1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Bisht R, Popescu MV, He Z, Ibrahim AM, Crisenza GEM, Paton RS, Procter DJ. Metal-Free Arylation of Benzothiophenes at C4 by Activation as their Benzothiophene S-Oxides. Angew Chem Int Ed Engl 2023; 62:e202302418. [PMID: 37000422 PMCID: PMC10953450 DOI: 10.1002/anie.202302418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/01/2023]
Abstract
Benzothiophenes, activated by oxidation to the corresponding S-oxides, undergo C-H/C-H-type coupling with phenols to give C4 arylation products. While an electron-withdrawing group at C3 of the benzothiophene is important, the process operates without a directing group and a metal catalyst, thus rendering it compatible with sensitive functionalities-e.g. halides and formyl groups. Quantum chemical calculations suggest a formal stepwise mechanism involving heterolytic cleavage of an aryloxysulfur species to give a π-complex of the corresponding benzothiophene and a phenoxonium cation. Subsequent addition of the phenoxonium cation to the C4 position of the benzothiophene is favored over the addition to C3; Fukui functions predict that the major regioisomer is formed at the more electron-rich position between C3 and C4. Varied selective manipulation of the benzothiophene products showcase the synthetic utility of the metal-free arylation process.
Collapse
Affiliation(s)
- Ranjana Bisht
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mihai V. Popescu
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - Zhen He
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ameer M. Ibrahim
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Robert S. Paton
- Department of ChemistryColorado State UniversityCenter AveFort CollinsCO80523USA
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
3
|
Wu M, Lian N, Wu C, Wu X, Chen H, Lin C, Zhou S, Ke F. Metal-free visible-induced C(sp 2)-C(sp 2) coupling of quinoxalin-2( H)-ones via oxidative cleavage of the C-N bond. RSC Adv 2023; 13:18328-18331. [PMID: 37333794 PMCID: PMC10274563 DOI: 10.1039/d3ra03479h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
A C(sp2)-C(sp2) reaction between aromatic hydrazines and quinoxalines has been developed through a photocatalytic system. The protocol is established for C(sp2)-N bond cleavage and direct C(sp2)-H functionalization for the coupling of C(sp2)-C(sp2) via photocatalysis under mild and ideal air conditions without the presence of a strong base and metal. The mechanistic studies reveal that the generation of a benzene radical via the oxidative cleavage of aromatic hydrazines for the cross-coupling of C(sp2)-C(sp2) with the assistance of a photocatalyst is essential. The process exhibits excellent compatibility with functional groups and provides convenient access to various 3-arylquinoxalin-2(1H)-ones in good to excellent yields.
Collapse
Affiliation(s)
- Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Nancheng Lian
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China
| | - Cuimin Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Xinyao Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Houzheng Chen
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Chen Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Sunying Zhou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|
4
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Kouser M, Chowhan B, Sharma N, Gupta M. Transformation of Waste Toner Powder into Valuable Fe 2O 3 Nanoparticles for the Preparation of Recyclable Co(II)-NH 2-SiO 2@Fe 2O 3 and Its Applications in the Synthesis of Polyhydroquinoline and Quinazoline Derivatives. ACS OMEGA 2022; 7:47619-47633. [PMID: 36591190 PMCID: PMC9798778 DOI: 10.1021/acsomega.2c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ecological recycling of waste materials by converting them into valuable nanomaterials can be considered a great opportunity for management and fortification of the environment. This article deals with the environment-friendly synthesis of Fe2O3 nanoparticles (composed of α-Fe2O3 and γ-Fe2O3) using waste toner powder (WTP) via calcination. Fe2O3 nanoparticles were then coated with silica using TEOS, functionalized with silane (APTMS), and immobilized with Co(II) to get the desired biocompatible and cost-effective catalyst, i.e., Co(II)-NH2-SiO2@Fe2O3. The structural features in terms of evaluation of morphology, particle size, presence of functional groups, polycrystallinity, and metal content over the surface were determined by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (P-XRD), field emission gun-scanning electron microscopy (FEG-SEM), energy-dispersive X-ray analysis (EDX), high resolution-transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), Brunauer-Emmett-Teller (BET) analysis, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) studies. XPS confirmed the (II) oxidation state of Co, and ICP-AES and EDX supported the loading of Co(II) over the surface of the support. P-XRD proved the polycrystalline nature of the Fe2O3 core and even after functionalization. In comparison to previously reported methods, Co(II)-NH2-SiO2@Fe2O3 provides an eco-friendly procedure for the synthesis of polyhydroquinoline and quinazoline derivatives with several advantages such as a short reaction time and high yield. Polyhydroquinoline and quinazoline derivatives are important scaffolds in pharmacologically active compounds. Moreover, the developed nanocatalyst was recyclable, and HR-TEM and P-XRD confirmed the agglomeration in the recycled catalyst resulted in a decrease in yield after the fifth run. The present protocol provides a new strategy of recycling e-waste into a heterogeneous nanocatalyst for the synthesis of heterocycles via multicomponent reactions. This made the synthesized catalyst convincingly more superior to other previously reported catalysts for organic transformations.
