1
|
Li Y, Zhao XM, Chen SQ, Zhang ZY, Fu QS, Chen SM, Chen S, Wu J, Xu KW, Su LQ, Yan ZF. Metabolic engineering of Escherichia coli for upcycling of polyethylene terephthalate waste to vanillin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177544. [PMID: 39549754 DOI: 10.1016/j.scitotenv.2024.177544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Polyethylene terephthalate (PET) waste presents a significant environmental challenge due to its durability and resistance to degradation. Innovative approaches for upcycling PET waste into high-value chemicals can mitigate these issues while contributing to a circular economy. In this study, we developed a multi-enzyme cascade system in E. coli to convert PET-derived monomer terephthalic acid (TPA) into vanillin (VAN). The metabolic engineering approach was then employed to increase VAN production, including 1) inhibition of VAN degradation by knocking out endogenous aldehyde reductases and alcohol dehydrogenases and 2) enhancement of TPA uptake by modifying membrane proteins to increase cell permeability. The engineered E. coli demonstrated a VAN production of 658.55 mg/L from 1992 mg/L of TPA with a molar conversion rate of 71.1 %, representing the highest production of VAN using TPA as the substrate. Additionally, the engineered E. coli effectively converted post-consumer PET waste into VAN under mild conditions, with the highest production of 259.2 mg/L in 20× diluted PET hydrolysates, highlighting its potential for application in PET waste upcycling. This approach not only provides an environmentally friendly alternative to traditional chemical synthesis but also offers substantial economic benefits by transforming low-value waste into high-value chemicals.
Collapse
Affiliation(s)
- Yang Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiao-Min Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Si-Qi Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhao-Yuan Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qi-Sheng Fu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shu-Min Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ke-Wei Xu
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC, Beijing 100083, China
| | - Ling-Qia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Gao CY, Yang GY, Ding XW, Xu JH, Cheng X, Zheng GW, Chen Q. Engineering of Halide Methyltransferase BxHMT through Dynamic Cross-Correlation Network Analysis. Angew Chem Int Ed Engl 2024; 63:e202401235. [PMID: 38623716 DOI: 10.1002/anie.202401235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.
Collapse
Affiliation(s)
- Chun-Yu Gao
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Gui-Ying Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu-Wei Ding
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Gao Y, Li F, Luo Z, Deng Z, Zhang Y, Yuan Z, Liu C, Rao Y. Modular assembly of an artificially concise biocatalytic cascade for the manufacture of phenethylisoquinoline alkaloids. Nat Commun 2024; 15:30. [PMID: 38167860 PMCID: PMC10761944 DOI: 10.1038/s41467-023-44420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-derived alkaloids are an important class of pharmaceuticals. However, they still rely on phytoextraction to meet their diverse market demands. Since multistep biocatalytic cascades have begun to revolutionize the manufacture of natural or unnatural products, to address the synthetic challenges of alkaloids, herein we establish an artificially concise four-enzyme biocatalytic cascade with avoiding plant-derived P450 modification for synthesizing phenethylisoquinoline alkaloids (PEIAs) after enzyme discovery and enzyme engineering. Efficient biosynthesis of diverse natural and unnatural PEIAs is realized from readily available substrates. Most importantly, the scale-up preparation of the colchicine precursor (S)-autumnaline with a high titer is achieved after replacing the rate-limiting O-methylation by the plug-and-play strategy. This study not only streamlines future engineering endeavors for colchicine biosynthesis, but also provides a paradigm for constructing more artificial biocatalytic cascades for the manufacture of diverse alkaloids through synthetic biology.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Fei Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
4
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Erguven M, Cornelissen NV, Peters A, Karaca E, Rentmeister A. Enzymatic Generation of Double-Modified AdoMet Analogues and Their Application in Cascade Reactions with Different Methyltransferases. Chembiochem 2022; 23:e202200511. [PMID: 36288101 PMCID: PMC10100234 DOI: 10.1002/cbic.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Indexed: 01/25/2023]
Abstract
Methyltransferases (MTases) have become an important tool for site-specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S-adenosyl-l-methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures. AdoMet analogues with additional modifications at the nucleoside moiety bear potential for acceptance by specific MTases. Here, we explored the generation of double-modified AdoMets by an engineered Methanocaldococcus jannaschii MAT (PC-MjMAT), using 19 ATP analogues in combination with two methionine analogues. This substrate screening was extended to cascade reactions and to MTase competition assays. Our results show that MTase targeting selectivity can be improved by using bulky substituents at the N6 of adenine. The facile access to >10 new AdoMet analogues provides the groundwork for developing MAT-MTase cascades for orthogonal biomolecular labelling.
