1
|
Fittolani G, Kutateladze DA, Loas A, Buchwald SL, Pentelute BL. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. J Am Chem Soc 2025; 147:4188-4197. [PMID: 39840443 DOI: 10.1021/jacs.4c13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent Bacillus subtilis myoglobin (BsMb) and sperm whale myoglobin (SwMb). The synthetic enzymes displayed excellent enantioselectivity and yield in carbene transfer reactions. Absolute control over enantioselectivity in styrene cyclopropanation was achieved using synthetic L- and D-BsMb mutants, which delivered each enantiomer of cyclopropane product in identical and opposite enantiomeric enrichment. BsMb mutants outfitted with noncanonical amino acids were used to facilitate detailed structure-activity relationship studies, revealing a previously unrecognized hydrogen-bonding interaction as the primary driver of enantioselectivity in styrene cyclopropanation. We anticipate that our approach will advance biocatalysis by providing reliable and rapid access to fully synthetic enzymes possessing noncanonical amino acids.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Kawai S, Ning J, Katsuyama Y, Ohnishi Y. Production of Phenyldiazene Derivatives Using the Biosynthetic Pathway of an Aromatic Diazo Group-Containing Natural Product from an Actinomycete. Chembiochem 2025; 26:e202400687. [PMID: 39420540 PMCID: PMC11727004 DOI: 10.1002/cbic.202400687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The diazo group is an important functional group in organic synthesis because it confers high reactivity to the compounds and has been applied in various chemical reactions, such as the Sandmeyer reaction, Wolff rearrangement, cyclopropanation, and C-N bond formation with active methylene compounds. Previously, we revealed that 3-diazoavenalumic acid (3-DAA), which is potentially produced by several actinomycete species and contains an aromatic diazo group, is a biosynthetic intermediate of avenalumic acid. In this study, we aimed to construct a production system for phenyldiazene derivatives by adding several active methylene compounds to the culture of a 3-DAA-producing recombinant actinomycete. First, acetoacetanilide and its derivatives, which have an active methylene and are raw materials for arylide yellow dyes, were individually added to the culture of a 3-DAA-producing actinomycete. When their metabolites were analyzed, each expected compound with a phenyldiazenyl moiety was detected in the culture extract. Moreover, we established a one-pot in vitro enzymatic production system for the same phenyldiazene derivatives using a highly reactive diazotase, CmaA6. These results showed that the diazo group of natural products is an attractive tool for expanding the structural diversity of natural products both in vivo and in vitro.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Jiayu Ning
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
| | - Yohei Katsuyama
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| | - Yasuo Ohnishi
- Department of BiotechnologyGraduate School of Agricultural and Life SciencesThe University of Tokyo, 1–1-1 Yayoi, Bunkyo-kuTokyo113-8657Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of Tokyo, Bunkyo-kuTokyo113-8657Japan
| |
Collapse
|
3
|
Xie H, Liu K, Li Z, Wang Z, Wang C, Li F, Han W, Wang L. Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation. JACS AU 2024; 4:4957-4967. [PMID: 39735914 PMCID: PMC11672141 DOI: 10.1021/jacsau.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024]
Abstract
In this study, we developed a machine-learning-aided protein design strategy for engineering Vitreoscilla hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis. Based on the simplified mutant library, the trianed EESP scored 160,000 virtual mutants, and 15 predicted high-score mutants were chosen for experimental validation. Among these mutants, VHb-WK (Y29W/P54K) demonstrated the highest diastereoselectivity and enantioselectivity of carbene transferase for the olefin cyclopropanation in aqueous conditions. Subsequently, molecular dynamics simulations were performed to explore the interaction between protein and substrates, finding that the high enantioselectivity of VHb-WK stems from the interactions of R47, Q53, and K84, which narrows the entrance of the enzyme's pocket, favoring the restriction of the formation of reaction intermediates. Integrating the NLP model and enzyme modification offers significant advantages by reducing economic costs and workloads associated with the protein engineering process.
Collapse
Affiliation(s)
- Hanqing Xie
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Kaifeng Liu
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Zhi Wang
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Chunyu Wang
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130023, P. R. China
| | - Fengxi Li
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Weiwei Han
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Lei Wang
- Key Laboratory
of Molecular Enzymology and Engineering of Ministry of Education,
School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
4
|
Chen SH, Chen YL, Chen CY, Wu CS, Su MD, Chuang SC. Spirocyclopropanes and Substituted Furans by Controlling Reactivity of 1,3-Enynoates: γ- and δ-Addition of Phosphines to Conjugate Acceptors. Chemistry 2024; 30:e202402688. [PMID: 39325539 DOI: 10.1002/chem.202402688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
In the Morita-Baylis-Hillman (MBH) reaction, a nucleophile undergoes β-addition to activated alkenes or alkynes, forming reactive intermediates for subsequent carbon-carbon or carbon-hetero bond formation. By using a π-conjugated acceptor, however, an unprecedented reactivity of 1,3-enynoates and indane-1,3-diones was uncovered in the presence of phosphines. When indan-1,3-diones were used, γ-addition of phosphines to 1,3-enynoates was observed for the first time; moderate to good yields were obtained for 14 substances containing the prominent spirocyclopropane scaffold with 100 % retention of (Z)-alkene. When 2-methyl-indan-1,3-diones were used, di(tri)-substituted furans were produced through the δ-addition pathway, with 20 substances and a yield of up to 88 % being achieved. Control experiments and density functional theory calculations were conducted to obtain insights into the unconventional γ-addition reaction pathway.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Yi-Liang Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chun-Yu Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| |
Collapse
|
5
|
Ju D, Modi V, Khade RL, Zhang Y. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Commun Chem 2024; 7:279. [PMID: 39613908 DOI: 10.1038/s42004-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate. Results show that electron-deficient substrate ethyl acrylate has a much higher barrier than the electron-rich styrene. For styrene, the predicted barrier trend is consistent with experimentally used heme analogue cofactors, which can significantly reduce barriers. For ethyl acrylate, while the best non-native axial ligand only marginally improves the reactivity versus the native histidine model, a couple of computationally studied macrocycles can dramatically reduce barriers to the level comparable to styrene. These results will facilitate the development of better biocatalysts in this area.