Collapse
|
6
|
Pan P, Liu S, Lan Y, Zeng H, Li CJ. Visible-light-induced cross-coupling of aryl iodides with hydrazones via an EDA-complex. Chem Sci 2022; 13:7165-7171. [PMID: 35799801 PMCID: PMC9214885 DOI: 10.1039/d2sc01909d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
A visible-light-induced, transition-metal and photosensitizer-free cross-coupling of aryl iodides with hydrazones was developed. In this strategy, hydrazones were used as alternatives to organometallic reagents, in the absence of a transition metal or an external photosensitizer, making this cross-coupling mild and green. The protocol was compatible with a variety of functionalities, including methyl, methoxy, trifluoromethyl, halogen, and heteroaromatic rings. Mechanistic investigations showed that the association of the hydrazone anion with aryl halides formed an electron donor–acceptor complex, which when excited with visible light generated an aryl radical via single-electron transfer. Visible-light-induced catalyst-free cross-coupling of aryl iodides with hydrazones via single-electron-transfer was reported. The mechanistic investigations showed that the association of hydrazone anion with aryl iodides formed an EDA complex.![]()
Collapse
Affiliation(s)
- Pan Pan
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 400030 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 400030 China .,College of Chemistry, Institute of Green Catalysis, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Road Lanzhou 730000 P. R. China
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
7
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S-Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021; 60:25313-25317. [PMID: 34582085 DOI: 10.1002/anie.202112180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Benzothiophenes are valuable heterocycles that are widely used in medicines, agrochemicals, and materials science. Herein, we report a general method for the synthesis of enantioenriched 2,3-disubstituted benzothiophenes via a transition-metal-free C2-alkylation of benzothiophenes with boronic esters. The reactions utilize benzothiophene S-oxides in lithiation-borylations to generate intermediate arylboronate complexes, and subsequent Tf2 O-promoted S-O bond cleavage to trigger a Pummerer-type 1,2-metalate shift, which gives the coupled products with complete enantiospecificity. Primary, secondary and tertiary alkyl boronic esters and aryl boronic esters are successfully coupled with a range of C3-substituted benzothiophenes. Importantly, this transformation does not require the use of C3 directing groups, therefore it overcomes a major limitation of previously developed transition-metal-mediated C2 alkylations of benzothiophenes.
Collapse
Affiliation(s)
- Ruocheng Sang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
8
|
Sang R, Noble A, Aggarwal VK. Chiral Benzothiophene Synthesis via Enantiospecific Coupling of Benzothiophene S‐Oxides with Boronic Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruocheng Sang
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Adam Noble
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | |
Collapse
|
9
|
Dos Santos T, Orenha HP, Murie VE, Vessecchi R, Clososki GC. Selective Metalation and Functionalization of Fluorinated Nitriles Using 2,2,6,6-Tetramethylpiperidyl Bases. Org Lett 2021; 23:7396-7400. [PMID: 34499518 DOI: 10.1021/acs.orglett.1c02572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have accomplished regioselective deprotometalation of aromatic and heteroaromatic nitriles via (TMP)2Zn·2MgCl2·2LiCl and TMPMgCl·LiCl (TMP = 2,2,6,6-tetramethylpiperidyl) with the exploration of new and scarcely investigated metalation positions. Regioselectivity was rationalized by DFT calculations. The quenching of the generated organozinc and organomagnesium intermediates with various electrophiles gave access to 47 highly functionalized nitriles with yields up to 95%. Additionally, we report a difunctionalization strategy and the use of functionalized nitriles as building blocks to construct relevant heterocycles.
Collapse
Affiliation(s)
- Thiago Dos Santos
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Henrique P Orenha
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Valter E Murie
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ricardo Vessecchi
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Giuliano C Clososki
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
10
|
Li Z, Cheng XY, Yang NY, Chen JJ, Tang WY, Bian JQ, Cheng YF, Li ZL, Gu QS, Liu XY. A Cobalt-Catalyzed Enantioconvergent Radical Negishi C(sp 3)–C(sp 2) Cross-Coupling with Chiral Multidentate N, N, P-Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xian-Yan Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yue Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Hu YZ, Ye ZP, Xia PJ, Song D, Li XJ, Liu ZL, Liu F, Chen K, Xiang HY, Yang H. Visible-Light-Driven, Photocatalyst-Free Cascade to Access 3-Cyanoalkyl Coumarins from ortho-Hydroxycinnamic Esters. J Org Chem 2021; 86:4245-4253. [PMID: 33606932 DOI: 10.1021/acs.joc.1c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-driven, photocatalyst-free route starting from easily accessed ortho-hydroxycinnamic esters and O-perfluoropyridin-4-yl oximes has been successfully developed to rapidly assemble a wide range of 3-cyanoalkyl coumarins. This process does not require addition of external photocatalysts, exhibiting beneficial features including mild reaction conditions, synthetic simplicity, and excellent substrate compatibility. Extensive mechanistic investigations revealed that the in situ generated phenolate anions served as photosensitizers to drive this photoinduced transformation.
