1
|
Xiao L, Duan R, Zhou X, Liu S, Du Q, Ren T, Yeow EKL, Ta VD, Huang Y, Sun H. Extended Surface Bands Enabled Lasing Emission and Wavelength Switch from Sulfur Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408104. [PMID: 39295469 DOI: 10.1002/adma.202408104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Indexed: 09/21/2024]
Abstract
The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain. Previous efforts to achieve surface-gain-enabled lasing emission have been hindered by the limited gain volume provided by surface states due to the broad emission bandwidth and/or low emission efficiency. This challenge is overcome by introducing extended surface bands onto the surface of sulfur quantum dots. The extended surface bands contribute to a high photoluminescence quantum yield and narrow emission bandwidth, thereby providing sufficient gain volume and facilitating stimulated emission. When combined with whispering gallery mode microcavity, surface gain enabled lasing emission manifests an ultralow threshold of 8.3 µJ cm-2. Remarkably, the reconfigurable perturbation to surface gain, facilitated by molecular affinity, allows for the realization of the lasing wavelength switch from a single inorganic gain material.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Duan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Xuehong Zhou
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Sihang Liu
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Quanchao Du
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tianhua Ren
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Edwin Kok Lee Yeow
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Van Duong Ta
- Department of Optical Devices, Le Quy Don Technical University, Hanoi, 100000, Vietnam
| | - Yi Huang
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Handong Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| |
Collapse
|
2
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Cao Y, Xu Z, Zhao X, Yang Y, Liu H, Wang P, Yu M, Li H, Fu H. Reversible switching from fluorescence to room temperature phosphorescence amplified by exciton-vibration coupling through pressure-induced tiny packing changes. Chem Sci 2024:d4sc02867h. [PMID: 39139737 PMCID: PMC11317904 DOI: 10.1039/d4sc02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Investigating the impact of exciton-vibration coupling (EC) of molecular aggregates on regulating the excited-state dynamics and controlling room temperature phosphorescence (RTP) emissions is crucial and challenging. We designed and synthesized ArBFO molecules and cultured two crystals with similar molecular packing and completely different luminescent mechanisms from B-form fluorescence to G-form RTP. The mechanism study combining measurement of photophysical properties, time-resolved fluorescence analysis, X-ray diffraction analysis, and theoretical calculations shows that tiny changes in molecular stacking amplify the EC value from B-form to G-form H-aggregates. The larger EC value accelerates the ISC process and suppresses the radiative singlet decay. Meanwhile, the stronger intermolecular interaction restricts non-radiative transitions. All of these facilitate green RTP emission in G-form aggregates. When treated with pressure-heating cycles, the transformation between B-form and G-form aggregates leads to a reversible blue fluorescence/green RTP switch with good reproducibility and photostability. Moreover, their potential in multi-level information encryption and anti-counterfeiting application has been well demonstrated. The results of this research deepen the understanding of the effect of aggregation on the luminescence mechanism and provide a new design guidance for developing smart materials with good performance.
Collapse
Affiliation(s)
- Yangyang Cao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Xinyuqi Zhao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Yong Yang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Haoran Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Pingyang Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Miao Yu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Hao Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University Beijing 100048 P. R. China
| |
Collapse
|
4
|
Chen HX, Qian MD, Yu K, Liu YF. Low Threshold Microlasers Based on Organic-Conjugated Polymers. Front Chem 2021; 9:807605. [PMID: 34966724 PMCID: PMC8710511 DOI: 10.3389/fchem.2021.807605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugated polymers have emerged as ideal organic laser materials for the excellent optoelectrical properties and facile processability. During a typical lasing process, resonator configurations with specific geometry are essential to provide optical feedback and then amplified light. Herein, we summarized the geometry and working mechanism of several typical resonator configurations formed with conjugated polymers. Meanwhile, recent advances in fabrication techniques and lasing performance are also discussed to provide new ideas for the design and optimization of microcavity geometries. Followed by the advances of practical applications in fields of laser sensing, bioimaging, and laser illumination/display, we make a summary of the existing bottlenecks and future perspectives of electrically driven organic lasers toward laser display and illumination.
