1
|
Cui P, Li Y, Liu Y, Wang S, Tang X, Ye Y, Su H, Sun C. Polyether-based polyurethane electrolyte for lithium metal battery: a perspective. RSC Adv 2024; 14:36152-36160. [PMID: 39534046 PMCID: PMC11552083 DOI: 10.1039/d4ra06863g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Polyurethane (PU)-based electrolyte has become one of the most important research directions because of its unique repeating 'soft-hard' segment co-polymer structure. Its 'soft segment' composition includes polyethylene oxide, polysiloxane, polycarbonate, cellulose and polyether. Among them, polyether-based polyurethane electrolytes (PPES) have the advantages of simple synthesis, molecular structure optimization and functional group modification, which can greatly improve the ionic conductivity of the system and form a good ion transport interface. To date, a few separate and detailed reviews of advances in PPES have been reported. In this paper, the research progress of PPES is reviewed from the aspects of structural design strategy, molecular synthesis, conductivity modification methods, specific functions and interfacial ion transport behavior in lithium metal batteries (LMBs). In addition, the synthetic route of PPES and the development prospect of PPES are discussed. We also provide guidance for developing high-performance PPES for next-generation LMBs.
Collapse
Affiliation(s)
- Peng Cui
- School of Mathematical and Physical Sciences, Nanjing Tech University China
| | - Yifan Li
- School of Engineering Auditing, Nanjing Audit University China
| | - YuXing Liu
- Department of Materials Science and Engineering, Standford University USA
| | - Siqi Wang
- Nanjing Pinnacle New Energy Ltd China
| | - Xingyu Tang
- School of Mathematical and Physical Sciences, Nanjing Tech University China
| | - Yihong Ye
- Department of Chemistry and Biochemistry, University of California Los Angeles USA
| | - Hance Su
- Department of Materials Science and Engineering, Standford University USA
| | - Chun Sun
- Department of Chemistry and Biochemistry, University of California Los Angeles USA
| |
Collapse
|
2
|
Xu J, Lu P, Zhao J, Zhao X, Tian W, Ming W, Ren L. Surprisingly fast self-healing coatings with anti-fog and antimicrobial activities via host-guest interaction. J Colloid Interface Sci 2024; 680:139-150. [PMID: 39504744 DOI: 10.1016/j.jcis.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Dual functional coatings with anti-fog and antimicrobial performances greatly enhance the safety and reliability of medical detection devices, but are prone to mechanical damage, resulting in reduced performance and a shorter service lifespan. Herein, a semi-interpenetrating polymer network (SIPN) coating, featuring hydrophobic-hydrophilic balanced copolymers as bulk chains and host-guest inclusion compounds (HGICs) as cross-linkers, is reported, which demonstrates particularly effective anti-fog and antibacterial performances, along with a surprisingly fast self-healing capability under various scenarios. This HGIC-based coating displayed remarkable anti-fog capability over a wide temperature range from -20 ℃ to 85 ℃ and exhibited reliable antibacterial activities (≥98 %) against both gram-positive and gram-negative bacteria. Also, this coating showed extremely high self-healing ability (≥92 % recovery rate) within just 20 s, significantly outperforming traditional self-healing systems. These findings support the development of functional coatings that can highly maintain rapid self-healing performance while also providing anti-fog and antibacterial properties in medical detection devices.
Collapse
Affiliation(s)
- Jingyang Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Pengpeng Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Intelligent Kitchen Appliance and 5G+ Manufacturing Technologies, Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Foshan 528311, China.
| | - Weijun Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Weihua Ming
- Department of Chemistry and Biochemistry, Georgia Southern University, P.O. Box 8064, Statesboro, GA 30460, USA
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
3
|
Wang B, Liu Y, Chen X, Liu XT, Liu Z, Lu C. Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications. Chem Soc Rev 2024; 53:10189-10215. [PMID: 39229831 DOI: 10.1039/d3cs00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
Collapse
Affiliation(s)
- Beibei Wang
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhao Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Ting Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongyi Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Lu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
6
|
Chen T, Shao M, Zhang Y, Zhang X, Xu J, Li J, Wang T, Wang Q. Ultratough Supramolecular Polyurethane Featuring an Interwoven Network with Recyclability, Ideal Self-Healing and Editable Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46822-46833. [PMID: 39178220 DOI: 10.1021/acsami.4c10805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Developing multifunctional polymers with excellent mechanical properties, outstanding shape memory characteristics, and good self-healing properties is a formidable challenge. Inspired by the woven cross-linking strategy, a series of supramolecular polyurethane (PU) with an interwoven network structure composed of covalent and supramolecular cross-linking nodes have been successfully synthesized by introducing the ureido-pyrimidinone (UPy) motifs into the PU skeleton. The best-performing sample exhibited ultrahigh strength (∼77.2 MPa) and toughness (∼312.7 MJ m-3), along with an ideal self-healing efficiency (up to 90.8% for 6 h) and satisfactory temperature-responsive shape memory effect (shape recovery rates up to 96.9%). Furthermore, it ensured recyclability. These favorable properties are mainly ascribed to the effective dissipation of strain energy due to the disassembly and reconfiguration of supramolecular nodes (i.e., quadruple hydrogen bonds (H-bonds) between UPy units), as well as the covalent cross-linking nodes that maintain the integrity of the polymer network structure. Thus, our work provides a universal strategy that breaks through the traditional contradictions and paves the way for the commercialization of high-performance multifunctional PU elastomers.