Collapse
Affiliation(s)
- Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xu-Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
12
|
Hamama WS, Sofan MA, EL-Hawary II, Zoorob HH. Narrative in the chemistry of (aryl/hetaryl)thiopyran-4-one. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1846200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wafaa S. Hamama
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh A. Sofan
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Ibrahim I. EL-Hawary
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt
| | - Hanafi H. Zoorob
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Piontek A, Ochędzan‐Siodłak W, Bisz E, Szostak M. Cobalt−NHC Catalyzed C(sp
2
)−C(sp
3
) and C(sp
2
)−C(sp
2
) Kumada Cross‐Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents. ChemCatChem 2020. [DOI: 10.1002/cctc.202001347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aleksandra Piontek
- Department of Chemistry Opole University 48 Oleska Street 45-052 Opole Poland
| | | | - Elwira Bisz
- Department of Chemistry Opole University 48 Oleska Street 45-052 Opole Poland
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
14
|
Lorion MM, Koch V, Nieger M, Chen HY, Lei A, Bräse S, Cossy J. Cobalt-Catalyzed α-Arylation of Substituted α-Bromo α-Fluoro β-Lactams with Diaryl Zinc Reagents: Generalization to Functionalized Bromo Derivatives. Chemistry 2020; 26:13163-13169. [PMID: 32359179 DOI: 10.1002/chem.202001721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Indexed: 12/24/2022]
Abstract
A cobalt-catalyzed cross-coupling of α-bromo α-fluoro β-lactams with diarylzinc or diallylzinc reagents is herein disclosed. The protocol proved to be general, chemoselective and operationally simple allowing the C4 functionalization of β-lactams. The substrate scope was expanded to α-bromo lactams and amides, α-bromo lactones and esters as well as N- and O-containing heterocycles.
Collapse
Affiliation(s)
- Mélanie M Lorion
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Vanessa Koch
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, University of Helsinki, Helsinki, 00014, Finland
| | - Hi-Yung Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institute for Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
15
|
Yang XW, Li DH, Song AX, Liu FS. "Bulky-Yet-Flexible" α-Diimine Palladium-Catalyzed Reductive Heck Cross-Coupling: Highly Anti-Markovnikov-Selective Hydroarylation of Alkene in Air. J Org Chem 2020; 85:11750-11765. [PMID: 32808522 DOI: 10.1021/acs.joc.0c01509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To pursue a highly regioselective and efficient reductive Heck reaction, a series of moisture- and air-stable α-diimine palladium precatalysts were rationally designed, readily synthesized, and fully characterized. The relationship between the structures of the palladium complexes and the catalytic properties was investigated. It was revealed that the"bulky-yet-flexible"palladium complexes allowed highly anti-Markovnikov-selective hydroarylation of alkenes with (hetero)aryl bromides under aerobic conditions. Further synthetic application of the present protocol could provide rapid and straightforward access to functional and biologically active molecules.