Collapse
Affiliation(s)
- Hong-Xu Chen
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, China.,School of Artificial Intelligence, Jilin University, Changchun, China
| | - Meng-Dan Qian
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, China
| | - Kun Yu
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, China
| | - Yu-Fang Liu
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
Chen Z, Dai C, Xiong W, Che Y, Zhang C. Stable organic self-assembled microwire lasers for chemical vapor sensing. Commun Chem 2021; 4:97. [PMID: 36697588 PMCID: PMC9814925 DOI: 10.1038/s42004-021-00534-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Organic microlasers hold great potentials in fabricating on-chip sensors for integrated photonic circuits due to their chemical versatility and reactivity. However, chemical vapor detection is still challenging for organic microlaser sensors, as it requires not only optical gain and self-assembly capability, but also rapid response to stimuli and long-term stability under high excitation power. In this work, a new laser dye 4,7-bis(9-octyl-7-(4-(octyloxy)phenyl)-9H-carbazol-2-yl)benzo[c][1,2,5]thiadiazole (BPCBT) is designed and synthesized, which self-assembles into microwires showing strong intramolecular charge transfer (ICT) photoluminescence with >80% quantum efficiency. It enables the lasing from BPCBT microwires under a low threshold of 16 μJ·mm-2·pulse-1 with significantly improved stability over conventional organic microlasers. The stimulated emission amplifies the fluorescence change in the BPCBT microwires under chemical vapors including various acid, acetone, and ethanol vapors, indicating high sensitivity and high selectivity of organic microlaser sensors desirable for compact sensor arrays in integrated photonics.
Collapse
Affiliation(s)
- Zheming Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenghu Dai
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Wei Xiong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanke Che
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Dong H, Zhang C, Shu FJ, Zou CL, Yan Y, Yao J, Zhao YS. Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100484. [PMID: 33783062 DOI: 10.1002/adma.202100484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Synthesis of novel mesoscopic semiconductor architectures continually generates new photonic knowledge and applications. However, it remains a great challenge to synthesize semiconductor microcrystals with smoothly curved surfaces owing to the crystal growth anisotropy. Here, a superkinetic crystal growth method is developed to synthesize 2D oval organic semiconductor microcrystals. The solid source dispersion induces an exceptionally large molecular supersaturation for vapor deposition, which breaks the crystal growth anisotropy. The synthesized stadium-shaped organic semiconductor microcrystals naturally constitute fully chaotic optical microresonators. They support low-threshold lasing on high-quality-factor scar modes localized near the stadium boundary and directional laser emission assisted by the chaotic modes. These results will reshape the understanding of the crystal growth theory and provide valuable guidance for crystalline photonic materials design.
Collapse
Affiliation(s)
- Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fang-Jie Shu
- Engineering Research Center for Photoelectric Intelligent Sensing, Department of Physics, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021; 26:molecules26040958. [PMID: 33670286 PMCID: PMC7918292 DOI: 10.3390/molecules26040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are strong candidates for the next generation of electronic and optoelectronic devices. In this review, we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to control crystallization and their applications to the area of organic solid-state lasers. Special emphasis is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing to their attractive prospects for tuning/control of light emission properties through geometrical resonator design. The most recent developments together with novel strategies for light emission tuning and effective light extraction are presented.
Collapse
|
8
|
Computational screen-out strategy for electrically pumped organic laser materials. Nat Commun 2020; 11:4485. [PMID: 32901000 PMCID: PMC7478980 DOI: 10.1038/s41467-020-18144-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022] Open
Abstract
Electrically pumped organic lasing is one of the most challenging issues in organic optoelectronics. We present a systematic theoretical investigation to screen out electrical pumping lasing molecules over a wide range of organic materials. With the electronic structure information obtained from time-dependent density functional theory, we calculate multiple photophysical parameters of a set of optical pumping organic laser molecules in our self-developed molecular material property prediction package (MOMAP) to judge whether the electrically pumped lasing conditions can be satisfied, namely, to avoid reabsorption from excitons and/or polarons, and the accumulation of triplet excitons. In addition, a large oscillator strength of S1 and weak intermolecular π–π interaction are preferred. With these criteria, we are able to conclude that BP3T, BSBCz, and CzPVSBF compounds are promising candidates for electrically pumped lasing, and the proposed computational strategy could serve as a general protocol for molecular design of organic lasing materials. Though the goal of current organic solid-state laser research remains the realization of electrically pumped lasing, identifying organic semiconductors with ideal properties remains a challenge. Here, the authors report a computational strategy for screening electrical pumping lasing molecules.