Collapse
Affiliation(s)
- Dongrun Ju
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Vrinda Modi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.
| |
Collapse
|
6
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yi K, Wang P, He C. Facile incorporation of non-canonical heme ligands in myoglobin through chemical protein synthesis. Bioorg Med Chem 2024; 112:117900. [PMID: 39217687 DOI: 10.1016/j.bmc.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incorporation of non-canonical amino acids (ncAAs) into the metal coordination environments of proteins has endowed metalloproteins with enhanced properties and novel activities, particularly in hemoproteins. In this work, we disclose a scalable synthetic strategy that enables the production of myoglobin (Mb) variants with non-canonical heme ligands, i.e., HoCys and f4Tyr. The ncAA-containing Mb* variants (with H64V/V68A mutations) were obtained through two consecutive native chemical ligations and a subsequent desulfurization step, with overall isolated yield up to 28.6 % in over 10-milligram scales. After refolding and heme b cofactor reconstitution, the synthetic Mb* variants showed typical electronic absorption bands. When subjected to the catalysis of the cyclopropanation of styrene, both synthetic variants, however, were not as competent as the His-ligated Mb*. We envisioned that the synthetic method reported herein would be useful for incorporating a variety of ncAAs with diverse structures and properties into Mb for varied purposes.
Collapse
Affiliation(s)
- Kewei Yi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Kagawa Y, Oohora K, Himiyama T, Suzuki A, Hayashi T. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Angew Chem Int Ed Engl 2024; 63:e202403485. [PMID: 38780472 DOI: 10.1002/anie.202403485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.
Collapse
Affiliation(s)
- Yoshiyuki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, 563-8577, Japan
| | - Akihiro Suzuki
- National Institute of Technology, Ibaraki College, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Sun Y, Tang Y, Zhou J, Guo B, Yuan F, Yao B, Yu Y, Li C. Computational design of myoglobin-based carbene transferases for monoterpene derivatization. Biochem Biophys Res Commun 2024; 722:150160. [PMID: 38795453 DOI: 10.1016/j.bbrc.2024.150160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Carbene transfer reactions have emerged as pivotal methodologies for the synthesis of complex molecular architectures. Heme protein-catalyzed carbene transfer reactions have shown promising results on model compounds. However, their limited substrate scope has hindered their application in natural product functionalization. Building upon the foundation of previously published work on a carbene transferase-myoglobin variant, this study employs computer-aided protein engineering to design myoglobin variants, using either docking or the deep learning-based LigandMPNN method. These variants were utilized as catalysts in carbene transfer reactions with a selection of monoterpene substrates featuring C-C double bonds, leading to seven target products. This cost-effective methodology broadens the substrate scope for heme protein-catalyzed reactions, thereby opening novel pathways for research in heme protein functionalities and offering fresh perspectives in the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Yiyang Sun
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Yinian Tang
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Jing Zhou
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Bingchen Guo
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Feiyan Yuan
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China.
| | - Bo Yao
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China
| | - Yang Yu
- MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488 China.
| | - Chun Li
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Villada JD, Majhi J, Lehuédé V, Hendricks ME, Neufeld K, Tona V, Fasan R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of Fluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202406779. [PMID: 38752612 DOI: 10.1002/anie.202406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/10/2024]
Abstract
Fluorinated cyclopropanes are highly desired pharmacophores in drug discovery owing to the rigid nature of the cyclopropane ring and the beneficial effects of C-F bonds on the pharmacokinetic properties, cell permeability, and metabolic stability of drug molecules. Herein a biocatalytic strategy for the stereoselective synthesis of mono-fluorinated and gem-difluoro cyclopropanes is reported though the use of engineered myoglobin-based catalysts. In particular, this system allows for a broad range of gem-difluoro alkenes to be cyclopropanated in the presence of diazoacetonitrile with excellent diastereo and enantiocontrol (up to 99 : 1 d.r. and 99 % e.e.), thereby enabling a transformation not currently accessible with chemocatalytic methods. The synthetic utility of the present approach is further exemplified through the gram-scale synthesis of a key gem-difluorinated cyclopropane intermediate useful for the preparation of fluorinated bioactive molecules.
Collapse
Affiliation(s)
- Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Jadab Majhi
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Valentin Lehuédé
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Michelle E Hendricks
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Katharina Neufeld
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Veronica Tona
- Johnson & Johnson Innovative Medicine, Chemical Process R&D, Cilag AG, Hochstrasse 201, 8200, Schaffhausen, Switzerland
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
11
|
Vornholt T, Mutný M, Schmidt GW, Schellhaas C, Tachibana R, Panke S, Ward TR, Krause A, Jeschek M. Enhanced Sequence-Activity Mapping and Evolution of Artificial Metalloenzymes by Active Learning. ACS CENTRAL SCIENCE 2024; 10:1357-1370. [PMID: 39071060 PMCID: PMC11273458 DOI: 10.1021/acscentsci.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
Tailored enzymes are crucial for the transition to a sustainable bioeconomy. However, enzyme engineering is laborious and failure-prone due to its reliance on serendipity. The efficiency and success rates of engineering campaigns may be improved by applying machine learning to map the sequence-activity landscape based on small experimental data sets. Yet, it often proves challenging to reliably model large sequence spaces while keeping the experimental effort tractable. To address this challenge, we present an integrated pipeline combining large-scale screening with active machine learning, which we applied to engineer an artificial metalloenzyme (ArM) catalyzing a new-to-nature hydroamination reaction. Combining lab automation and next-generation sequencing, we acquired sequence-activity data for several thousand ArM variants. We then used Gaussian process regression to model the activity landscape and guide further screening rounds. Critical characteristics of our pipeline include the cost-effective generation of information-rich data sets, the integration of an explorative round to improve the model's performance, and the inclusion of experimental noise. Our approach led to an order-of-magnitude boost in the hit rate while making efficient use of experimental resources. Search strategies like this should find broad utility in enzyme engineering and accelerate the development of novel biocatalysts.