Collapse
Affiliation(s)
- Xu-Wen Yang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|
16
|
Matsuzawa T, Hosoya T, Yoshida S. One-step synthesis of benzo[ b]thiophenes by aryne reaction with alkynyl sulfides. Chem Sci 2020; 11:9691-9696. [PMID: 34094234 PMCID: PMC8162113 DOI: 10.1039/d0sc04450d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
An aryne reaction with alkynyl sulfides affording benzo[b]thiophenes is disclosed. A wide range of 3-substituted benzothiophenes were synthesized from easily available o-silylaryl triflates and alkynyl sulfides in a one-step intermolecular manner. The synthesis of diverse multisubstituted benzothiophene derivatives involving a pentacyclic compound was achieved by virtue of the good functional group tolerance and versatile C2 functionalizations.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
17
|
Guérinot A, Cossy J. Cobalt-Catalyzed Cross-Couplings between Alkyl Halides and Grignard Reagents. Acc Chem Res 2020; 53:1351-1363. [PMID: 32649826 DOI: 10.1021/acs.accounts.0c00238] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-catalyzed cross-couplings have emerged as essential tools for the construction of C-C bonds. The identification of efficient catalytic systems as well as large substrate scope made these cross-couplings key reactions to access valuable molecules ranging from materials, agrochemicals to active pharmaceutical ingredients. They have been increasingly integrated in retrosynthetic plans, allowing shorter and original route development. Palladium-catalyzed cross-couplings still largely rule the field, with the most popular reactions in industrial processes being the Suzuki and Sonogashira couplings. However, the extensive use of palladium complexes raises several problems such as limited resources, high cost, environmental impact, and frequent need for sophisticated ligands. As a consequence, the use of nonprecious and cheap metal catalysts has appeared as a new horizon in cross-coupling development. Over the last three decades, a growing interest has thus been devoted to Fe-, Co-, Cu-, or Ni-catalyzed cross-couplings. Their natural abundance makes them cost-effective, allowing the conception of more sustainable and less expensive chemical processes, especially for large-scale production of active molecules. In addition to these economical and environmental considerations, the 3d metal catalysts also exhibit complementary reactivity with palladium complexes, facilitating the use of alkyl halide partners due to the decrease of β-elimination side reactions. In particular, by using cobalt catalysts, numerous cross-couplings between alkyl halides and organometallics have been described. However, cobalt catalysis still stays far behind palladium catalysis in terms of popularity and applications, and the expansion of the substrate scope as well as the development of simple and robust catalytic systems remains an important challenge.In 2012, our group entered the cobalt catalysis field by developing a cobalt-catalyzed cross-coupling between C-bromo glycosides and Grignard reagents. The generality of the coupling allowed the preparation of a range of valuable C-aryl and C-vinyl glycoside building blocks. We then focused on the functionalization of saturated N-heterocycles, and a variety of halo-azetidines, -pyrrolidines, and -piperidines were successfully reacted with aryl and alkenyl Grignard reagents under cobalt catalysis. With the objective of preparing valuable α-aryl amides, a cobalt-catalyzed cross-coupling applied to α-bromo amides was studied and then extended to α-bromo lactams. Recently, we also reported an efficient and general cross-coupling involving cyclopropyl- and cyclobutyl-magnesium bromides. This method allows the alkylation of functionalized small strained rings by a range of primary and secondary alkyl halides.
Collapse
Affiliation(s)
- Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
18
|
Mastropierro P, Livingstone Z, Robertson SD, Kennedy AR, Hevia E. Structurally Mapping Alkyl and Amide Basicity in Zincate Chemistry: Diversity in the Synthesis of Mixed Sodium–Zinc Complexes and Their Applications in Enolate Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Zoe Livingstone
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Stuart D. Robertson
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Alan R. Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, CH3012 Bern, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| |
Collapse
|
19
|
Huang W, Wan X, Shen Q. Cobalt-Catalyzed Asymmetric Cross-Coupling Reaction of Fluorinated Secondary Benzyl Bromides with Lithium Aryl Boronates/ZnBr 2. Org Lett 2020; 22:4327-4332. [PMID: 32432476 DOI: 10.1021/acs.orglett.0c01363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cobalt-catalyzed asymmetric cross-coupling of α-bromo-α-fluorotoluene derivatives with a variety of aryl zincates derived from lithium aryl n-butyl pinacol boronates and ZnBr2 under mild reaction conditions was described. In addition to mild reaction conditions, another advantage includes the compatibility of various common functional groups such as fluoride, chloride, bromide, cyano, or ester groups. Furthermore, this protocol was successfully applied to the enantioselective synthesis of three fluorinated derivatives of biologically active compounds or drug molecules.
Collapse
Affiliation(s)
- Weichen Huang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
20
|
Lutter FH, Grokenberger L, Spieß P, Hammann JM, Karaghiosoff K, Knochel P. Cobalt‐katalysierte Kreuzkupplung funktionalisierter Alkylzinkreagenzien mit (Hetero‐)Arylhalogeniden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ferdinand H. Lutter
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Lucie Grokenberger
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Philipp Spieß
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Jeffrey M. Hammann
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität München Department Chemie Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
21
|
Lutter FH, Grokenberger L, Spieß P, Hammann JM, Karaghiosoff K, Knochel P. Cobalt-Catalyzed Cross-Coupling of Functionalized Alkylzinc Reagents with (Hetero)Aryl Halides. Angew Chem Int Ed Engl 2020; 59:5546-5550. [PMID: 31909546 PMCID: PMC7154687 DOI: 10.1002/anie.201914490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Indexed: 11/10/2022]
Abstract
A combination of 10 % CoCl2 and 20 % 2,2'-bipyridine ligands enables cross-coupling of functionalized primary and secondary alkylzinc reagents with various (hetero)aryl halides. Couplings with 1,3- and 1,4-substituted cycloalkylzinc reagents proceeded diastereoselectively leading to functionalized heterocycles with high diastereoselectivities of up to 98:2. Furthermore, alkynyl bromides react with primary and secondary alkylzinc reagents providing the alkylated alkynes.