Collapse
|
9
|
Jiang Y, Liu YY, Liu X, Lin H, Gao K, Lai WY, Huang W. Organic solid-state lasers: a materials view and future development. Chem Soc Rev 2020; 49:5885-5944. [PMID: 32672260 DOI: 10.1039/d0cs00037j] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lasing applications have spread over various aspects of human life. To meet the developing trends of the laser industry towards being miniature, portable, and highly integrated, new laser technologies are in urgent demand. Organic semiconductors are promising gain medium candidates for novel laser devices, due to their convenient processing techniques, ease of spectral and chemical tuning, low refractive indexes, mechanical flexibilities, and low thresholds, etc. organic solid-state lasers (OSSLs) open up a new horizon of simple, low-cost, time-saving, versatile and environmental-friendly manufacturing technologies for new and desirable laser structures (micro-, asymmetric, flexible, etc.) to unleash the full potential of semiconductor lasers for future electronics. Besides the development of optical feedback structures, the design and synthesis of robust organic gain media is critical as a vigorous aspect of OSSLs. Herein, we provide a comprehensive review of recent advances in organic gain materials, mainly focused on organic semiconductors for OSSLs. The significant breakthroughs toward electrical pumping of OSSLs are emphasized. Opportunities, challenges and future research directions for the design of organic gain media are also discussed.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yuan-Yuan Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - He Lin
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kun Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China. and Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
10
|
Huang W, Zhang XJ, Yang T, Wu S, Yang X, Liu YH, Chen L. A mechanically bendable and conformally attachable polymer membrane microlaser array enabled by digital interference lithography. NANOSCALE 2020; 12:6736-6743. [PMID: 32163078 DOI: 10.1039/c9nr10970f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The progressive miniaturization and thinning of photonic devices would enable the realization of multi-functional photonic integrated circuits and expand the application frontier to novel fields including wearable and disposable electronics. Herein, we have demonstrated a mechanically bendable and conformally attachable polymer membrane microcavity laser array using digital interference lithography. The developed lithography system could distribute a number of subwavelength grating pixels with both high efficiency (1k pixels per second) and excellent versatility (ease of control in the pixel size, spacing, and grating periodicity) as the microcavity laser array, in which a pair of subwavelength gratings constitutes a distributed Bragg resonator microcavity via coherent interference, furnishes a vertically emitting microcavity laser array for convenient light coupling and utilization. The microlaser array polymer membrane presented a total thickness of only 30 μm with excellent performance stability and reliability against long time operation and harsh environmental conditions, which could be further reversibly stretched, repeatedly bendable and conformally attached onto rounded or irregular surfaces or biological tissues with no degradation in single-mode or low-threshold characteristics, paving a way for on-chip optical functionalization toward wearable electronics and outdoor environmental monitoring applications.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Okada D, Azzini S, Nishioka H, Ichimura A, Tsuji H, Nakamura E, Sasaki F, Genet C, Ebbesen TW, Yamamoto Y. π-Electronic Co-crystal Microcavities with Selective Vibronic-Mode Light Amplification: Toward Förster Resonance Energy Transfer Lasing. NANO LETTERS 2018; 18:4396-4402. [PMID: 29902018 DOI: 10.1021/acs.nanolett.8b01442] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
π-conjugated organic microcrystals often act as optical resonators in which the generated photons in the crystal are confined by the reflection at the crystalline facets and interfere to gain lasing action. Here, we fabricate microcrystals from a mixture of carbon-bridged oligo- para-phenylenevinylenes (COPVs) with energy-donor (D) and energy-acceptor (A) characters. Upon weak excitation of the single D-A co-crystal, Förster resonance energy transfer (FRET) takes place, exhibiting spontaneous emission from A. In contrast, upon strong pumping, stimulated emission occurs before FRET, generating lasing action from D. Lasing occurs with single- and dual-vibronic levels, and the lasing wavelength can be modulated by the doping amount of A. Time-resolved spectroscopic studies reveal that the rate constant of lasing is more than 20 times greater than that of FRET. Furthermore, microcrystals, vertically grown on a Ag-coated substrate, reduce the lasing threshold by one-fourth. This study proposes possible directions toward organic solid FRET lasers with microcrystalline resonators.