Collapse
Affiliation(s)
- Tianze Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mingchao Shao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Xu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianming Li
- Petro China Lubricating Oil R&D Institute, Lanzhou 730060, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Zhang Q, Yang J, Cao P, Gong J, Tang Z, Zhou K, Luo H, Zhang X, Wang T, Chen S, Pei X, Wang Q, Zhang Y. Strengthening-Durable Trade-Off and Self-Healing, Recyclable Shape Memory Polyurethanes Enabled by Dynamic Boron-Urethane Bonds. Macromol Rapid Commun 2024; 45:e2400277. [PMID: 38771626 DOI: 10.1002/marc.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Addressing the demand for integrating strength and durability reinforcement in shape memory polyurethane (SMPU) for diverse applications remains a significant challenge. Here a series of SMPUs with ultra-high strength, self-healing and recyclability, and excellent shape memory properties through introducing dynamic boron-urethane bonds are synthesized. The introducing of boric acid (BA) to polyurethane leading to the formation of dynamic covalent bonds (DCB) boron-urethane, that confer a robust cross-linking structure on the SMPUs led to the formation of ordered stable hydrogen-bonding network within the SMPUs. The flexible crosslinking with DCB represents a novel strategy for balancing the trade-off between strength and durability, with their strengths reaching up to 82.2 MPa while also addressing the issue of durability in prolonged usage through the provision of self-healing and recyclability. The self-healing and recyclability of SMPU are demonstrated through rapid dynamic exchange reaction of boron-urethane bonds, systematically investigated by dynamic mechanical analysis (DMA). This study sheds light on the essential role of such PU with self-healing and recyclability, contributing to the extension of the PU's service life. The findings of this work provide a general strategy for overcoming traditional trade-offs in preparing SMPUs with both high strength and good durability.
Collapse
Affiliation(s)
- Qingxiang Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
| | - Jing Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 265500, P. R. China
| | - Pengrui Cao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Junhui Gong
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhangzhang Tang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Kai Zhou
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
| | - Heming Luo
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Shoubing Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xianqiang Pei
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, P. R. China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 265500, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
8
|
Lu K, Folkersma R, Voet VSD, Loos K. Effects of the Amylose/Amylopectin Ratio of Starch on Borax-Crosslinked Hydrogels. Polymers (Basel) 2024; 16:2237. [PMID: 39204457 PMCID: PMC11360700 DOI: 10.3390/polym16162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herein, we simultaneously prepared borax-crosslinked starch-based hydrogels with enhanced mechanical properties and self-healing ability via a simple one-pot method. The focus of this work is to study the effects of the amylose/amylopectin ratio of starch on the grafting reactions and the performance of the resulting borax-crosslinked hydrogels. An increase in the amylose/ amylopectin ratio increased the gel fraction and grafting ratio but decreased the swelling ratio and pore diameter. Compared with hydrogels prepared from low-amylose starches, hydrogels prepared from high-amylose starches showed pronouncedly increased network strength, and the maximum storage modulus increased by 8.54 times because unbranched amylose offered more hydroxyl groups to form dynamic borate ester bonds with borate ions and intermolecular hydrogen bonds, leading to an enhanced crosslink density. In addition, all the hydrogels exhibited a uniformly interconnected network structure. Furthermore, owing to the dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited excellent recovery behavior under continuous step strain, and it also showed thermal responsiveness.
Collapse
Affiliation(s)
- Kai Lu
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands;
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Rudy Folkersma
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Vincent S. D. Voet
- Circular Plastics, Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL Emmen, The Netherlands;
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands;
| |
Collapse
|
9
|
Li Z, Lu J, Ji T, Xue Y, Zhao L, Zhao K, Jia B, Wang B, Wang J, Zhang S, Jiang Z. Self-Healing Hydrogel Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306350. [PMID: 37987498 DOI: 10.1002/adma.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels have emerged as powerful building blocks to develop various soft bioelectronics because of their tissue-like mechanical properties, superior bio-compatibility, the ability to conduct both electrons and ions, and multiple stimuli-responsiveness. However, hydrogels are vulnerable to mechanical damage, which limits their usage in developing durable hydrogel-based bioelectronics. Self-healing hydrogels aim to endow bioelectronics with the property of repairing specific functions after mechanical failure, thus improving their durability, reliability, and longevity. This review discusses recent advances in self-healing hydrogels, from the self-healing mechanisms, material chemistry, and strategies for multiple properties improvement of hydrogel materials, to the design, fabrication, and applications of various hydrogel-based bioelectronics, including wearable physical and biochemical sensors, supercapacitors, flexible display devices, triboelectric nanogenerators (TENGs), implantable bioelectronics, etc. Furthermore, the persisting challenges hampering the development of self-healing hydrogel bioelectronics and their prospects are proposed. This review is expected to expedite the research and applications of self-healing hydrogels for various self-healing bioelectronics.
Collapse
Affiliation(s)
- Zhikang Li
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jijian Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Ji
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boqing Jia
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxiang Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
10
|
Zhu B, Guo C, Li N, Liu P, Zhang M, Wang L, Xu Z. From Sheep Track to Motorway: Supramolecular-Mediated 2D Nanofluidic Channels for Ultrafast Water Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309253. [PMID: 38126674 DOI: 10.1002/smll.202309253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Atomic thick 2D materials hold great potential as building blocks to construct highly permeable membranes, yet the permeability of laminar 2D material membranes is still limited by their irregularity sheep track-like interlayer channels. Herein, a supramolecular-mediated strategy to induce the regular assembly of high-throughput 2D nanofluidic channels based on host-guest interactions is proposed. Inspired by the characteristics of motorways, supramolecular-mediated ultrathin 2D membranes with broad and continuous regular water transport channels are successfully constructed using graphene oxide (GO) as an example. The prepared membrane achieves an ultrahigh water permeability (369.94 LMH bar-1) more than six times higher than that of the original membranes while maintaining dye rejection above 98.5%, which outperforms the reported 2D membranes. Characterization and simulation results show that the introduction of hyaluronate-grafted β-cyclodextrin not only expands the interlayer channels of GO membranes but also enables the membranes to operate stably under harsh conditions with the help of host-guest interactions. This universal supramolecular assembly strategy provides new opportunities for the preparation of 2D membranes with high separation performance and reliable and stable nanofluidic channels.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Changsheng Guo
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Nan Li
- Tiangong University, Tianjin, 300387, China
| | - Pengbi Liu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Lijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
11
|
Yamamoto T, Taguchi R, Yan Z, Ejima R, Xu L, Nakahata M, Kamon Y, Hashidzume A. Interaction of Cyclodextrins with Amphiphilic Alternating Cooligomers Possessing the Dense Triazole Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7178-7191. [PMID: 38506447 DOI: 10.1021/acs.langmuir.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and βCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.