Collapse
Affiliation(s)
- Tobias Vornholt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Mojmír Mutný
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Gregor W. Schmidt
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Schellhaas
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Sven Panke
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
| | - Thomas R. Ward
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering, 4056 Basel,Switzerland
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andreas Krause
- Department
of Computer Science, ETH Zurich, Andreasstrasse 5, 8092 Zurich, Switzerland
| | - Markus Jeschek
- Department
of Biosystems Science and Engineering, ETH
Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Institute
of Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Roy S, Wang Y, Zhao X, Dayananda T, Chu JM, Zhang Y, Fasan R. Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles. J Am Chem Soc 2024; 146:19673-19679. [PMID: 39008121 PMCID: PMC11672115 DOI: 10.1021/jacs.4c06103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yining Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xinyi Zhao
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Thakshila Dayananda
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Huang H, Yan T, Liu C, Lu Y, Wu Z, Wang X, Wang J. Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center. Nat Commun 2024; 15:5714. [PMID: 38977701 PMCID: PMC11231154 DOI: 10.1038/s41467-024-50005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Yan
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang Liu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxiang Lu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigang Wu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingchu Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Vargas DA, Ren X, Sengupta A, Zhu L, Roy S, Garcia-Borràs M, Houk KN, Fasan R. Biocatalytic strategy for the construction of sp 3-rich polycyclic compounds from directed evolution and computational modelling. Nat Chem 2024; 16:817-826. [PMID: 38351380 PMCID: PMC11088497 DOI: 10.1038/s41557-023-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.
Collapse
Affiliation(s)
- David A Vargas
- Process Research and Development, Merck, Rahway, NJ, USA
| | - Xinkun Ren
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao, People's Republic of China
| | - Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Girona, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
15
|
Dollet R, Villada JD, Poisson T, Fasan R, Jubault P. Chemoenzymatic synthesis of optically active α-cyclopropyl-pyruvates and cyclobutenoates via enzyme-catalyzed carbene transfer with diazopyruvate. Org Chem Front 2024; 11:2008-2014. [PMID: 39007032 PMCID: PMC11241863 DOI: 10.1039/d3qo01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cyclopropanes are recurrent structural motifs in natural products and bioactive molecules. Recently, biocatalytic cyclopropanations have emerged as a powerful approach to access enantioenriched cyclopropanes, complementing chemocatalytic approaches developed over the last several decades. Here, we report the development of a first biocatalytic strategy for cyclopropanation using ethyl α-diazopyruvate as a novel enzyme-compatible carbene precursor. Using myoglobin variant Mb(H64V,V68G) as the biocatalyst, this method afforded the efficient synthesis of α-cyclopropylpyruvates in high diastereomeric ratios and enantiomeric excess (up to 99% ee). The ketoester moiety in the cyclopropane products can be used to synthesize diverse optically pure cyclopropane derivatives. Furthermore, the enzymatically obtained α-cyclopropylpyruvate products could be converted into enantiopure cyclobutenoates via a metal-free photochemical ring expansion without loss of optical activity.
Collapse
Affiliation(s)
- Raphaël Dollet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Juan D Villada
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Thomas Poisson
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 (USA)
| | - Philippe Jubault
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
16
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
17
|
Zhao C, Besset T, Legault CY, Jubault P. Experimental and Computational Studies for the Synthesis of Functionalized Cyclopropanes from 2-Substituted Allylic Derivatives with Ethyl Diazoacetate. Chemistry 2024; 30:e202303070. [PMID: 37985211 DOI: 10.1002/chem.202303070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The catalytic asymmetric synthesis of highly functionalized cyclopropanes from 2-substituted allylic derivatives is reported. Using ethyl diazo acetate, the reaction, catalyzed by a chiral ruthenium complex (Ru(II)-Pheox), furnished the corresponding easily separable cis and trans cyclopropanes in moderate to high yields (32-97 %) and excellent ee (86-99 %). This approach significantly extends the portfolio of accessible enantioenriched cyclopropanes from an underexplored class of olefins. DFT calculations suggest that an outer-sphere mechanism is operative in this system.
Collapse
Affiliation(s)
- Chengtao Zhao
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Tatiana Besset
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| | - Claude Y Legault
- Département de Chimie, Université de Sherbrooke, 2500 boul. de l'Université, D1-3029, Sherbrooke, Canada
| | - Philippe Jubault
- INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Univ., 76000, Rouen, France
| |
Collapse
|
18
|
Sumida K, Núñez-Franco R, Kalvet I, Pellock SJ, Wicky BIM, Milles LF, Dauparas J, Wang J, Kipnis Y, Jameson N, Kang A, De La Cruz J, Sankaran B, Bera AK, Jiménez-Osés G, Baker D. Improving Protein Expression, Stability, and Function with ProteinMPNN. J Am Chem Soc 2024; 146:2054-2061. [PMID: 38194293 PMCID: PMC10811672 DOI: 10.1021/jacs.3c10941] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Natural proteins are highly optimized for function but are often difficult to produce at a scale suitable for biotechnological applications due to poor expression in heterologous systems, limited solubility, and sensitivity to temperature. Thus, a general method that improves the physical properties of native proteins while maintaining function could have wide utility for protein-based technologies. Here, we show that the deep neural network ProteinMPNN, together with evolutionary and structural information, provides a route to increasing protein expression, stability, and function. For both myoglobin and tobacco etch virus (TEV) protease, we generated designs with improved expression, elevated melting temperatures, and improved function. For TEV protease, we identified multiple designs with improved catalytic activity as compared to the parent sequence and previously reported TEV variants. Our approach should be broadly useful for improving the expression, stability, and function of biotechnologically important proteins.