Collapse
Affiliation(s)
| | - Stefano Azzini
- ISIS & icFRC , Université de Strasbourg and CNRS , 8 allée Gaspard Monge , Strasbourg 67000 , France
| | - Hiroki Nishioka
- Department of Chemistry , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Anna Ichimura
- Department of Chemistry , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hayato Tsuji
- Department of Chemistry , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
- Department of Chemistry, Faculty of Science , Kanagawa University , 2946 Tsuchiya , Hiratsuka 259-1293 , Japan
| | - Eiichi Nakamura
- Department of Chemistry , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Fumio Sasaki
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba , Ibaraki 305-8568 , Japan
| | - Cyriaque Genet
- ISIS & icFRC , Université de Strasbourg and CNRS , 8 allée Gaspard Monge , Strasbourg 67000 , France
| | - Thomas W Ebbesen
- ISIS & icFRC , Université de Strasbourg and CNRS , 8 allée Gaspard Monge , Strasbourg 67000 , France
| | | |
Collapse
|
12
|
Liao Q, Wang XG, Lv S, Xu Z, Zhang Y, Fu H. Cluster-Mediated Nucleation and Growth of J- and H-Type Polymorphs of Difluoroboron Avobenzone for Organic Microribbon Lasers. ACS NANO 2018; 12:5359-5367. [PMID: 29697963 DOI: 10.1021/acsnano.8b00150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlled fabrication of organic polymorphisms with well-defined dimensions and tunable luminescent properties plays an important role in developing optoelectronic devices, sensors, and biolabeling agents but remains a challenge due to the weak intermolecular interactions among organic molecules. Herein, we developed a two-step solution self-assembly method for the controlled preparation of blue-emissive or green-emissive microribbons (MRs) of difluoroboron avobenzone (BF2AVB) by adjusting the cluster-mediated nucleation and subsequent one-dimensional growth processes. We found that blue-emissive MRs belong to the monoclinic phase, in which BF2AVB molecules form slipped π-stacks, resulting in J-aggregates with the solid-state photoluminescence efficiency φ = 68%. Meanwhile, green-emissive MRs are ascribed to the orthorhombic phase and exhibit cofacial π-stacks, which lead to H-aggregates with φ = 24%. Furthermore, these as-prepared MRs can both act as polymorph-dependent Fabry-Pérot resonators for lasing oscillators. The strategy described here might offer significant promise for the coherent light source of optoelectronic devices.
Collapse
Affiliation(s)
- Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Xin Guo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Shaokai Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
| | - Yi Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry , Capital Normal University , Beijing 100048 , People's Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences , Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , People's Republic of China
| |
Collapse
|
13
|
Liu G, Sheng J, Wu H, Yang C, Yang G, Li Y, Ganguly R, Zhu L, Zhao Y. Controlling Supramolecular Chirality of Two-Component Hydrogels by J- and H-Aggregation of Building Blocks. J Am Chem Soc 2018; 140:6467-6473. [DOI: 10.1021/jacs.8b03309] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianhui Sheng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Chaolong Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
14
|
Zhuo MP, Zhang YX, Li ZZ, Shi YL, Wang XD, Liao LS. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes. NANOSCALE 2018; 10:5140-5147. [PMID: 29488987 DOI: 10.1039/c7nr08931g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled fabrication of organic single-crystalline nanowires (OSCNWs) with a uniform diameter in the nanoscale via the bottom-up approach, which is just based on weak intermolecular interaction, is a great challenge. Herein, we utilize the synergy approach of the bottom-up and the top-down processes to fabricate OSCNWs with diameters of 120 ± 10 nm through stepwise evolution processes. Specifically, the evolution processes vary from the self-assembled organic micro-rods with a quadrangular pyramid-like end-structure bounded with {111}s and {11-1}s crystal planes to the "top-down" synthesized organic micro-rods with the flat cross-sectional {002}s plane, to the organic micro-tubes with a wall thickness of ∼115 nm, and finally to the organic nanowires. Notably, the anisotropic etching process caused by the protic solvent molecules (such as ethanol) is crucial for the evolution of the morphology throughout the whole top-down process. Therefore, our demonstration opens a new avenue for the controlled-fabrication of organic nanowires, and also contributes to the development of nanowire-based organic optoelectronics such as organic nanowire lasers.