Collapse
Affiliation(s)
- Tomoaki Yamamoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Zijun Yan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ryo Ejima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Linlin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
13
|
Zhou SW, Zhou D, Gu R, Ma CS, Yu C, Qu DH. Mechanically interlocked [c2]daisy chain backbone enabling advanced shape-memory polymeric materials. Nat Commun 2024; 15:1690. [PMID: 38402228 PMCID: PMC10894290 DOI: 10.1038/s41467-024-45980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function. The mechanically interlocked topology is found to be an essential element for the increase of glass transition temperature and consequent gain of shape memory function. The supramolecular host-guest interactions within the [c2]daisy chain topology not only ensure robust mechanical strength and good network stability of the polymer, but also impart the shape memory polymer with remarkable shape recovery properties and fatigue resistance ability. The incorporation of the [c2]daisy chain unit as a building block has the potential to lay the groundwork for the development of a wide range of shape-memory polymer materials.
Collapse
Affiliation(s)
- Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Danlei Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengyuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
14
|
Wang S, Qiu M, Liu J, Yin T, Wu C, Huang C, Han J, Cheng S, Peng Q, Li Y, Tie C, Wu X, Du S, Xu T. Preshaped 4D Photocurable Ultratough Organogel Microcoils for Personalized Endovascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2308130. [PMID: 37962041 DOI: 10.1002/adma.202308130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Endovascular embolization using microcoils can be an effective technique to treat artery aneurysms. However, microcoils with fixed designs are difficult to adapt to all aneurysm types. In this paper, a photocurable ultratough shape memory organogel with a curing time of only 2 s and megapascal-level mechanical properties is proposed. Then, it is used to manufacture the personalized 4D microcoil with a wire diameter of only 0.3 mm. The improved mechanical modulus (511.63 MPa) can reduce the possibility of microcoils' fracture during embolization. Besides, the fast body-temperature-triggering shape memory ability makes the 4D microcoil applicable in vivo. These 4D microcoils are finally delivered into the rabbit, and successfully blocked the blood flow inside different aneurysms, with neoendothelial cells and collagen fibers growing on the microcoil surface snugly, indicating full aneurysm recovery. This 4D organogel microcoil can potentially be used in personalized clinical translation on human beings.
Collapse
Affiliation(s)
- Shu Wang
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital, Shenzhen University, Shenzhen, 518000, China
| | - Jiancheng Liu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ting Yin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523000, China
| | - Chong Wu
- Department of Neurosurgery, South China Hospital, Shenzhen University, Shenzhen, 518000, China
| | - Chenyang Huang
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jianguo Han
- Department of Neurosurgery, South China Hospital, Shenzhen University, Shenzhen, 518000, China
| | - Si Cheng
- Department of Neurosurgery, South China Hospital, Shenzhen University, Shenzhen, 518000, China
| | - Qianbi Peng
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | | | - Xinyu Wu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
- The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| |
Collapse
|
15
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
16
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
17
|
Ni C, Chen D, Yin Y, Wen X, Chen X, Yang C, Chen G, Sun Z, Wen J, Jiao Y, Wang C, Wang N, Kong X, Deng S, Shen Y, Xiao R, Jin X, Li J, Kong X, Zhao Q, Xie T. Shape memory polymer with programmable recovery onset. Nature 2023; 622:748-753. [PMID: 37704734 DOI: 10.1038/s41586-023-06520-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Stimulus-responsive shape-shifting polymers1-3 have shown unique promise in emerging applications, including soft robotics4-7, medical devices8, aerospace structures9 and flexible electronics10. Their externally triggered shape-shifting behaviour offers on-demand controllability essential for many device applications. Ironically, accessing external triggers (for example, heating or light) under realistic scenarios has become the greatest bottleneck in demanding applications such as implantable medical devices8. Certain shape-shifting polymers rely on naturally present stimuli (for example, human body temperature for implantable devices)8 as triggers. Although they forgo the need for external stimulation, the ability to control recovery onset is also lost. Naturally triggered, yet actively controllable, shape-shifting behaviour is highly desirable but these two attributes are conflicting. Here we achieved this goal with a four-dimensional printable shape memory hydrogel that operates via phase separation, with its shape-shifting kinetics dominated by internal mass diffusion rather than by heat transport used for common shape memory polymers8-11. This hydrogel can undergo shape transformation at natural ambient temperature, critically with a recovery onset delay. This delay is programmable by altering the degree of phase separation during device programming, which offers a unique mechanism for shape-shifting control. Our naturally triggered shape memory polymer with a tunable recovery onset markedly lowers the barrier for device implementation.
Collapse
Affiliation(s)
- Chujun Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Di Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xin Wen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiaolan Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chen Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jihang Wen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chunyang Wang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Wang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Shihong Deng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Abouzeid R, Shayan M, Wu T, Gwon J, Kärki TA, Wu Q. Highly Flexible, Self-Bonding, Self-Healing, and Conductive Soft Pressure Sensors Based on Dicarboxylic Cellulose Nanofiber Hydrogels. ACS APPLIED POLYMER MATERIALS 2023; 5:7009-7021. [PMID: 37705714 PMCID: PMC10496109 DOI: 10.1021/acsapm.3c01024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023]
Abstract
Conductive hydrogels have gained a great deal of interest in the flexible electronics industry because of their remarkable inherent properties. However, a significant challenge remains for balancing hydrogel's conductivity, self-healing, and strength properties. Herein, double network ionic hydrogels were fabricated by concurrently introducing borax into dicarboxylic cellulose nanofiber (DCNFs) and polyacrylamide (PAM) hydrogels. The incorporation of borax provided a superabsorbent feature to the PAM/DCNF hydrogels (without borax) with the equilibrium water absorption rate increased from 552 to 1800% after 42 h. The compressive strength of the prepared hydrogel was 935 kPa compared to 132 kPa for the PAM hydrogel, with high cycling stability (stable after 1000 compression cycles with 50% strain). The hydrogel pressure sensor had a very sensitive response (gauge factor = 1.36) in the strain range from 10 to 80%, which made it possible to detect mechanical motion accurately and reliably. The developed hydrogels with high-performance, environmentally friendly properties are promising for use in future artificial skin and human-machine interface applications.