Collapse
Affiliation(s)
- Mehmet Erguven
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Nicolas V. Cornelissen
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
| | - Aileen Peters
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center35330IzmirTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University, 35340 Izmir (Turkey)
| | - Andrea Rentmeister
- Department of Chemistry and PharmacyInstitute of BiochemistryUniversity of MünsterCorrensstr. 36, 48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
6
|
Nagasaka K, Watanabe S, Ito S, Ichimaru H, Nishiguchi A, Otsuka H, Taguchi T. Enhanced burst strength of catechol groups-modified Alaska pollock-derived gelatin-based surgical adhesive. Colloids Surf B Biointerfaces 2022; 220:112946. [DOI: 10.1016/j.colsurfb.2022.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
7
|
Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA. Altering the Regiospecificity of a Catechol
O
‐methyltransferase through Rational Design: Vanilloid vs. Isovanilloid Motifs in the B‐ring of Flavonoids. ChemCatChem 2022. [DOI: 10.1002/cctc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Dippe
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Benjamin Weigel
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ramona Heinke
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| |
Collapse
|
8
|
Cruz-Vicente P, Gonçalves AM, Barroca-Ferreira J, Silvestre SM, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA. Unveiling the biopathway for the design of novel COMT inhibitors. Drug Discov Today 2022; 27:103328. [PMID: 35907613 DOI: 10.1016/j.drudis.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Ana M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Samuel M Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria J Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luis A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
10
|
Kim HS, Choi JA, Kim BY, Ferrer L, Choi JM, Wendisch VF, Lee JH. Engineered Corynebacterium glutamicum as the Platform for the Production of Aromatic Aldehydes. Front Bioeng Biotechnol 2022; 10:880277. [PMID: 35646884 PMCID: PMC9133326 DOI: 10.3389/fbioe.2022.880277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Aromatic aldehydes, including 4-hydroxybenzaldehyde (4-HB aldehyde), protocatechuic (PC) aldehyde, and vanillin, are used as important flavors, fragrances, and pharmaceutical precursors and have several biological and therapeutic effects. Production of aromatic aldehydes in microbial hosts poses a challenge due to its rapid and endogenous reduction to alcohols. To address this hurdle, prospecting of the genome of Corynebacterium glutamicum yielded 27 candidate proteins that were used in comprehensive screening with a 4-hydroxybenzyl (4-HB) alcohol–producing strain. We identified that NCgl0324 has aromatic aldehyde reductase activity and contributed to 4-HB aldehyde reduction in vivo since the NCgl0324 deletion strain HB-Δ0324 produced 1.36 g/L of 4-HB aldehyde, that is, about 188% more than its parental strain. To demonstrate that NCgl0324 knockout can also improve production of PC aldehyde and vanillin, first, a basal MA303 strain that produces protocatechuate was engineered from 4-hydroxybenzoate-synthesizing C. glutamicum APS963, followed by deletion of NCgl0324 to generate PV-Δ0324. The PC aldehyde/alcohol or vanillin/vanillyl alcohol biosynthetic pathways, respectively, were able to be expanded from protocatechuate upon introduction of carboxylic acid reductase (CAR) and catechol O-methyltransferase encoded by a mutated comtm gene. In shake flask culture, the resulting NCgl0324 deletion strains PV-IΔ0324 and PV-IYΔ0324 were shown to produce 1.18 g/L PC aldehyde and 0.31 g/L vanillin, respectively. Thus, modulation of the identified NCgl0324 gene was shown to have the potential to boost production of valuable aromatic aldehydes and alcohols.
