitive and accurate identification of specific DNA fragments (usually containing a mutation) can influence clinical decisions. Standard methods routinely used for this type of detection are PCR (Polymerase Chain Reaction, and its modifications), and, less commonly, NGS (Next Generation Sequencing). However, these methods are quite complicated, requiring time-consuming, multi-stage sample preparation, and specially trained staff. Usually, it takes weeks for patients to obtain their results. Therefore, different DNA sensors are being intensively developed by many groups. One technique often used to obtain an analytical signal from DNA sensors is Raman spectroscopy. Its modification, surface-enhanced Raman spectroscopy (SERS), is especially useful for practical analytical applications due to its extra low limit of detection. SERS takes advantage of the strong increase in the efficiency of Raman signal generation caused by a local electric field enhancement near plasmonic (typically gold and silver) nanostructures. In this condensed review, we describe the most important types of SERS-based nanosensors for genetic studies and comment on their potential for becoming diagnostic tools.
Collapse
Affiliation(s)
- Edyta Pyrak
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jan Krajczewski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Artur Kowalik
- Holy Cross Cancer Center, 3 Stefana Artwińskiego St., 25-734 Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| |
Collapse
|
48
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
49
|
Guerrini L, Alvarez-Puebla RA. Multiplex SERS Chemosensing of Metal Ions via DNA-Mediated Recognition. Anal Chem 2019; 91:11778-11784. [PMID: 31411025 DOI: 10.1021/acs.analchem.9b02385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The combination of molecular sensors and plasmonic materials is emerging as one of the most promising approaches for ultrasensitive SERS-based detection of metal ions in complex fluids. However, only a very small fraction of the large pool of potential chemosensors described in classical analytical chemistry has been successfully implemented into viable SERS platforms for metal ion determination. This is due to the molecular restrictions that require the chemosensor to adhere onto the plasmonic surface while retaining the capability to undergo large structural alterations upon metal ion binding. In this work, we demonstrate that the structural and functional plasticity of DNA for interacting with small aromatic molecules can be exploited to this end. DNA coating of silver nanoparticles modulates the interaction of the commercially available alizarin red S (ARS) chemosensor with the nanomaterial, translating its recognition capabilities from bulk solution onto the plasmonic surface, while simultaneously directing the particle assembling into highly efficient SERS clusters. The sensing approach was successfully applied to the multiplex, quantitative determination of Al(III) and Fe(III) in tap water in the subppb level.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry and EMaS , Universitat Rovira I Virgili , Carrer de Marcel.lí Domingo s/n , 43007 Tarragona , Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS , Universitat Rovira I Virgili , Carrer de Marcel.lí Domingo s/n , 43007 Tarragona , Spain.,ICREA , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
50
|
Luo X, Xing Y, Galvan DD, Zheng E, Wu P, Cai C, Yu Q. Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation. ACS Sens 2019; 4:1534-1542. [PMID: 31074265 DOI: 10.1021/acssensors.9b00008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS), which utilizes nanogaps between noble-metal nanostructures as hot spots to yield ultrasensitive SERS signals, is an outstanding label-free and straightforward tool for DNA methylation analysis. Herein, a plasmonic gold nanohole array (PGNA) with well-controlled hot spots and an open surface was designed as a SERS substrate for DNA methylation detection. A finite-difference time-domain (FDTD) simulation was first employed to investigate the electric field distributions of the PGNA as a function of the geometric parameters. The plasmonic response was tuned to 785 cm-1 to match the ring breathing vibrational band of cytosine, the intensity change of which was revealed to be a marker of DNA methylation. Then, guided by the FDTD simulation results, the PGNA was fabricated via the electron beam lithography (EBL) technique. The fabricated PGNA had an open and easily accessible surface topology, a SERS enhancement factor of ∼106, and a relative standard deviation (RSD) of 7.1% for 500 repetitions over an area of 20 × 20 μm2 using 1 μM Rhodamine 6G as the Raman reporter. The fabricated PGNA was further used as a platform for determining DNA methylation. The proposed method exhibited a sensitivity for detecting 1% of methylation changes. Moreover, insight into the dynamic information on methylation events was obtained by combining principal component analysis (PCA) with 2D correlation spectroscopy analysis. Finally, clear discrimination of the different methylation sites, such as 5-methylcytosine and N6-methyladenine, was demonstrated.
Collapse
Affiliation(s)
- Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Yingfang Xing
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Daniel David Galvan
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Erjin Zheng
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Qiuming Yu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|