Collapse
Affiliation(s)
- Ferdinand H. Lutter
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Lucie Grokenberger
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Philipp Spieß
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Jeffrey M. Hammann
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment ChemieButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
22
|
Synthesis of dendrimer assisted cobalt nanoparticles and catalytic application in Heck coupling reactions in ionic liquid. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2448-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
23
|
Hofmayer MS, Sunagatullina A, Brösamlen D, Mauker P, Knochel P. Stereoselective Cobalt-Catalyzed Cross-Coupling Reactions of Arylzinc Chlorides with α-Bromolactones and Related Derivatives. Org Lett 2020; 22:1286-1289. [DOI: 10.1021/acs.orglett.9b04564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maximilian S. Hofmayer
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Alisa Sunagatullina
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Daniel Brösamlen
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Philipp Mauker
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
24
|
Liu L, Pan N, Sheng W, Su L, Liu L, Dong J, Zhou Y, Yin S. Visible Light‐Induced Regioselective Decarboxylative Alkylation of the C(
sp
2
)−H Bonds of Non‐Aromatic Heterocycles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900572] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liu
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Neng Pan
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Wei Sheng
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Lebin Su
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Long Liu
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Jianyu Dong
- Department of Educational Science Hunan First Normal University Changsha 410205 People's Republic of China
| | - Yongbo Zhou
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| | - Shuang‐Feng Yin
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
25
|
Sun X, Wang X, Liu F, Gao Z, Bian Q, Wang M, Zhong J. Enantioselective synthesis of (R)-Cinacalcet via cobalt-catalysed asymmetric Negishi cross-coupling. Chirality 2019; 31:682-687. [PMID: 31310396 DOI: 10.1002/chir.23085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
A novel enantioselective synthesis of (R)-cinacalcet with 99% enantiomeric excesses (ee) has been achieved. The main strategies of the approach include a gram-scale cobalt-catalysed asymmetric cross-coupling of racemic ester with arylzinc reagent, Hoffman-type rearrangement of acidamide, the amidation of chiral amine, and improving the ee of chiral amide from 87% to 99% via recrystallization.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Xueyang Wang
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Feipeng Liu
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Zidong Gao
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Qinghua Bian
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Min Wang
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| | - Jiangchun Zhong
- Department of Applied Chemestry, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Shaik BV, Seelam M, Tamminana R, Kammela PR. Copper promoted C-S and C-N cross-coupling Reactions:The synthesis of 2-(N-Aryolamino)benzothiazoles and 2-(N-Aryolamino)benzimidazoles. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Magnetic apple seed starch functionalized with 2,2′-furil as a green host for cobalt nanoparticles: Highly active and reusable catalyst for Mizoroki-Heck and the Suzuki-Miyaura reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
He Z, Pulis AP, Perry GJP, Procter DJ. Pummerer chemistry of benzothiophene S-oxides: Metal-free alkylation and arylation of benzothiophenes. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1602626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen He
- School of Chemistry, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
29
|
Bouarfa S, Graßl S, Ivanova M, Langlais T, Bentabed-Ababsa G, Lassagne F, Erb W, Roisnel T, Dorcet V, Knochel P, Mongin F. Copper- and Cobalt-Catalyzed Syntheses of Thiophene-Based Tertiary Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salima Bouarfa
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
- Laboratoire de Synthèse Organique Appliquée; Faculté des Sciences Exactes et Appliquées; Université Oran1 Ahmed Ben Bella; BP 1524 El M′Naouer 31000 Oran Algeria
| | - Simon Graßl
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Maria Ivanova
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Timothy Langlais
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée; Faculté des Sciences Exactes et Appliquées; Université Oran1 Ahmed Ben Bella; BP 1524 El M′Naouer 31000 Oran Algeria
| | - Frédéric Lassagne
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - William Erb
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Thierry Roisnel
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Vincent Dorcet
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| | - Paul Knochel
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13, Haus F 81377 München Germany
| | - Florence Mongin
- CNRS; ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226; Univ Rennes; 35000 Rennes France
| |
Collapse
|
30
|
Lutter FH, Graßl S, Grokenberger L, Hofmayer MS, Chen Y, Knochel P. Cobalt‐Catalyzed Cross‐Couplings and Electrophilic Aminations using Organozinc Pivalates. ChemCatChem 2019. [DOI: 10.1002/cctc.201900070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ferdinand H. Lutter
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Simon Graßl
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Lucie Grokenberger
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Maximilian S. Hofmayer
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| | - Yi‐Hung Chen
- The Institute for Advanced StudiesWuhan University Wuhan 430072 P. R. of China
| | - Paul Knochel
- Ludwig-Maximilians-UniversitätDepartment Chemie und Biochemie Butenandtstr. 5–13 81377 München
| |
Collapse
|
31
|
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019; 119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Computational chemistry provides a versatile toolbox for studying mechanistic details of catalytic reactions and holds promise to deliver practical strategies to enable the rational in silico catalyst design. The versatile reactivity and nontrivial electronic structure effects, common for systems based on 3d transition metals, introduce additional complexity that may represent a particular challenge to the standard computational strategies. In this review, we discuss the challenges and capabilities of modern electronic structure methods for studying the reaction mechanisms promoted by 3d transition metal molecular catalysts. Particular focus will be placed on the ways of addressing the multiconfigurational problem in electronic structure calculations and the role of expert bias in the practical utilization of the available methods. The development of density functionals designed to address transition metals is also discussed. Special emphasis is placed on the methods that account for solvation effects and the multicomponent nature of practical catalytic systems. This is followed by an overview of recent computational studies addressing the mechanistic complexity of catalytic processes by molecular catalysts based on 3d metals. Cases that involve noninnocent ligands, multicomponent reaction systems, metal-ligand and metal-metal cooperativity, as well as modeling complex catalytic systems such as metal-organic frameworks are presented. Conventionally, computational studies on catalytic mechanisms are heavily dependent on the chemical intuition and expert input of the researcher. Recent developments in advanced automated methods for reaction path analysis hold promise for eliminating such human-bias from computational catalysis studies. A brief overview of these approaches is presented in the final section of the review. The paper is closed with general concluding remarks.