Collapse
Affiliation(s)
- Kiera
H. Sumida
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Reyes Núñez-Franco
- Center
for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio 48160, Spain
| | - Indrek Kalvet
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| | - Samuel J. Pellock
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Basile I. M. Wicky
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lukas F. Milles
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Justas Dauparas
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jue Wang
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yakov Kipnis
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| | - Noel Jameson
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alex Kang
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Joshmyn De La Cruz
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Banumathi Sankaran
- Berkeley
Center for Structural Biology, Molecular Biophysics, and Integrated
Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
| | - Asim K. Bera
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio 48160, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| | - David Baker
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard
Hughes Medical Institute, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Tinzl M, Diedrich JV, Mittl PRE, Clémancey M, Reiher M, Proppe J, Latour JM, Hilvert D. Myoglobin-Catalyzed Azide Reduction Proceeds via an Anionic Metal Amide Intermediate. J Am Chem Soc 2024; 146:1957-1966. [PMID: 38264790 PMCID: PMC10811658 DOI: 10.1021/jacs.3c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024]
Abstract
Nitrene transfer reactions catalyzed by heme proteins have broad potential for the stereoselective formation of carbon-nitrogen bonds. However, competition between productive nitrene transfer and the undesirable reduction of nitrene precursors limits the broad implementation of such biocatalytic methods. Here, we investigated the reduction of azides by the model heme protein myoglobin to gain mechanistic insights into the factors that control the fate of key reaction intermediates. In this system, the reaction proceeds via a proposed nitrene intermediate that is rapidly reduced and protonated to give a reactive ferrous amide species, which we characterized by UV/vis and Mössbauer spectroscopies, quantum mechanical calculations, and X-ray crystallography. Rate-limiting protonation of the ferrous amide to produce the corresponding amine is the final step in the catalytic cycle. These findings contribute to our understanding of the heme protein-catalyzed reduction of azides and provide a guide for future enzyme engineering campaigns to create more efficient nitrene transferases. Moreover, harnessing the reduction reaction in a chemoenzymatic cascade provided a potentially practical route to substituted pyrroles.
Collapse
Affiliation(s)
- Matthias Tinzl
- Laboratory
of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johannes V. Diedrich
- Institute
of Physical and Theoretical Chemistry, TU
Braunschweig, 38106 Braunschweig, Germany
| | - Peer R. E. Mittl
- Department
of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Martin Clémancey
- Université
Grenoble AlpesCNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des
Métaux, 17 Rue des Martyrs, Grenoble F-38054 Cedex, France
| | - Markus Reiher
- Institute
for Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonny Proppe
- Institute
of Physical and Theoretical Chemistry, TU
Braunschweig, 38106 Braunschweig, Germany
| | - Jean-Marc Latour
- Université
Grenoble AlpesCNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des
Métaux, 17 Rue des Martyrs, Grenoble F-38054 Cedex, France
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Roy S, Vargas DA, Ma P, Sengupta A, Zhu L, Houk KN, Fasan R. Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation. Nat Catal 2024; 7:65-76. [PMID: 38584987 PMCID: PMC10997382 DOI: 10.1038/s41929-023-01068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/23/2023] [Indexed: 04/09/2024]
Abstract
Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C-H bonds. Here we show the development of a strategy for the asymmetric synthesis of β-, γ-, and δ-lactams via hemoprotein-catalysed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation yielding the desired lactam products in high yields, high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in much fewer steps (7-8 vs. 11-12) than previously reported, further demonstrating the power of biosynthetic strategy for the preparation of complex bioactive molecules.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - David A. Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
21
|
Nam D, Bacik JP, Khade RL, Aguilera MC, Wei Y, Villada JD, Neidig ML, Zhang Y, Ando N, Fasan R. Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone. Nat Commun 2023; 14:7985. [PMID: 38042860 PMCID: PMC10693563 DOI: 10.1038/s41467-023-43559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.
Collapse
Affiliation(s)
- Donggeon Nam
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - John-Paul Bacik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | | | - Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Juan D Villada
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
22
|
Bhardwaj M, Kamble P, Mundhe P, Jindal M, Thakur P, Bajaj P. Multifaceted personality and roles of heme enzymes in industrial biotechnology. 3 Biotech 2023; 13:389. [PMID: 37942054 PMCID: PMC10630290 DOI: 10.1007/s13205-023-03804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/29/2023] [Indexed: 11/10/2023] Open
Abstract
Heme enzymes are the most prominent category of iron-containing metalloenzymes with the capability of catalyzing an astonishingly wide range of reactions like epoxidation, hydroxylation, demethylation, desaturation, reduction, sulfoxidation, and decarboxylation. Various enzymes in this category are P450s, heme peroxidases, catalases, myoglobin, cytochrome C, and others. Besides this, the natural promiscuity and amenability of these enzymes to protein engineering and evolution have also added several non-native reactions such as C-H, N-H, S-H insertions, cyclopropanation, and other industrially important reactions to their capabilities. Surprisingly, all of these reactions and their wide substrate scopes are attributed to changes in the active site scaffold of different heme enzymes as the center of all enzymes is constituted by a porphyrin ring containing iron. Multiple prominent research groups across the world, including 2018, Nobel Laureate Frances Arnold's group, have shown keen interest in engineering and evolving these enzymes for utilizing their industrial potential. Besides engineering the active site, researchers have also explored the possibility of these enzymes catalyzing non-native reactions by replacing the center porphyrin ring with other cofactors or by changing the iron in the porphyrin ring with other metal ions along with engineering the active site and thereby creating novel artificial metalloenzymes. Thus, in this mini-review from our group, for the first time, we are trying to catalog various activities catalyzed by heme enzymes and their engineered variants and their active usage in various industries along with shedding light on their potential for use in various applications in the future.