Collapse
Affiliation(s)
- Ragab Abouzeid
- School
of Renewable Natural Resources, Louisiana
State University, AgCenter, Baton Rouge, Louisiana 70803, United States
- Cellulose
and Paper Department, National Research
Centre, 33 Bohouth St.,
Dokki, Giza 12622, Egypt
| | - Mohammad Shayan
- School
of Renewable Natural Resources, Louisiana
State University, AgCenter, Baton Rouge, Louisiana 70803, United States
| | - Tongyao Wu
- Department
of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jaegyoung Gwon
- Forest
Products Department, National Institute
of Forest Science, 57
Hoegiro, Dongdaemun-gu, Seoul 02455, Korea
| | - Timo A Kärki
- Mechanical
Engineering Department, Lappeenranta−Lahti
University of Technology, Lappeenranta53850 ,Finland
| | - Qinglin Wu
- School
of Renewable Natural Resources, Louisiana
State University, AgCenter, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
19
|
Ma RY, Sun WJ, Xu L, Jia LC, Yan DX, Li ZM. Permanent Shape Reconfiguration and Locally Reversible Actuation of a Carbon Nanotube/Ethylene Vinyl Acetate Copolymer Composite by Constructing a Dynamic Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40954-40962. [PMID: 37584965 DOI: 10.1021/acsami.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Given the rapid developments in modern devices, there is an urgent need for shape-memory polymer composites (SMPCs) in soft robots and other fields. However, it remains a challenge to endow SMPCs with both a reconfigurable permanent shape and a locally reversible shape transformation. Herein, a dynamic cross-linked network was facilely constructed in carbon nanotube/ethylene vinyl acetate copolymer (CNT/EVA) composites by designing the molecular structure of EVA. The CNT/EVA composite with 0.05 wt % CNT realized a steady-state temperature of ∼75 °C under 0.11 W/cm2 light intensity, which gave rise to remote actuation behavior. The dynamic cross-linked network along with a wide melting temperature offered opportunities for chemical and physical programming, thus realizing the achievement of the programmable three-dimensional (3D) structure and locally reversible actuation. Specifically, the CNT/EVA composite exhibited a superior permanent shape reconfiguration by activating the dynamic cross-linked network at 140 °C. The composite also showed a high reversible deformation rate of 11.1%. These features endowed the composites with the capability of transformation to 3D structure as well as locally reversible actuation performance. This work provides an attractive guideline for the future design of SMPCs with sophisticated structures and actuation capability.
Collapse
Affiliation(s)
- Rui-Yu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Jin Sun
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Yang D, Zhang W, Zhu T, Liu X, He L, Meng S, Li Z, Xiong Q. Self-strengthen luminescent hydrogel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122569. [PMID: 36889136 DOI: 10.1016/j.saa.2023.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
For typical synthetic materials, continue mechanical loading usually cause damage and even failure, because they are closed systems, without substance exchange with surroundings and structural reconstruction after damage. Double-network (DN) hydrogels have recently been demonstrated to generate radicals under mechanical loading. In this work, DN hydrogel provided with sustained monomer and lanthanide complex supply undergo self-growth, and thus simultaneous self-strengthen in both mechanical performance and luminescence intensity are realized through bond rupture-initiated mechanoradical polymerization. This strategy proves the feasibility of imparting desired functions to the DN hydrogel by mechanical stamping, and provides a new strategy for the design of luminescent soft materials with high fatigue resistance.
Collapse
Affiliation(s)
- Daqing Yang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Wenyu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Tiyun Zhu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Xiao Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Liang He
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Shuai Meng
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
21
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
22
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
23
|
Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L. Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206978. [PMID: 36999829 DOI: 10.1002/advs.202206978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Solid polymer electrolytes (SPEs) are still being considered as a candidate to replace liquid electrolytes for high-safety and flexible lithium batteries due to their superiorities including light-weight, good flexibility, and shape versatility. However, inefficient ion transportation of linear polymer electrolytes is still the biggest challenge. To improve ion transport capacity, developing novel polymer electrolytes are supposed to be an effective strategy. Nonlinear topological structures such as hyperbranched, star-shaped, comb-like, and brush-like types have highly branched features. Compared with linear polymer electrolytes, topological polymer electrolytes possess more functional groups, lower crystallization, glass transition temperature, and better solubility. Especially, a large number of functional groups are beneficial to dissociation of lithium salt for improving the ion conductivity. Furthermore, topological polymers have strong design ability to meet the requirements of comprehensive performances of SPEs. In this review, the recent development in topological polymer electrolytes is summarized and their design thought is analyzed. Outlooks are also provided for the development of future SPEs. It is expected that this review can raise a strong interest in the structural design of advanced polymer electrolyte, which can give inspirations for future research on novel SPEs and promote the development of next-generation high-safety flexible energy storage devices.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghui Zeng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenfeng Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anqi Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiazhu Guan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Wang
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Liaoyun Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Zhang L, Dai W, Gao C, Wei W, Huang R, Zhang X, Yu Y, Yang X, Cai Q. Multileveled Hierarchical Hydrogel with Continuous Biophysical and Biochemical Gradients for Enhanced Repair of Full-Thickness Osteochondral Defect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209565. [PMID: 36870325 DOI: 10.1002/adma.202209565] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Indexed: 05/12/2023]
Abstract
The repair of hierarchical osteochondral defect requires sophisticated gradient reestablishment; however, few strategies for continuous gradient casting consider the relevance to clinical practice regarding cell adaptability, multiple gradient elements, and precise gradient mirroring native tissue. Here, a hydrogel with continuous gradients in nano-hydroxyapatite (HA) content, mechanical, and magnetism is developed using synthesized superparamagnetic HA nanorods (MagHA) that easily respond to a brief magnetic field. To precisely reconstruct osteochondral tissue, the optimized gradient mode is calculated according to magnetic resonance imaging (MRI) of healthy rabbit knees. Then, MagHA are patterned to form continuous biophysical and biochemical gradients, consequently generating incremental HA, mechanical, and electromagnetic cues under an external magnetic stimulus. To make such depth-dependent biocues work, an adaptable hydrogel is developed to facilitate cell infiltration. Furthermore, this approach is applied in rabbit full-thickness osteochondral defects equipped with a local magnetic field. Surprisingly, this multileveled gradient composite hydrogel repairs osteochondral unit in a perfect heterogeneous feature, which mimics the gradual cartilage-to-subchondral transition. Collectively, this is the first study that combines an adaptable hydrogel with magneto-driven MagHA gradients to achieve promising outcomes in osteochondral regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenli Dai