Collapse
Affiliation(s)
| | | | - Justin K. Kirkland
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Townsend
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Hashemi
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chong Liu
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- TheoMAT
group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
32
|
Dong ZB, Balkenhohl M, Tan E, Knochel P. Synthesis of Functionalized Diaryl Sulfides by Cobalt-Catalyzed Coupling between Arylzinc Pivalates and Diaryl Disulfides. Org Lett 2018; 20:7581-7584. [DOI: 10.1021/acs.orglett.8b03319] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Moritz Balkenhohl
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|
33
|
Kondraganti L, Manabolu SB, Dittakavi R. Synthesis of Benzimidazoles
via
Domino Intra and Intermolecular
C‐N
Cross‐Coupling Reaction. ChemistrySelect 2018. [DOI: 10.1002/slct.201802754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lakshmi Kondraganti
- Department of ChemistryJawaharlal Nehru Technological University Kakinada Kakinada- 533 003 Andhra Pradesh India
| | - Surendra babu Manabolu
- Department of ChemistryInstitution: GITAM School of Technology, GITAM University HTP campus, Rudraram, Medak 502 329 Telangana India
| | | |
Collapse
|
34
|
Liu X, Zhou C, Lin E, Han X, Zhang S, Li Q, Wang H. Decarboxylative Negishi Coupling of Redox‐Active Aliphatic Esters by Cobalt Catalysis. Angew Chem Int Ed Engl 2018; 57:13096-13100. [DOI: 10.1002/anie.201806799] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Xu‐Ge Liu
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Chu‐Jun Zhou
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - E. Lin
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Xiang‐Lei Han
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Shang‐Shi Zhang
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Qingjiang Li
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Honggen Wang
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
35
|
Liu X, Zhou C, Lin E, Han X, Zhang S, Li Q, Wang H. Decarboxylative Negishi Coupling of Redox‐Active Aliphatic Esters by Cobalt Catalysis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu‐Ge Liu
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Chu‐Jun Zhou
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - E. Lin
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Xiang‐Lei Han
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Shang‐Shi Zhang
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Qingjiang Li
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Honggen Wang
- School of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
36
|
Bass SA, Parker DM, Bellinger TJ, Eaton AS, Dibble AS, Koroma KL, Sekyi SA, Pollard DA, Guo F. Development of Conjugate Addition of Lithium Dialkylcuprates to Thiochromones: Synthesis of 2-Alkylthiochroman-4-ones and Additional Synthetic Applications. Molecules 2018; 23:E1728. [PMID: 30011953 PMCID: PMC6099951 DOI: 10.3390/molecules23071728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 12/05/2022] Open
Abstract
Lithium dialkylcuprates undergo conjugate addition to thiochromones to afford 2-alkylthiochroman-4-ones in good yields. This approach provide an efficient and general synthetic approach to privileged sulfur-containing structural motifs and valuable precursors for many pharmaceuticals, starting from common substrates-thiochromones. Good yields of 2-alkyl-substituted thiochroman-4-ones are attained with lithium dialkylcuprates, lithium alkylcyanocuprates or substoichiometric amount of copper salts. The use of commercially available inexpensive alkyllithium reagents will expedite the synthesis of a large library of 2-alkyl substituted thiochroman-4-ones for additional synthetic applications.
Collapse
Affiliation(s)
- Shekinah A Bass
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Dynasty M Parker
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Tania J Bellinger
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Aireal S Eaton
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Angelica S Dibble
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Kaata L Koroma
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Sylvia A Sekyi
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - David A Pollard
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
| | - Fenghai Guo
- Department of Chemistry, Winston Salem State University, 601 S. Martin Luther King Jr. Dr., Winston Salem, NC 27110, USA.