Collapse
Affiliation(s)
- Mahipal Bhardwaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Pranay Kamble
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Priyanka Mundhe
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Monika Jindal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| | - Payal Thakur
- CSIR-Institute of Microbial Technology (IMTech), Sector-39A, Chandigarh, 160036 India
| | - Priyanka Bajaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Kukatpally Industrial Estate, NH-9, Balanagar, Hyderabad, Telangana 500037 India
| |
Collapse
|
23
|
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN. From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics. Chem Sci 2023; 14:10997-11011. [PMID: 37860658 PMCID: PMC10583697 DOI: 10.1039/d3sc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| |
Collapse
|
24
|
Liu M, Le N, Uyeda C. Nucleophilic Carbenes Derived from Dichloromethane. Angew Chem Int Ed Engl 2023; 62:e202308913. [PMID: 37661190 PMCID: PMC10591934 DOI: 10.1002/anie.202308913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Nickel PyBox catalysts promote nucleophilic cyclopropanation reactions using CH2 Cl2 as a methylene source and Mn as a stoichiometric reductant. The substrate scope includes a broad range of alkenes bearing electron-withdrawing substituents, including esters, amides, ketones, nitriles, sulfones, phosphonate esters, trifluoromethyl groups, and electron-deficient arenes. Enantioselective cyclopropanations of α,β-unsaturated esters have been developed using chiral PyBox ligands. Mechanistic studies suggest the intermediacy of a (PyBox)Ni=CH2 species, which adds to the alkene by a stepwise [2+2]-cycloaddition/C-C reductive elimination mechanism. DFT models provide a rationale for the nucleophilic character of the nickel carbene and the sense of enantioinduction.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Nguyen Le
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
25
|
Gan J, de Vries J, Akkermans JJLL, Mohammed Y, Tjokrodirijo RTN, de Ru AH, Kim RQ, Vargas DA, Pol V, Fasan R, van Veelen PA, Neefjes J, van Dam H, Ovaa H, Sapmaz A, Geurink PP. Cellular Validation of a Chemically Improved Inhibitor Identifies Monoubiquitination on OTUB2. ACS Chem Biol 2023; 18:2003-2013. [PMID: 37642399 PMCID: PMC10510154 DOI: 10.1021/acschembio.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.
Collapse
Affiliation(s)
- Jin Gan
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jelle de Vries
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jimmy J. L. L. Akkermans
- Department
of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Rayman T. N. Tjokrodirijo
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Arnoud H. de Ru
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - David A. Vargas
- Department
of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester, New York 14627, United States
| | - Vito Pol
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester, New York 14627, United States
| | - Peter A. van Veelen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department
of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Hans van Dam
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Huib Ovaa
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Paul P. Geurink
- Department
of Cell and Chemical Biology, Division of Chemical Biology and Drug
Discovery, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
26
|
Lemon CM. Diversifying the functions of heme proteins with non-porphyrin cofactors. J Inorg Biochem 2023; 246:112282. [PMID: 37320889 DOI: 10.1016/j.jinorgbio.2023.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Heme proteins perform diverse biochemical functions using a single iron porphyrin cofactor. This versatility makes them attractive platforms for the development of new functional proteins. While directed evolution and metal substitution have expanded the properties, reactivity, and applications of heme proteins, the incorporation of porphyrin analogs remains an underexplored approach. This review discusses the replacement of heme with non-porphyrin cofactors, such as porphycene, corrole, tetradehydrocorrin, phthalocyanine, and salophen, and the attendant properties of these conjugates. While structurally similar, each ligand exhibits distinct optical and redox properties, as well as unique chemical reactivity. These hybrids serve as model systems to elucidate the effects of the protein environment on the electronic structure, redox potentials, optical properties, or other features of the porphyrin analog. Protein encapsulation can confer distinct chemical reactivity or selectivity of artificial metalloenzymes that cannot be achieved with the small molecule catalyst alone. Additionally, these conjugates can interfere with heme acquisition and uptake in pathogenic bacteria, providing an inroad to innovative antibiotic strategies. Together, these examples illustrate the diverse functionality that can be achieved by cofactor substitution. The further expansion of this approach will access unexplored chemical space, enabling the development of superior catalysts and the creation of heme proteins with emergent properties.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717, United States.
| |
Collapse
|
27
|
Poudel DP, Pokhrel A, Tak RK, Shankar M, Giri R. Photosensitized O 2 enables intermolecular alkene cyclopropanation by active methylene compounds. Science 2023; 381:545-553. [PMID: 37535731 PMCID: PMC11216814 DOI: 10.1126/science.adg3209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Cyclopropanes are key features in many preclinical, clinical, and commercial drugs, as well as natural products. The most prolific technique for their synthesis is the metal-catalyzed reaction of an alkene with a diazoalkane, a highly energetic reagent requiring stringent safety precautions. Discovery of alternative innocuous reagents remains an ongoing challenge. Herein, we report a simple photoredox-catalyzed intermolecular cyclopropanation of unactivated alkenes with active methylene compounds. The reaction proceeds in neutral solvent under air or dioxygen (O2) with a photoredox catalyst excited by blue light-emitting diode light and an iodine co-catalyst that is either added as molecular iodine or generated in situ from alkyl iodides. Mechanistic investigations indicate that photosensitized O2 plays a vital role in the generation of carbon-centered radicals for both the addition of active methylene compounds to alkenes and the ring closure.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | - Majji Shankar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
28
|
Lin S, Mo Z, Wang P, He C. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis. J Am Chem Soc 2023. [PMID: 37470345 DOI: 10.1021/jacs.3c05190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
With the growing popularity of serine/threonine ligation (STL) and cysteine/penicillamine ligation (CPL) in chemical protein synthesis, facile and general approaches for the preparation of peptide salicylaldehyde (SAL) esters are urgently needed, especially those viable for obtaining expressed protein SAL esters. Herein, we report the access of SAL ester surrogates from peptide hydrazides (obtained either synthetically or recombinantly) via nitrite oxidation and phenolysis by 3-(1,3-dithian-2-yl)-4-hydroxybenzoic acid (SAL(-COOH)PDT). The resulting peptide SAL(-COOH)PDT esters can be activated to afford the reactive peptide SAL(-COOH) esters for subsequent STL/CPL. While being operationally simple for both synthetic peptides and expressed proteins, the current strategy facilitates convergent protein synthesis and combined application of STL with NCL. The generality of the strategy is showcased by the N-terminal ubiquitination of the growth arrest and DNA damage-inducible protein (Gadd45a), the efficient synthesis of ubiquitin-like protein 5 (UBL-5) via a combined N-to-C NCL-STL strategy, and the C-to-N semisynthesis of a myoglobin (Mb) variant.