Collapse
Affiliation(s)
- Hyun-Song Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, South Korea
| | - Jung-A Choi
- Department of Food Science and Biotechnology, Kyungsung University, Busan, South Korea
| | - Bu-Yeon Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, South Korea
| | - Lenny Ferrer
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jung-Min Choi
- Department of Food Science and Biotechnology, Kyungsung University, Busan, South Korea
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Department of Food Science and Biotechnology, Kyungsung University, Busan, South Korea
- *Correspondence: Jin-Ho Lee,
| |
Collapse
|
11
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
12
|
Tang Q, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Chembiochem 2021; 22:2584-2590. [PMID: 33890381 PMCID: PMC8453949 DOI: 10.1002/cbic.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Halide methyltransferases (HMTs) enable the enzymatic synthesis of S-adenosyl-l-methionine (SAM) from S-adenosyl-l-homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo- and regioselective biocatalytic alkylations.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of CreteVoutes University Campus70013HeraklionGreece
| | | | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| |
Collapse
|
13
|
Subrizi F, Wang Y, Thair B, Méndez‐Sánchez D, Roddan R, Cárdenas‐Fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angew Chem Int Ed Engl 2021; 60:18673-18679. [PMID: 34101966 PMCID: PMC8457072 DOI: 10.1002/anie.202104476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Indexed: 12/25/2022]
Abstract
The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.
Collapse
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yu Wang
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Jutta Siegrist
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)Branch BiocatSchulgasse 11a94315StraubingGermany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
14
|
Subrizi F, Wang Y, Thair B, Méndez‐Sánchez D, Roddan R, Cárdenas‐Fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18821-18827. [PMID: 38505091 PMCID: PMC10947541 DOI: 10.1002/ange.202104476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Indexed: 12/28/2022]
Abstract
The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.
Collapse
Affiliation(s)
- Fabiana Subrizi
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Yu Wang
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Rebecca Roddan
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Max Cárdenas‐Fernández
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Jutta Siegrist
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Michael Richter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB)Branch BiocatSchulgasse 11a94315StraubingGermany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - John M. Ward
- Department of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUK
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
15
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
16
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
17
|
Sadler JC, Wallace S. Microbial synthesis of vanillin from waste poly(ethylene terephthalate). GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:4665-4672. [PMID: 34276250 PMCID: PMC8256426 DOI: 10.1039/d1gc00931a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 05/05/2023]
Abstract
Poly(ethylene terephthalate) (PET) is an abundant and extremely useful material, with widespread applications across society. However, there is an urgent need to develop technologies to valorise post-consumer PET waste to tackle plastic pollution and move towards a circular economy. Whilst PET degradation and recycling technologies have been reported, examples focus on repurposing the resultant monomers to produce more PET or other second-generation materials. Herein, we report a novel pathway in engineered Escherichia coli for the direct upcycling of PET derived monomer terephthalic acid into the value-added small molecule vanillin, a flavour compound ubiquitous in the food and cosmetic industries, and an important bulk chemical. After process optimisation, 79% conversion to vanillin from TA was achieved, a 157-fold improvement over our initial conditions. Parameters such as temperature, cell permeabilisation and in situ product removal were key to maximising vanillin titres. Finally, we demonstrate the conversion of post-consumer PET from a plastic bottle into vanillin by coupling the pathway with enzyme-catalysed PET hydrolysis. This work demonstrates the first biological upcycling of post-consumer plastic waste into vanillin using an engineered microorganism.
Collapse
Affiliation(s)
- Joanna C Sadler
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| |
Collapse
|
18
|
Interaction of silver nanoparticles with catechol O-methyltransferase: Spectroscopic and simulation analyses. Biochem Biophys Rep 2021; 26:101013. [PMID: 34027136 PMCID: PMC8131974 DOI: 10.1016/j.bbrep.2021.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson’s disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa. In this study, absorption, fluorescence and infrared spectroscopy as well as computational simulation studies investigated human soluble catechol O-methyltransferase interaction with silver nanoparticles. The nanoparticles form a corona with the enzyme and quenches the fluorescence of Trp143. This amino acid maintains the correct structural orientation for the catechol ring during catalysis through a static mechanism supported by a non-fluorescent fluorophore–nanoparticle complex. The enzyme has one binding site for AgNPs in a thermodynamically spontaneous binding driven by electrostatic interactions as confirmed by negative ΔG and ΔH and positive ΔS values. Fourier transform infrared spectroscopy within the amide I region of the enzyme indicated that the interaction causes relaxation of its β−structures, while simulation studies indicated the involvement of six polar amino acids. These findings suggest AgNPs influence the catalytic activity of catechol O-methyltransferase, and therefore have potential in controlling the activity of the enzyme. A recombinant soluble human catechol O-methyltransferase was inhibited by silver nanoparticles. Inhibition by AgNPs was concentration and size dependent. The binding mechanism was through spontaneous static quenching, driven by positive ΔS, and negative ΔH and ΔG. Stern-Volmer analysis suggested binding of AgNPs with Trp143. In silico indicate relaxation of β-sheets and the interaction of AgNPs with 6 amino acids in the enzyme’s helical structures.