- Biomedical Research Infrastructure Center, Winston Salem State University, Winston Salem, NC 27110, USA.
| |
Collapse
|
37
|
|
38
|
Ziegler DS, Greiner R, Lumpe H, Kqiku L, Karaghiosoff K, Knochel P. Directed Zincation or Magnesiation of the 2-Pyridone and 2,7-Naphthyridone Scaffold Using TMP Bases. Org Lett 2018; 19:5760-5763. [PMID: 29039957 DOI: 10.1021/acs.orglett.7b02690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A regioselective zincation of the 2-pyridone and 2,7-naphthyridone scaffolds has been developed. Zincations of the methoxyethoxymethyl (MEM)-protected compounds using TMP2Zn·2MgCl2·2LiCl (TMP = 2,2,6,6-tetramethylpiperidyl) followed by trapping with electrophiles provided functionalized 2-pyridones and 2,7-naphthyridones. I/Mg exchange of iodinated 2-pyridone and 2,7-naphthyridone using i-PrMgCl·LiCl afforded magnesiated intermediates that reacted with electrophiles. A second magnesiation of the 2-pyridone scaffold was achieved by using TMPMgCl·LiCl. Additionally, we report CoCl2-catalyzed cross-couplings of the 1-chloro-2,7-naphthyridines with arylzinc halides.
Collapse
Affiliation(s)
- Dorothée S Ziegler
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Robert Greiner
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Henning Lumpe
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Laura Kqiku
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University Munich , Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
39
|
Barré B, Gonnard L, Guérinot A, Cossy J. Cobalt-Catalyzed (Hetero)arylation of Saturated Cyclic Amines with Grignard Reagents. Molecules 2018; 23:molecules23061449. [PMID: 29904007 PMCID: PMC6099817 DOI: 10.3390/molecules23061449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
(Hetero)aryl substituted saturated cyclic amines are ubiquitous scaffolds in biologically active molecules. Metal-catalyzed cross-couplings between halogeno N-heterocycles and organometallic species are efficient and modular reactions to access these attractive scaffolds. An overview of our work concerning the cobalt-catalyzed arylation of iodo-substituted cyclic amines is presented.
Collapse
Affiliation(s)
- Baptiste Barré
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231 ESPCI Paris, CNRS, PSL Research University 10, rue Vauquelin 75231 Paris CEDEX 05, France.
| | - Laurine Gonnard
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231 ESPCI Paris, CNRS, PSL Research University 10, rue Vauquelin 75231 Paris CEDEX 05, France.
| | - Amandine Guérinot
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231 ESPCI Paris, CNRS, PSL Research University 10, rue Vauquelin 75231 Paris CEDEX 05, France.
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231 ESPCI Paris, CNRS, PSL Research University 10, rue Vauquelin 75231 Paris CEDEX 05, France.
| |
Collapse
|
40
|
He Z, Shrives HJ, Fernández-Salas JA, Abengózar A, Neufeld J, Yang K, Pulis AP, Procter DJ. Synthesis of C2 Substituted Benzothiophenes via an Interrupted Pummerer/[3,3]-Sigmatropic/1,2-Migration Cascade of Benzothiophene S
-Oxides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Zhen He
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Harry J. Shrives
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | | | - Alberto Abengózar
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Jessica Neufeld
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Kevin Yang
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
41
|
He Z, Shrives HJ, Fernández-Salas JA, Abengózar A, Neufeld J, Yang K, Pulis AP, Procter DJ. Synthesis of C2 Substituted Benzothiophenes via an Interrupted Pummerer/[3,3]-Sigmatropic/1,2-Migration Cascade of Benzothiophene S
-Oxides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201801982] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen He
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Harry J. Shrives
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | | | - Alberto Abengózar
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Jessica Neufeld
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Kevin Yang
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry; University of Manchester; Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
42
|
|
43
|
Wu G, Jacobi von Wangelin A. Stereoselective cobalt-catalyzed halofluoroalkylation of alkynes. Chem Sci 2018; 9:1795-1802. [PMID: 29675224 PMCID: PMC5892352 DOI: 10.1039/c7sc04916a] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Stereoselective additions of highly functionalized reagents to available unsaturated hydrocarbons are an attractive synthetic tool due to their high atom economy, modularity, and rapid generation of complexity. We report efficient cobalt-catalyzed (E)-halofluoroalkylations of alkynes/alkenes that enable the construction of densely functionalized, stereodefined fluorinated hydrocarbons. The mild conditions (2 mol% cat., 20 °C, acetone/water, 3 h) tolerate various functional groups, i.e. halides, alcohols, aldehydes, nitriles, esters, and heteroarenes. This reaction is the first example of a highly stereoselective cobalt-catalyzed halo-fluoroalkylation. Unlike related cobalt-catalyzed reductive couplings and Heck-type reactions, it operates via a radical chain mechanism involving terminal halogen atom transfer which obviates the need for a stoichiometric sacrificial reductant.