Collapse
Affiliation(s)
- Shaomin Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zeyuan Mo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
30
|
Roy S, Vargas DA, Ma P, Sengupta A, Zhu L, Houk KN, Fasan R. Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation. RESEARCH SQUARE 2023:rs.3.rs-2429100. [PMID: 36711830 PMCID: PMC9882675 DOI: 10.21203/rs.3.rs-2429100/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Given their widespread presence in bioactive molecules, methods for the asymmetric synthesis of these molecules, in particular through the selective functionalization of ubiquitous yet unreactive aliphatic C-H bonds, are highly desirable. In this study, we report the development of a novel strategy for the asymmetric synthesis of 4-, 5-, and 6-membered lactams via an unprecedented hemoprotein-catalyzed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation producing an array of β-, γ-, and δ-lactam molecules in high yields, with high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps in these reactions and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Using this system, it was possible to accomplish the chemoenzymatic total synthesis of an alkaloid natural product and a drug molecule in much fewer steps (7-8 vs. 11-12) than previously possible, which showcases the power of this biosynthetic strategy toward enabling the preparation of complex bioactive molecules.
Collapse
Affiliation(s)
- Satyajit Roy
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
| | - David A. Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
- Current affiliation: Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States
| |
Collapse
|
31
|
Hajdin I, Pajkert R, Keßler M, Han J, Mei H, Röschenthaler GV. Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups. Beilstein J Org Chem 2023; 19:541-549. [PMID: 37153646 PMCID: PMC10155617 DOI: 10.3762/bjoc.19.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
A synthetic route to the bench-stable fluorinated masked carbene reagent diethyl 2-diazo-1,1,3,3,3-pentafluoropropylphosphonate, bearing a trifluoromethyl and a difluoromethyl group is reported for the first time. Its application in CuI-catalyzed cyclopropanation reactions with aromatic and aliphatic terminal alkenes under mild reaction conditions is demonstrated. In total, sixteen new cyclopropanes were synthesized in good to very good yields.
Collapse
Affiliation(s)
- Ita Hajdin
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Romana Pajkert
- School of Science, Constructor University Bremen gGmbH, Campus Ring 1, Bremen 28759, Germany
| | - Mira Keßler
- Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
32
|
Siriboe MG, Fasan R. Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions. BULLETIN OF JAPAN SOCIETY OF COORDINATION CHEMISTRY 2022; 80:4-13. [PMID: 37621732 PMCID: PMC10448740 DOI: 10.4019/bjscc.80.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Biocatalysis has covered an increasingly important role in the synthesis and manufacturing of pharmaceuticals and other high value compounds. In the interest of expanding the range of synthetically useful reactions accessible via biocatalysts, our group has explored the potential and application of engineered myoglobins for 'abiological' carbene transfer catalysis. These transformations provide a direct route for the construction of new carbon-carbon and carbon-heteroatom bonds, including the synthesis of cyclopropane rings, which are key motifs and pharmacophores in many drugs and bioactive natural products. In this award article, we survey the progress made by our group toward the development of myoglobin-based catalysts for asymmetric intermolecular cyclopropanation reactions. The high stereoselectivity exhibited by these biocatalysts in these reactions, combined with their broad substrate scope, scalability, and robustness to high substrate loading and organic co-solvents, contribute to make these systems particularly useful for chemical synthesis and biocatalysis at the preparative scale. Extension of the scope of biocatalytic carbene transfer reactions to include different classes of carbene donor reagents has created new opportunities for the asymmetric synthesis of functionalized cyclopropanes. Furthermore, the integration of myoglobin-catalyzed stereoselective cyclopropanations with chemical diversification of the enzymatic products has furnished attractive chemoenzymatic strategies to access a diverse range of optically active cyclopropane scaffolds of high value for drug discovery, medicinal chemistry, and the synthesis of natural products.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
33
|
Siriboe MG, Vargas DA, Fasan R. Dehaloperoxidase Catalyzed Stereoselective Synthesis of Cyclopropanol Esters. J Org Chem 2022. [PMID: 36542602 DOI: 10.1021/acs.joc.2c02030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N-H/S-H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - David A Vargas
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York14627, United States
| |
Collapse
|
34
|
Tang S, Pan AQ, Wang XJ, Gao SQ, Tan XS, Lin YW. O 2 Carrier Myoglobin Also Exhibits β-Lactamase Activity That Is Regulated by the Heme Coordination State. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238478. [PMID: 36500571 PMCID: PMC9737100 DOI: 10.3390/molecules27238478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
Heme proteins perform a variety of biological functions and also play significant roles in the field of bio-catalysis. The β-lactamase activity of heme proteins has rarely been reported. Herein, we found, for the first time, that myoglobin (Mb), an O2 carrier, also exhibits novel β-lactamase activity by catalyzing the hydrolysis of ampicillin. The catalytic proficiency ((kcat/KM)/kuncat) was determined to be 6.25 × 1010, which is much higher than the proficiency reported for designed metalloenzymes, although it is lower than that of natural β-lactamases. Moreover, we found that this activity could be regulated by an engineered disulfide bond, such as Cys46-Cys61 in F46C/L61C Mb or by the addition of imidazole to directly coordinate to the heme center. These results indicate that the heme active site is responsible for the β-lactamase activity of Mb. Therefore, the study suggests the potential of heme proteins acting as β-lactamases, which broadens the diversity of their catalytic functions.