- Peking University Third Hospital, Beijing, 100191, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruiran Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
25
|
Liu X, Zhang Y, Liu Y, Hua S, Meng F, Ma Q, Kong L, Pan S, Che Y. Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings. Int J Biol Macromol 2023; 240:124365. [PMID: 37030460 DOI: 10.1016/j.ijbiomac.2023.124365] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Wound dressing with an improved structural and functional recapitulation of damaged organs, efficient self-healing and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Supramolecular hydrogels confer control over structural properties in a reversible, dynamic and biomimetic fashion. Herein, a kind of injectable, self-healing and antibacterial supramolecular hydrogel with multi-responses were fabricated by mixing phenylazo-terminated Pluronic F127, quaternized chitosan-graft-cyclodextrin and polydopamine coated tunicate cellulose nanocrystals under physiological conditions. By exploiting the photoisomerization of azobenzene under different wavelengths, a supramolecular hydrogel featuring a changing crosslink density of network was obtained. The corporation of polydopamine coated tunicate cellulose nanocrystals strengthens the hydrogel network with Schiff base bonds and hydrogen bonds, which avoids complete gel-sol transition. The inherent antibacterial property, drug release behavior, self-healing ability, hemostatic performance and biocompatibility were investigated to confirm superiority in wound healing. Moreover, the curcumin loaded hydrogel (Cur-hydrogel) showed multi-responsive release profiles (light, pH, and temperature). A full-thickness skin defect model was built to confirm that Cur-hydrogels significantly accelerated wound healing rate with better granulation tissue thickness and collagen disposition. Overall, the novel photo-responsive hydrogel with coherent antibacterial property has great potential in the healthcare of wound healing.
Collapse
Affiliation(s)
- Xiaonan Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yijie Liu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Fanjun Meng
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Qinglin Ma
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
26
|
Nie L, Wei Q, Li J, Deng Y, He X, Gao X, Ma X, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Jing S. Fabrication and desired properties of conductive hydrogel dressings for wound healing. RSC Adv 2023; 13:8502-8522. [PMID: 36926300 PMCID: PMC10012873 DOI: 10.1039/d2ra07195a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conductive hydrogels are platforms recognized as constituting promising materials for tissue engineering applications. This is because such conductive hydrogels are characterized by the inherent conductivity properties while retaining favorable biocompatibility and mechanical properties. These conductive hydrogels can be particularly useful in enhancing wound healing since their favorable conductivity can promote the transport of essential ions for wound healing via the imposition of a so-called transepithelial potential. Other valuable properties of these conductive hydrogels, such as wound monitoring, stimuli-response etc., are also discussed in this study. Crucially, the properties of conductive hydrogels, such as 3D printability and monitoring properties, suggest the possibility of its use as an alternative wound dressing to traditional dressings such as bandages. This review, therefore, seeks to comprehensively explore the functionality of conductive hydrogels in wound healing, types of conductive hydrogels and their preparation strategies and crucial properties of hydrogels. This review will also assess the limitations of conductive hydrogels and future perspectives, with an emphasis on the development trend for conductive hydrogel uses in wound dressing fabrication for subsequent clinical applications.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Qianqian Wei
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Yaling Deng
- College of Intelligent Science and Control Engineering, Jinling Institute of Technology Nanjing 211169 P.R. China
| | - Xiaorui He
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xinyue Gao
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Xiao Ma
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt 50 - CP 165/61 1050 Brussels Belgium
| | - Shengli Jing
- College of Life Sciences, Xinyang Normal University Xinyang 464000 China +86-13600621068
| |
Collapse
|
27
|
Cui X, Jiang N, Shao J, Zhang H, Yang Y, Tang P. Linear and Nonlinear Viscoelasticities of Dissociative and Associative Covalent Adaptable Networks: Discrepancies and Limits. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Nuofei Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Jingyu Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| |
Collapse
|
28
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
29
|
Fan X, Liu X, Liu F, Gu H. Thermo/β-cyclodextrin-responsive ferrocenyl hydrogels constructed by ROMP reaction. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Sun Z, Lyu F, Wu S, Lu Z, Cheng H. Ultrafast construction of partially hydrogen-bonded metal-hyaluronan networks with multiple biotissue-related features. Carbohydr Polym 2022; 295:119852. [DOI: 10.1016/j.carbpol.2022.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
|
31
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
32
|
Gong Y, Yao M, Nie J, He Y. Healing Strategy Based on Space Adjustment for Cross-Linked Polymer Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12229-12234. [PMID: 36178935 DOI: 10.1021/acs.langmuir.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Healable materials are notable for their ability to recover from mechanical damage. Most methods for preparing cross-linked healable materials require the introduction of healing agents or supramolecular interactions in solvent environments. Hence, a strategy without the addition of functional component remains a key challenge. Herein, a healing strategy based on space adjustment is proposed with cross-linked poly(octadecyl acrylate) as a model, and this strategy demonstrates that the predesigned holes in cross-linked networks can supply the possibility for polymer coils to move and decrease the space density of the networks during the annealing process. As a result, the motilities of coils are enhanced, which allows them to easily penetrate and entangle in fracture sites. In contrast with the untreated cross-linked poly(octadecyl acrylate), which cannot heal, the space-adjusted poly(octadecyl acrylate) readily heals, and the highest healing efficiency is 96%. The ways in which the extent of space adjustment and the content of the cross-linking agent affect the healing efficiency are discussed, and the mechanism of the space adjustment strategy is studied through rheology research. This strategy concentrates on adjusting the spatial density of the network without the need for any functional design, which may be applied in various polymer systems.