Collapse
Affiliation(s)
- Guojiao Wu
- Institute of Organic Chemistry , University of Regensburg , Universitaetsstr. 31 , 93053 Regensburg , Germany
| | - Axel Jacobi von Wangelin
- Institute of Organic Chemistry , University of Regensburg , Universitaetsstr. 31 , 93053 Regensburg , Germany
- Department of Chemistry , University of Hamburg , Martin Luther King Pl. 6 , 20146 Hamburg , Germany .
| |
Collapse
|
44
|
Liu F, Zhong J, Zhou Y, Gao Z, Walsh PJ, Wang X, Ma S, Hou S, Liu S, Wang M, Wang M, Bian Q. Cobalt‐Catalyzed Enantioselective Negishi Cross‐Coupling of Racemic α‐Bromo Esters with Arylzincs. Chemistry 2018; 24:2059-2064. [PMID: 29194860 DOI: 10.1002/chem.201705463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Feipeng Liu
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jiangchun Zhong
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Yun Zhou
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Zidong Gao
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Patrick J. Walsh
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Xueyang Wang
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Sijie Ma
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Shicong Hou
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Shangzhong Liu
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Minan Wang
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Min Wang
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Qinghua Bian
- Department of Applied Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
45
|
Boddapati SNM, Kurmarayuni CM, Mutchu BR, Tamminana R, Bollikolla HB. Copper-catalyzed synthesis of 2-aminophenyl benzothiazoles: a novel approach. Org Biomol Chem 2018; 16:8267-8272. [DOI: 10.1039/c8ob02018c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Substituted 2-aminophenyl benzothiazoles have been constructed from thiourea via copper-catalyzed desulfurization/nucleophilic substitution followed by domino intra- and intermolecular C–N cross-coupling reactions under moderate reaction conditions.
Collapse
Affiliation(s)
| | | | | | - Ramana Tamminana
- Department of Chemistry
- GITAM Deemed to be University
- India-562163
| | | |
Collapse
|
46
|
Recent Advances in the Synthesis of Piperidines: Functionalization of Preexisting Ring Systems. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Di J, He H, Wang F, Xue F, Liu XY, Qin Y. Regiospecific alkyl addition of (hetero)arene-fused thiophenes enabled by a visible-light-mediated photocatalytic desulfuration approach. Chem Commun (Camb) 2018; 54:4692-4695. [PMID: 29676430 DOI: 10.1039/c8cc02052c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique photoredox desulfuration approach enabling the regiospecific alkyl addition of (hetero)arene-fused thiophenes is presented.
Collapse
Affiliation(s)
- Jiamei Di
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Huan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Falu Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Fei Xue
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Xiao-Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- and Sichuan Research Center of Precision Engineering Technology for Small Molecule Drugs
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
| |
Collapse
|
48
|
Greiner R, Ziegler DS, Cibu D, Jakowetz AC, Auras F, Bein T, Knochel P. Preparation of Polyfunctional Naphthyridines by Cobalt-Catalyzed Cross-Couplings of Halogenated Naphthyridines with Magnesium and Zinc Organometallics. Org Lett 2017; 19:6384-6387. [PMID: 29152984 PMCID: PMC6400433 DOI: 10.1021/acs.orglett.7b03242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
CoCl2 (5%)
catalyzes cross-couplings of various halogenated
naphthyridines with alkyl- and arylmagnesium halides. Also, arylzinc
halides undergo smooth cross-couplings with various naphthyridines
in the presence of CoCl2·2LiCl (5%) and sodium formate
(50%), leading to polyfunctional arylated naphthyridines. Two of these
arylated naphthyridines are highly fluorescent, with quantum efficiencies
reaching 95% and long excited-state lifetimes of up to 12 ns.
Collapse
Affiliation(s)
- Robert Greiner
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Dorothée S Ziegler
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Denise Cibu
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Andreas C Jakowetz
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Florian Auras
- Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom
| | - Thomas Bein
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
49
|
A rapid entry into thioflavanones via conjugate additions of diarylcuprates to thiochromones. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Hammann JM, Thomas L, Chen YH, Haas D, Knochel P. Cobalt-Catalyzed Cross-Couplings of Bench-Stable Alkynylzinc Pivalates with (Hetero)Aryl and Alkenyl Halides. Org Lett 2017; 19:3847-3850. [DOI: 10.1021/acs.orglett.7b01722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey M. Hammann
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Lucie Thomas
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Yi-Hung Chen
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Diana Haas
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|