Collapse
Affiliation(s)
- Shuai Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ai-Qun Pan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Xiang-Shi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
35
|
Sosa Alfaro V, Waheed SO, Palomino H, Knorrscheidt A, Weissenborn M, Christov CZ, Lehnert N. YfeX - A New Platform for Carbene Transferase Development with High Intrinsic Reactivity. Chemistry 2022; 28:e202201474. [PMID: 35948517 PMCID: PMC9691539 DOI: 10.1002/chem.202201474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Carbene transfer biocatalysis has evolved from basic science to an area with vast potential for the development of new industrial processes. In this study, we show that YfeX, naturally a peroxidase, has great potential for the development of new carbene transferases, due to its high intrinsic reactivity, especially for the N-H insertion reaction of aromatic and aliphatic primary and secondary amines. YfeX shows high stability against organic solvents (methanol and DMSO), greatly improving turnover of hydrophobic substrates. Interestingly, in styrene cyclopropanation, WT YfeX naturally shows high enantioselectivity, generating the trans product with 87 % selectivity for the (R,R) enantiomer. WT YfeX also catalyzes the Si-H insertion efficiently. Steric effects in the active site were further explored using the R232A variant. Quantum Mechanics/Molecular Mechanics (QM/MM) calculations reveal details on the mechanism of Si-H insertion. YfeX, and potentially other peroxidases, are exciting new targets for the development of improved carbene transferases.
Collapse
Affiliation(s)
- Victor Sosa Alfaro
- Department of Chemistry and Department of BiophysicsUniversity of MichiganAnn Arbor, Michigan48109–1055United States
| | - Sodiq O. Waheed
- Department of ChemistryMichigan Technological UniversityHoughton, Michigan49931United States
| | - Hannah Palomino
- Department of Chemistry and Department of BiophysicsUniversity of MichiganAnn Arbor, Michigan48109–1055United States
| | - Anja Knorrscheidt
- Institute of ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Str. 206120HalleGermany
| | - Martin Weissenborn
- Institute of ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Str. 206120HalleGermany
| | - Christo Z. Christov
- Department of ChemistryMichigan Technological UniversityHoughton, Michigan49931United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of BiophysicsUniversity of MichiganAnn Arbor, Michigan48109–1055United States
| |
Collapse
|
36
|
Huang S, Deng WH, Liao RZ, He C. Repurposing a Nitric Oxide Transport Hemoprotein Nitrophorin 2 for Olefin Cyclopropanation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shunzhi Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
37
|
Lee J, Yang M, Song WJ. The expanded landscape of metalloproteins by genetic incorporation of noncanonical amino acids. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaehee Lee
- Department of Chemistry Seoul National University Seoul South Korea
| | - Minwoo Yang
- Department of Chemistry Seoul National University Seoul South Korea
| | - Woon Ju Song
- Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
38
|
Bhattacharya S, Margheritis EG, Takahashi K, Kulesha A, D'Souza A, Kim I, Yoon JH, Tame JRH, Volkov AN, Makhlynets OV, Korendovych IV. NMR-guided directed evolution. Nature 2022; 610:389-393. [PMID: 36198791 PMCID: PMC10116341 DOI: 10.1038/s41586-022-05278-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
Collapse
Affiliation(s)
| | - Eleonora G Margheritis
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Alona Kulesha
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Areetha D'Souza
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Inhye Kim
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Jennifer H Yoon
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | |
Collapse
|
39
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
40
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
41
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
43
|
Gutiérrez S, Tomás-Gamasa M, Mascareñas JL. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chem Sci 2022; 13:6478-6495. [PMID: 35756533 PMCID: PMC9172117 DOI: 10.1039/d2sc00721e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Translating the power of transition metal catalysis to the native habitats of enzymes can significantly expand the possibilities of interrogating or manipulating natural biological systems, including living cells and organisms. This is especially relevant for organometallic reactions that have shown great potential in the field of organic synthesis, like the metal-catalyzed transfer of carbenes. While, at first sight, performing metal carbene chemistry in aqueous solvents, and especially in biologically relevant mixtures, does not seem obvious, in recent years there has been a growing number of reports demonstrating the feasibility of the task. Either using small molecule metal catalysts or artificial metalloenzymes, a number of carbene transfer reactions that tolerate aqueous and biorelevant media are being developed. This review intends to summarize the most relevant contributions, and establish the state of the art in this emerging research field.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
44
|
Iannuzzelli J, Bacik JP, Moore EJ, Shen Z, Irving EM, Vargas DA, Khare SD, Ando N, Fasan R. Tuning Enzyme Thermostability via Computationally Guided Covalent Stapling and Structural Basis of Enhanced Stabilization. Biochemistry 2022; 61:1041-1054. [PMID: 35612958 PMCID: PMC9178789 DOI: 10.1021/acs.biochem.2c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.
Collapse
Affiliation(s)
- Jacob
A. Iannuzzelli
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - John-Paul Bacik
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Eric J. Moore
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Zhuofan Shen
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ellen M. Irving
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - David A. Vargas
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Nozomi Ando
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
45
|
Sardana M, Mühlfenzl KS, Wenker STM, Åkesson C, Hayes MA, Elmore CS, Pithani S. Exploring the enzyme-catalyzed synthesis of isotope labeled cyclopropanes. J Labelled Comp Radiopharm 2022; 65:86-100. [PMID: 34997781 PMCID: PMC9305206 DOI: 10.1002/jlcr.3962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022]
Abstract
Cyclopropanes are commonly employed structural moieties in drug design since their incorporation is often associated with increased target affinity, improved metabolic stability, and increased rigidity to access bioactive conformations. Robust chemical cyclopropanation procedures have been developed which proceed with high yield and broad substrate scope, and have been applied to labeled substrates. Recently, engineered enzymes have been shown to perform cyclopropanations with remarkable diastereoselectivity and enantioselectivity, but this biocatalytic approach has not been applied to labeled substrates to date. In this study, the use of enzyme catalysis for the synthesis of labeled cyclopropanes was investigated. Two readily available enzymes, a modified CYP450 enzyme and a modified Aeropyrum pernix protoglobin, were investigated for the cyclopropanation of a variety of substituted styrenes. For this biocatalytic transformation, the enzymes required the use of ethyl diazoacetate. Due to the highly energetic nature of this molecule, alternatives were investigated. The final optimized cyclopropanation was successfully demonstrated using n‐hexyl diazoacetate, resulting in moderate to high enantiomeric excess. The optimized procedure was used to generate labeled cyclopropanes from 13C‐glycine, forming all four labeled stereoisomers of phosphodiesterase type‐IV inhibitor, MK0952. These reactions provide a convenient and effective biocatalytic route to stereoselective 13C‐labeled cyclopropanes and serve as a proof‐of‐concept for generating stereoselective labeled cyclopropanes.