Collapse
Affiliation(s)
- Yawen Gong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Miao Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213164, PR China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu 213164, PR China
| |
Collapse
|
33
|
Konishi S, Park J, Urakawa O, Osaki M, Yamaguchi H, Harada A, Inoue T, Matsuba G, Takashima Y. Multi-energy dissipation mechanisms in supramolecular hydrogels with fast and slow relaxation modes. SOFT MATTER 2022; 18:7369-7379. [PMID: 36124981 DOI: 10.1039/d2sm00735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reversible cross-links by non-covalent bonds have been widely used to produce supramolecular hydrogels that are both tough and functional. While various supramolecular hydrogels with several kinds of reversible cross-links have been designed for many years, a universal design that would allow control of mechanical and functional properties remains unavailable. The physical properties of reversible cross-links are usually quantified by thermodynamics, dynamics, and bond energies. Herein, we investigated the relationship between the molecular mobility and mechanical toughness of supramolecular hydrogels consisting of two kinetically distinct reversible cross-links via host-guest interactions. The molecular mobility was quantified as the second-order average relaxation time (〈τ〉w) of the reversible cross-links. We discovered that hydrogels combining fast (〈τ〉w = 1.8 or 18 s) and slowly (〈τ〉w = 6.6 × 103 or 9.5 × 103 s) reversible cross-links showed increased toughness compared to hydrogels with only one type of cross-link because relaxation processes in the former occurred with wide timescales.
Collapse
Affiliation(s)
- Subaru Konishi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Zeng F, Ning J, Yang Y, Tian C, Huang L, Zhao F, Liu Q, Cui M, Lv J, Jiang Y, Cai X, Kong W. A Photohealable Polyurethane with Superior Robustness and Healing Ratio. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fanhao Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jingyi Ning
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yunyun Yang
- Key Laboratory of Civil Aircraft Fire Science and Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Chong Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fuqi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meiling Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiahao Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yunfeng Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xufu Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weibo Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Wu S, Guo J, Wang Y, Xie H, Zhou S. Cryopolymerized Polyampholyte Gel with Antidehydration, Self-Healing, and Shape-Memory Properties for Sustainable and Tunable Sensing Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42317-42327. [PMID: 36067465 DOI: 10.1021/acsami.2c13223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based wearable flexible electronics are attracting tremendous interest for use in human healthcare. However, many of the existing hydrogel electronics are often susceptible to dehydration, leading to weakened stretchability and inaccurate signal extraction. Besides, hydrogels are desired to be much smarter for self-repairing physical damage and enabling performance manipulation. Herein, we develop a kind of cryopolymerized polyampholyte gels with the multifunctionality of antidehydration, self-healing, and shape-memory for wearable sensing electronics. The antidehydration property is enabled by the incorporation of glycerol, endowing the sensing electronics with excellent stretchability and strain-sensing performance in long-term monitoring. The ionic bonds in the polyampholyte gel possess a dynamic feature regulated by alternant NaCl(aq) and H2O treatments, laying the foundation for self-healing and shape-memory. As a result, the sensing electronics can automatically repair physical damages without any sacrifice in sensing performance, after healing both conductivity and strain-sensing performance could return to the initial levels. The shape-memory function enables the temporal adjustment of the initial state of the sensing electronics; both the conductivity and sensing performance, for instance, signal intensity, can be manually manipulated. In all, the cryopolymerized polyampholyte gels with antidehydration, self-healing, and shape-memory properties can be an inspiration to develop sustainable and tunable gel-based electronics for human motion monitoring.
Collapse
Affiliation(s)
- Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yilei Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hui Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
36
|
Slawinski M, Kaeek M, Rajmiel Y, Khoury LR. Acetic Acid Enables Precise Tailoring of the Mechanical Behavior of Protein-Based Hydrogels. NANO LETTERS 2022; 22:6942-6950. [PMID: 36018622 PMCID: PMC9479135 DOI: 10.1021/acs.nanolett.2c01558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Engineering viscoelastic and biocompatible materials with tailored mechanical and microstructure properties capable of mimicking the biological stiffness (<17 kPa) or serving as bioimplants will bring protein-based hydrogels to the forefront in the biomaterials field. Here, we introduce a method that uses different concentrations of acetic acid (AA) to control the covalent tyrosine-tyrosine cross-linking interactions at the nanoscale level during protein-based hydrogel synthesis and manipulates their mechanical and microstructure properties without affecting protein concentration and (un)folding nanomechanics. We demonstrated this approach by adding AA as a precursor to the preparation buffer of a photoactivated protein-based hydrogel mixture. This strategy allowed us to synthesize hydrogels made from bovine serum albumin (BSA) and eight repeats protein L structure, with a fine-tailored wide range of stiffness (2-35 kPa). Together with protein engineering technologies, this method will open new routes in developing and investigating tunable protein-based hydrogels and extend their application toward new horizons.