Collapse
Affiliation(s)
- Ming-Peng Zhuo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | |
Collapse
|
15
|
Li ZZ, Liao LS, Wang XD. Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702952. [PMID: 29149540 DOI: 10.1002/smll.201702952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow-emissive α phase organic microcrystals with rectangular morphology and green-emissive β phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J-aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α-doped β phase and the β-doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min-1 . The findings can contribute to the future development of organic optoelectronics at the microscale.
Collapse
Affiliation(s)
- Zhi-Zhou Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), Wujiang, Suzhou, Jiangsu, 215211, P. R. China
| | - Xue-Dong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
16
|
Kuehne AJC, Gather MC. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques. Chem Rev 2016; 116:12823-12864. [DOI: 10.1021/acs.chemrev.6b00172] [Citation(s) in RCA: 476] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. C. Kuehne
- DWI−Leibniz
Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr.
50, 52056 Aachen, Germany
| | - Malte C. Gather
- Organic
Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
17
|
Wang K, Gu Z, Liu S, Sun W, Zhang N, Xiao S, Song Q. High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. J Phys Chem Lett 2016; 7:2549-2555. [PMID: 27320490 DOI: 10.1021/acs.jpclett.6b01072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The realization of high density and highly uniform nanolaser arrays in lead halide perovskite is quite challenging, especially on silicon. Herein, we demonstrate a simple way to form lead halide nanolaser array on silicon chip with high density and uniform lasing wavelengths. By positioning a perovskite microwire onto a silicon grating, only the suspended parts can hold high quality (Q) resonances and generate laser emissions. As the perovskite microwire is periodically segmented by the silicon grating, the transverse lasers are divided into a periodic nanolaser array and the lasing wavelengths from different subunits are almost the same. The transverse laser has been observed in an air gap as narrow as 420 nm, increasing the density of nanolasers to about 1250 per millimeter (800 nm period in experiment). We believe this research shall shed light on the development of perovskite microlaser and nanolaser arrays on silicon and their applications.
Collapse
Affiliation(s)
- Kaiyang Wang
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Zhiyuan Gu
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Shuai Liu
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Wenzhao Sun
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Nan Zhang
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Shumin Xiao
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| | - Qinghai Song
- National Key Laboratory on Tunable Laser Technology, Department of Electrical and Information Engineering and ‡Department of Material Science and Engineering, Harbin Institute of Technology , Shenzhen 518055, China
| |
Collapse
|
18
|
Cheng X, Zhang Y, Han S, Li F, Zhang H, Wang Y. Multicolor Amplified Spontaneous Emissions Based on Organic Polymorphs That Undergo Excited-State Intramolecular Proton Transfer. Chemistry 2016; 22:4899-903. [PMID: 26917274 DOI: 10.1002/chem.201600355] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 11/07/2022]
Abstract
Two polymorphs emitting near-infrared (1 R form: α phase, λem =702 nm, Φf =0.41) and orange-red fluorescence (1 O form: β phase, λem =618 nm, Φf =0.05) were synthesized by finely controlling the crystallization conditions of compound 1, a structurally simple excited-state intramolecular proton transfer (ESIPT)-active molecule. Multicolor amplified spontaneous emissions (ASEs) were realized, for the first time, based on these polymorphs. Notably, the 1 O crystal underwent heating-induced phase transformation from the β phase to the α form in a single-crystal to single-crystal (SCSC) manner accompanied with an unprecedented ASE changing. The ASE behavior of polymorphs 1 R, 1 O as well as the ASE changing during SCSC was investigated. The feasibility of multicolor lasing based on the present organic polymorphs was confirmed, which may provide a new development strategy for organic laser science and technology.
Collapse
Affiliation(s)
- Xiao Cheng
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Yufei Zhang
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Shenghua Han
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Feng Li
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| |
Collapse
|