Collapse
Affiliation(s)
- Malvika Sardana
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kim S Mühlfenzl
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sylvia T M Wenker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Åkesson
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Subhash Pithani
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
46
|
Ren X, Chandgude AL, Carminati DM, Shen Z, Khare SD, Fasan R. Highly stereoselective and enantiodivergent synthesis of cyclopropylphosphonates with engineered carbene transferases. Chem Sci 2022; 13:8550-8556. [PMID: 35974764 PMCID: PMC9337741 DOI: 10.1039/d2sc01965e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Organophosphonate compounds have represented a rich source of biologically active compounds, including enzyme inhibitors, antibiotics, and antimalarial agents. Here, we report the development of a highly stereoselective strategy for olefin cyclopropanation in the presence of a phosphonyl diazo reagent as carbene precursor. In combination with a ‘substrate walking’ protein engineering strategy, two sets of efficient and enantiodivergent myoglobin-based biocatalysts were developed for the synthesis of both (1R,2S) and (1S,2R) enantiomeric forms of the desired cyclopropylphosphonate ester products. This methodology enables the efficient transformation of a broad range of vinylarene substrates at a preparative scale (i.e. gram scale) with up to 99% de and ee. Mechanistic studies provide insights into factors that contribute to make this reaction inherently more challenging than hemoprotein-catalyzed olefin cyclopropanation with ethyl diazoacetate investigated previously. This work expands the range of synthetically useful, enzyme-catalyzed transformations and paves the way to the development of metalloprotein catalysts for abiological carbene transfer reactions involving non-canonical carbene donor reagents. Two enantiocomplementary myoglobin-based carbene transfer biocatalysts were developed for the synthesis of cyclopropylphosphonate esters with high diastereo- and enantioselectivity and in high yields.![]()
Collapse
Affiliation(s)
- Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ajay L. Chandgude
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Zhuofan Shen
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
47
|
Miller DC, Athavale SV, Arnold FH. Combining chemistry and protein engineering for new-to-nature biocatalysis. NATURE SYNTHESIS 2022; 1:18-23. [PMID: 35415721 DOI: 10.1038/s44160-021-00008-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biocatalysis, the application of enzymes to solve synthetic problems of human import, has blossomed into a powerful technology for chemical innovation. In the past decade, a threefold partnership, where nature provides blueprints for enzymatic catalysis, chemists introduce innovative activity modes with abiological substrates, and protein engineers develop new tools and algorithms to tune and improve enzymatic function, has unveiled the frontier of new-to-nature enzyme catalysis. In this perspective, we highlight examples of interdisciplinary studies which have helped to expand the scope of biocatalysis, including concepts of enzymatic versatility explored through the lens of biomimicry, to achieve both activities and selectivities that are not currently possible with chemocatalysis. We indicate how modern tools, such as directed evolution, computational protein design and machine learning-based protein engineering methods, have already impacted and will continue to influence enzyme engineering for new abiological transformations. A sustained collaborative effort across disciplines is anticipated to spur further advances in biocatalysis in the coming years.
Collapse
Affiliation(s)
- David C Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| | - Soumitra V Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125
| |
Collapse
|
48
|
Zhou M, Wolzak LA, Li Z, de Zwart FJ, Mathew S, de Bruin B. Catalytic Synthesis of 1 H-2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. J Am Chem Soc 2021; 143:20501-20512. [PMID: 34802239 PMCID: PMC8662738 DOI: 10.1021/jacs.1c10927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 12/30/2022]
Abstract
The metallo-radical activation of ortho-allylcarbonyl-aryl N-arylsulfonylhydrazones with the paramagnetic cobalt(II) porphyrin catalyst [CoII(TPP)] (TPP = tetraphenylporphyrin) provides an efficient and powerful method for the synthesis of novel 8-membered heterocyclic enol ethers. The synthetic protocol is versatile and practical and enables the synthesis of a wide range of unique 1H-2-benzoxocins in high yields. The catalytic cyclization reactions proceed with excellent chemoselectivities, have a high functional group tolerance, and provide several opportunities for the synthesis of new bioactive compounds. The reactions are shown to proceed via cobalt(III)-carbene radical intermediates, which are involved in intramolecular hydrogen transfer (HAT) from the allylic position to the carbene radical, followed by a near-barrierless radical rebound step in the coordination sphere of cobalt. The proposed mechanism is supported by experimental observations, density functional theory (DFT) calculations, and spin trapping experiments.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lukas A. Wolzak
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Zirui Li
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Felix J. de Zwart
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
49
|
Kunzendorf A, Xu G, Saifuddin M, Saravanan T, Poelarends GJ. Biocatalytic Asymmetric Cyclopropanations via Enzyme‐Bound Iminium Ion Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Present address: Molecular Enzymology Group University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Present address: School of Chemistry University of Hyderabad P.O. Central University, Gachibowli Hyderabad 500046 India
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
50
|
Kunzendorf A, Xu G, Saifuddin M, Saravanan T, Poelarends GJ. Biocatalytic Asymmetric Cyclopropanations via Enzyme-Bound Iminium Ion Intermediates. Angew Chem Int Ed Engl 2021; 60:24059-24063. [PMID: 34490955 PMCID: PMC8596749 DOI: 10.1002/anie.202110719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/05/2021] [Indexed: 12/16/2022]
Abstract
Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor‐independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2‐chloromalonate to α,β‐unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon‐carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo‐ and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non‐natural reactions.
Collapse
Affiliation(s)
- Andreas Kunzendorf
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Guangcai Xu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mohammad Saifuddin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Present address: Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Present address: School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad, 500046, India
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|