Collapse
|
19
|
Lee SH, Kim B, Kim KJ. Crystal Structure and Regiospecificity of Catechol O-Methyltransferase from Niastella koreensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2531-2538. [PMID: 33596655 DOI: 10.1021/acs.jafc.0c07621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catechol O-methyltransferase (COMT) is an enzyme that transfers a methyl group to the catechol-derivative substrates using S-adenosyl-l-methionine (SAM) and Mg2+. We report the biochemical and structural analysis of COMT from Niastella koreensis (NkCOMT). NkCOMT showed the highest activity with Mg2+, although the enzyme also showed a significant level of activity with Cu2+ and Zn2+. NkCOMT structures complexed with SAH and Mg2+ elucidated how the enzyme stabilized the cosubstrate and the metal ion and revealed that the region near the SAM binding site undergoes conformational changes upon the binding of the cosubstrate and the metal ion. We also identified the catechol binding pocket of the enzyme and explained a broad substrate specificity of the bacterial enzyme and its ability to accommodate the catechol derivatives. In addition, we developed the NkCOMTE211R and NkCOMTE211K variants that showed both enhanced activities and regiospecificity for the production of the para-forms. Our study provides a structural basis for regiospecificity of NkCOMT, which is related with the conformational change upon binding of SAM and Mg2+.
Collapse
Affiliation(s)
- Seul Hoo Lee
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bongsang Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Tang Q, Grathwol CW, Aslan‐Üzel AS, Wu S, Link A, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angew Chem Int Ed Engl 2021; 60:1524-1527. [PMID: 33108827 PMCID: PMC7839550 DOI: 10.1002/anie.202013871] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/04/2022]
Abstract
Biocatalytic alkylations are important reactions to obtain chemo-, regio- and stereoselectively alkylated compounds. This can be achieved using S-adenosyl-l-methionine (SAM)-dependent methyltransferases and SAM analogs. It was recently shown that a halide methyltransferase (HMT) from Chloracidobacterium thermophilum can synthesize SAM from SAH and methyl iodide. We developed an iodide-based assay for the directed evolution of an HMT from Arabidopsis thaliana and used it to identify a V140T variant that can also accept ethyl-, propyl-, and allyl iodide to produce the corresponding SAM analogs (90, 50, and 70 % conversion of 15 mg SAH). The V140T AtHMT was used in one-pot cascades with O-methyltransferases (IeOMT or COMT) to achieve the regioselective ethylation of luteolin and allylation of 3,4-dihydroxybenzaldehyde. While a cascade for the propylation of 3,4-dihydroxybenzaldehyde gave low conversion, the propyl-SAH intermediate could be confirmed by NMR spectroscopy.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Christoph W. Grathwol
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Strasse 1717489GreifswaldGermany
| | - Aşkın S. Aslan‐Üzel
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Shuke Wu
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Andreas Link
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Strasse 1717489GreifswaldGermany
| | - Ioannis V. Pavlidis
- Department of ChemistryUniversity of CreteVoutes University Campus70013HeraklionGreece
| | | | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| |
Collapse
|
21
|
Pompei S, Grimm C, Farnberger JE, Schober L, Kroutil W. Regioselectivity of Cobalamin-Dependent Methyltransferase Can Be Tuned by Reaction Conditions and Substrate. ChemCatChem 2020; 12:5977-5983. [PMID: 33442427 PMCID: PMC7783988 DOI: 10.1002/cctc.202001296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Regioselective reactions represent a significant challenge for organic chemistry. Here the regioselective methylation of a single hydroxy group of 4-substituted catechols was investigated employing the cobalamin-dependent methyltransferase from Desulfitobacterium hafniense. Catechols substituted in position four were methylated either in meta- or para-position to the substituent depending whether the substituent was polar or apolar. While the biocatalytic cobalamin dependent methylation was meta-selective with 4-substituted catechols bearing hydrophilic groups, it was para-selective for hydrophobic substituents. Furthermore, the presence of water miscible co-solvents had a clear improving influence, whereby THF turned out to enable the formation of a single regioisomer in selected cases. Finally, it was found that also the pH led to an enhancement of regioselectivity for the cases investigated.