Collapse
Affiliation(s)
- Marina Slawinski
- Department
of Physics, University of Wisconsin—Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Maria Kaeek
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Yair Rajmiel
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Luai R. Khoury
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
37
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
38
|
Jin C, Park J, Shirakawa H, Osaki M, Ikemoto Y, Yamaguchi H, Takahashi H, Ohashi Y, Harada A, Matsuba G, Takashima Y. Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. SOFT MATTER 2022; 18:5027-5036. [PMID: 35695164 DOI: 10.1039/d2sm00408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyurethane (PU) materials with movable crosslinking were prepared by a typical two-step synthetic process using an acetylated γ-cyclodextrin (TAcγCD) diol compound. The soft segment of PU is polytetrahydrofuran (PTHF), and the hard segment consists of hexamethylene diisocyanate (HDI) and 1,3-propylene glycol (POD). The synthesized PU materials exhibited the typical mechanical characteristics of a movable crosslinking network, and the presence of hydrogen bonds from the urethane bonds resulted in a synergistic effect. Two kinds of noncovalent bond crosslinking increased the Young's modulus of the material without affecting its toughness. Fourier transform infrared spectroscopy and X-ray scattering measurements were performed to analyze the effect of introducing movable crosslinking on the internal hydrogen bond and the microphase separation structure of PU, and the results showed that the carbonyl groups on TAcγCD could form hydrogen bonds with the PU chains and that the introduction of movable crosslinking weakened the hydrogen bonds between the hard segments of PU. When stretched, the movable crosslinking of the PU materials suppressed the orientation of polymer chains (shish-kebab orientation) in the tensile direction. The mechanical properties of the movable crosslinked PU materials show promise for future application in the industrial field.
Collapse
Affiliation(s)
- Changming Jin
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hidenori Shirakawa
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute (SPring-8) Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Takahashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Yasumasa Ohashi
- Kanagawa Technical Center, Yushiro Chemical Industry Co., Ltd., 1580 Tabata, Samukawa, Koza, Kanagawa, 253-0193, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
39
|
Hirao T, Haino T. Supramolecular Ensembles Formed via Calix[5]arene-Fullerene Host-Guest Interactions. Chem Asian J 2022; 17:e202200344. [PMID: 35647739 DOI: 10.1002/asia.202200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
This minireview introduces the research directions for the synthesis of supramolecular fullerene polymers. First, the discovery of host-guest complexes of pristine fullerenes is briefed. We focus on progress in supramolecular fullerene polymers directed by the use of calix[5]arene-fullerene interactions, which comprise linear, networked, helical arrays of fullerenes in supramolecular ensembles. The unique self-sorting behavior of right-handed and left-handed helical supramolecular fullerene arrays is discussed. Thereafter, an extensive investigation of the calix[5]arene-fullerene interaction for control over the chain structures of covalent polymers is introduced.
Collapse
Affiliation(s)
- Takehiro Hirao
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Department of Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| |
Collapse
|
40
|
Quan L, Xin Y, Wu X, Ao Q. Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers (Basel) 2022; 14:2184. [PMID: 35683857 PMCID: PMC9183126 DOI: 10.3390/polym14112184] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/26/2022] Open
Abstract
Self-healing hydrogels and traditional hydrogels both have three-dimensional polymeric networks that are capable of absorbing and retaining a large amount of water. Self-healing hydrogels can heal and restore damage automatically, and they can avoid premature failure of hydrogels caused by mechanical damage after implantation. The formation mechanism of self-healing hydrogels and the factors that hydrogels can load are various. Researchers can design hydrogels to meet the needs of different tissues through the diversity of hydrogels Therefore, it is necessary to summarize different self-healing mechanisms and different factors to achieve different functions. Here, we briefly reviewed the hydrogels designed by researchers in recent years according to the self-healing mechanism of water coagulation. Then, the factors for different functions of self-healing hydrogels in different tissues were statistically analyzed. We hope our work can provide effective support for researchers in the design process of self-healing hydrogel.
Collapse
Affiliation(s)
| | | | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (L.Q.); (Y.X.); (X.W.)
| |
Collapse
|
41
|
Huang X, Li R, Duan Z, Xu F, Li H. Supramolecular polymer gels: from construction methods to functionality. SOFT MATTER 2022; 18:3828-3844. [PMID: 35506880 DOI: 10.1039/d2sm00352j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular polymer gels (SPGs) are precisely designed gels brought together by noncovalent interactions to form three-dimensional network structures of polymers. SPGs combine the merits of supramolecular polymers and gels, such as stimuli-responsiveness, self-healing, and self-adaptation, which endows SPGs with potential application value in the fields of biomaterials, etc. Recently, much effort has been made to design new SPGs and related materials with high performance. Herein, we review the research endeavor and future directions of SPGs depending on the construction methods, topological structures, stimuli-responsiveness, and functionality. We hope that the review will provide reference values for the researchers working in supramolecular chemistry and gels.
Collapse
Affiliation(s)
- Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Riqiang Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Zhaozhao Duan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Fenfen Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
42
|
Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 2022; 283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
43
|
Intrinsic healable mechanochromic materials via incorporation of spiropyran mechanophore into polymer main chain. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Panwar A, Sk MM, Lee BH, Tan LP. Synthesis and fabrication of gelatin-based elastomeric hydrogels through cosolvent-induced polymer restructuring. RSC Adv 2022; 12:7922-7934. [PMID: 35424739 PMCID: PMC8982264 DOI: 10.1039/d1ra09084d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Hydrogels have a wide range of applications in tissue engineering, drug delivery, device fabrication for biological studies and stretchable electronics. For biomedical applications, natural polymeric hydrogels have general advantages such as biodegradability and non-toxic by products as well as biocompatibility. However, applications of nature derived hydrogels have been severely limited by their poor mechanical properties. For example, most of the protein derived hydrogels do not exhibit high stretchability like methacrylated gelatin hydrogel has ∼11% failure strain when stretched. Moreover, protein derived elastomeric hydrogels that are fabricated from low molecular weight synthetic peptides require a laborious process of synthesis and purification. Biopolymers like gelatin, produced in bulk for pharma and the food industry can provide an alternative for the development of elastomeric hydrogels. Here, we report the synthesis of ureidopyrimidinone (Upy) functionalized gelatin and its fabrication into soft elastomeric hydrogels through supramolecular interactions that could exhibit high failure strain (318.73 ± 44.35%). The hydrogels were fabricated through a novel method involving co-solvent optimization and structural transformation with 70% water content. It is anticipated that the hydrogel fabrication method involves the formation of hydrophobic cores of ureidopyrimidinone groups inside the hydrogel which introduced elastomeric properties to the resulting hydrogel.