Collapse
Affiliation(s)
- Simona Pompei
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Christopher Grimm
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Judith E. Farnberger
- Austrian Centre of Industrial Biotechnologyc/o Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Lukas Schober
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryNAWI GrazUniversity of GrazHeinrichstrasse 288010GrazAustria
- Field of Excellence BioHealthUniversity of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
22
|
Tang Q, Grathwol CW, Aslan‐Üzel AS, Wu S, Link A, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. Die gerichtete Evolution einer Halogenid‐Methyltransferase erlaubt die biokatalytische Synthese diverser SAM‐Analoga. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qingyun Tang
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | - Christoph W. Grathwol
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Straße 17 17489 Greifswald Deutschland
| | - Aşkın S. Aslan‐Üzel
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | - Shuke Wu
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | - Andreas Link
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Straße 17 17489 Greifswald Deutschland
| | - Ioannis V. Pavlidis
- Abteilung Chemie Universität Kreta, Voutes University Campus 70013 Heraklion Griechenland
| | | | - Uwe T. Bornscheuer
- Institut für Biochemie Universität Greifswald Felix-Hausdorff-Straße 4 17489 Greifswald Deutschland
| |
Collapse
|
23
|
Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angew Chem Int Ed Engl 2020; 59:14950-14956. [PMID: 32402113 PMCID: PMC7496830 DOI: 10.1002/anie.202004963] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Indexed: 11/10/2022]
Abstract
S-adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) catalyse the methylation of a vast array of small metabolites and biomacromolecules. Recently, rare carboxymethylation pathways have been discovered, including carboxymethyltransferase enzymes that utilise a carboxy-SAM (cxSAM) cofactor generated from SAM by a cxSAM synthase (CmoA). We show how MT enzymes can utilise cxSAM to catalyse carboxymethylation of tetrahydroisoquinoline (THIQ) and catechol substrates. Site-directed mutagenesis was used to create orthogonal MTs possessing improved catalytic activity and selectivity for cxSAM, with subsequent coupling to CmoA resulting in more efficient and selective carboxymethylation. An enzymatic approach was also developed to generate a previously undescribed co-factor, carboxy-S-adenosyl-l-ethionine (cxSAE), thereby enabling the stereoselective transfer of a chiral 1-carboxyethyl group to the substrate.
Collapse
Affiliation(s)
- Abigail J. Herbert
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Victoria A. Cronin
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Matthew R. Bennett
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Rehana Sung
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
24
|
Xia YL, Pang HL, Li SY, Liu Y, Wang P, Ge GB. Accurate and sensitive detection of Catechol-O-methyltransferase activity by liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122333. [PMID: 32866920 DOI: 10.1016/j.jchromb.2020.122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a major drug metabolizing enzyme in humans. COMT expression is directedly associated with various mental diseases and cancers due to its essential role in catalyzing metabolic inactivation of endogenous catecholamines and catechol estrogens. However, a practical method to precisely measure COMT activities in biological samples is lacking. In the current study, we established a liquid chromatography-fluorescence detection (LC-FD) method based on fluorometric detection of the methylated product of 3-BTD, a fluorescent probe for COMT, to sensitively quantify COMT activities in human erythrocytes and cell homogenates. Assay validation of the established LC-FD based method was conducted for selectivity and sensitivity, range of linearity, precision and accuracy, recovery, biological matrices effect and stability. The limit of quantification for 3-BTMD (the methylated product of 3-BTD by COMT) of this method was 0.0083 nM, which is nearly 10-fold lower than that for previously published methods. The method was precise with intra- and inter-day relative standard deviation (RSD) lower than 5%. In addition, this method showed an excellent anti-interference ability with no effects of the endogenous substances on the fluorometric detection of 3-BTMD. The practical use of this method was established by its successful application for the measurement of COMT activities in individual human erythrocytes (n = 13), and in cell homogenates generated from four different human cell lines. Our results suggest that this method will be of great value in accurately determining the native activity of COMT in biological samples, which is beneficial for a complete understand of the role of COMT both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Yang-Liu Xia
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui-Lin Pang
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Shi-Yang Li
- Analytical Central Laboratory, Shengyang Harmony Health Medical Laboratory Co Ltd, Shenyang 210112, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Herbert AJ, Shepherd SA, Cronin VA, Bennett MR, Sung R, Micklefield J. Engineering Orthogonal Methyltransferases to Create Alternative Bioalkylation Pathways. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abigail J. Herbert
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Sarah A. Shepherd
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Victoria A. Cronin