Collapse
Affiliation(s)
- Amit Panwar
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| | - Md Moniruzzaman Sk
- School of Materials Science & Engineering, Nanyang Technological University Singapore
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences China
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| |
Collapse
|
45
|
Liu C, Li Q, Wang H, Wang G, Shen H. Quantum Dots-Loaded Self-Healing Gels for Versatile Fluorescent Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:452. [PMID: 35159795 PMCID: PMC8838015 DOI: 10.3390/nano12030452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
From the perspective of applied science, methods that allow the simple construction of versatile quantum dots (QDs)-loaded gels are highly desirable. In this work, we report the self-healing assembly methods for various fluorescent QDs-loaded gels. Firstly, we employed horizontal frontal polymerization (FP) to fabricate self-healing gels within several minutes using a rapid and energy-saving means of preparation. The as-prepared gels showed pH sensitivity, satisfactory mechanical properties and excellent self-healing properties and the healing efficiency reached 90%. The integration of the QDs with the gels allowed the generation of fluorescent composites, which were successfully applied to an LED device. In addition, by using the self-healing QDs-loaded gels as building blocks, the self-healing assembly method was used to construct complex structures with different fluorescence, which could then be used for sensing and encoding. This work offers a new perspective on constructing various fluorescent assemblies by self-healing assembly, and it might stimulate the future application of self-healing gels in a self-healing assembly fashion.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (Q.L.); (H.W.)
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (Q.L.); (H.W.)
| | - Haopeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (Q.L.); (H.W.)
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Haixia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; (C.L.); (Q.L.); (H.W.)
| |
Collapse
|
46
|
Jiao C, Obst F, Geisler M, Che Y, Richter A, Appelhans D, Gaitzsch J, Voit B. Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics. Polymers (Basel) 2022; 14:267. [PMID: 35054674 PMCID: PMC8780672 DOI: 10.3390/polym14020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Stimuli-responsive hydrogels have a wide range of potential applications in microfluidics, which has drawn great attention. Double cross-linked hydrogels are very well suited for this application as they offer both stability and the required responsive behavior. Here, we report the integration of poly(N-isopropylacrylamide) (PNiPAAm) hydrogel with a permanent cross-linker (N,N'-methylenebisacrylamide, BIS) and a redox responsive reversible cross-linker (N,N'-bis(acryloyl)cystamine, BAC) into a microfluidic device through photopolymerization. Cleavage and re-formation of disulfide bonds introduced by BAC changed the cross-linking densities of the hydrogel dots, making them swell or shrink. Rheological measurements allowed for selecting hydrogels that withstand long-term shear forces present in microfluidic devices under continuous flow. Once implemented, the thiol-disulfide exchange allowed the hydrogel dots to successfully capture and release the protein bovine serum albumin (BSA). BSA was labeled with rhodamine B and functionalized with 2-(2-pyridyldithio)-ethylamine (PDA) to introduce disulfide bonds. The reversible capture and release of the protein reached an efficiency of 83.6% in release rate and could be repeated over 3 cycles within the microfluidic device. These results demonstrate that our redox-responsive hydrogel dots enable the dynamic capture and release of various different functionalized (macro)molecules (e.g., proteins and drugs) and have a great potential to be integrated into a lab-on-a-chip device for detection and/or delivery.
Collapse
Affiliation(s)
- Chen Jiao
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
- Organische Chemie der Polymere, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Franziska Obst
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, Nöthnitzer Straße 64, 01187 Dresden, Germany; (F.O.); (A.R.)
| | - Martin Geisler
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Yunjiao Che
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Andreas Richter
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, Nöthnitzer Straße 64, 01187 Dresden, Germany; (F.O.); (A.R.)
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (C.J.); (M.G.); (Y.C.); (D.A.)
- Organische Chemie der Polymere, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
47
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
48
|
Liu D, Yin G, Le X, Chen T. Supramolecular topological hydrogels: from material design to applications. Polym Chem 2022. [DOI: 10.1039/d2py00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular topological hydrogels are constructed by introducing different dynamic topological structures into polymeric networks and thus exhibit a wide variety of stimuli-responsive properties and versatile applications.
Collapse
Affiliation(s)
- Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
49
|
Li YK, Tan YH, Tang YZ, Fan XW, Wang SF, Ying TT, Zhang H. Unusual high-temperature host–guest inclusion compound-based ferroelectrics with nonlinear optical switching and large spontaneous polarization behaviours. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01020h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host–guest inclusion compound-based ferroelectrics [Hcta-(18-crown-6)]+[BF4]− (1) and [Hcta-(18-crown-6)]+[ClO4]− (2) with a high Curie temperature (Tc = 403/394 K) and large spontaneous polarization (Ps = 5.7/4.7 μC cm−2) are reported.
Collapse
Affiliation(s)
- Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiao-Wei Fan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Su-Fen Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
50
|
Park J, Nagamachi T, Aoyama T, Hanada K, Harada A, Sera M, Takashima Y. Additional crystalline structures of syndiotactic polystyrene composites with acetylated cyclodextrin. Polym Chem 2022. [DOI: 10.1039/d2py00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of acetylated cyclodextrin to syndiotactic polystyrene forms additional crystalline structures based on molecular recognition.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Nagamachi
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Takuma Aoyama
- Performance Materials Laboratories, Idemitsu Kosan Co., Ltd, 1-1 Anesaki-Kaigan, Ichihara, Chiba 299-0193, Japan
| | - Kazuto Hanada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masanori Sera
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Project Research Centre for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|