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Matthew R. Bennett
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Rehana Sung
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- Department of Chemistry and Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
26
|
McKean IJW, Hoskisson PA, Burley GA. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late‐Stage Functionalization. Chembiochem 2020; 21:2890-2897. [DOI: 10.1002/cbic.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Iain J. W. McKean
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences University of Strathclyde 161 Cathedral Street Glasgow G4 0RE United Kingdom
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| |
Collapse
|
27
|
Gou Q, Tan X, Zhang M, Ran M, Yuan T, He S, Zhou L, Cao T, Luo F. Cobalt-Catalyzed C-H Acetoxylation of Phenols with Removable Monodentate Directing Groups: Access to Pyrocatechol Derivatives. Org Lett 2020; 22:1966-1971. [PMID: 32073867 DOI: 10.1021/acs.orglett.0c00312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient cobalt-catalyzed C-H acetoxylation of phenols has been developed by using PIDA (phenyliodine diacetate) as a sole acetoxy source to synthesize pyrocatechol derivatives for the first time. The key feature of this method is the use of earth-abundant metal cobalt as the green and inexpensive catalyst for the acetoxylation of C(sp2)-H bonds under neutral reaction conditions. Furthermore, the gram-scale reaction and late-stage functionalization demonstrated the usefulness of this method.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Xiaoping Tan
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Mingzhong Zhang
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Man Ran
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Tengrui Yuan
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium
| | - Shuhua He
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Linzong Zhou
- School of Geographical Science and Tourism Management, Chuxiong Normal University, Chuxiong 675000, China
| | - Tuanwu Cao
- School of Chemistry and Chemical Engineering, Laboratory of Natural Medicine Research and Development in Wuling Mountain, Yangtze Normal University, Chongqing 408100, China
| | - Feihua Luo
- College of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
28
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S-Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C-Alkylation. Angew Chem Int Ed Engl 2019; 58:17583-17588. [PMID: 31573135 DOI: 10.1002/anie.201908681] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/10/2023]
Abstract
A tandem enzymatic strategy to enhance the scope of C-alkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solvent-exposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5'-deoxyadenosine (ClDA) analogues modified at the 2-position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C-(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules.
Collapse
Affiliation(s)
- Iain J W McKean
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Joanna C Sadler
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Anibal Cuetos
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Amina Frese
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Luke D Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Gideon Grogan
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Glenn A Burley
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
29
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S
‐Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule
C
‐Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Iain J. W. McKean
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Joanna C. Sadler
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Anibal Cuetos
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Amina Frese
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Gideon Grogan
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Glenn A. Burley
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
30
|
The versatile O-methyltransferase LrOMT catalyzes multiple O-methylation reactions in amaryllidaceae alkaloids biosynthesis. Int J Biol Macromol 2019; 141:680-692. [PMID: 31494163 DOI: 10.1016/j.ijbiomac.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Amaryllidaceae alkaloids are unique benzylphenethylamine derivatives that comprise of more than 600 members with a huge chemical diversity. Most of them showed interesting bioactivities, for instance, galanthamine (GAL) is clinically used for Alzheimer's disease treatment. All Amaryllidaceae alkaloids had been thought to be derived from 4'-O-methylnorbelladine originated from norbelladine catalyzed by norbelladine 4'-O-methyltransferase (N4OMT). Herein we mined the transcriptome datasets of Lycoris radiata, a GAL-producing plant. LrOMT was cloned, overexpressed in Escherichia coli, and purified to homogeneity. Bioinformatics analysis and enzymatic activity assays revealed that LrOMT is an S-adenosylmethionine-dependent Class I OMT. LrOMT exhibited both para- and meta-O-methylation activities toward norbelladine to give 4'- and 3'-O-methylnorbelladine. Twenty-four analogues, including the proposed biosynthetic intermediates, were introduced to investigate the substrate scope of LrOMT and it showed that the aromatic substrates should have two vicinal hydroxyl groups. The LrOMT-catalyzed O-methylation preference is dependent on the properties of the binding group of the substrates. The transcription levels of LrOMT were positively associated with the accumulation of the Amaryllidaceae alkaloids and the biosynthetic intermediates in L. radiata. The present work revealed that LrOMT catalyzes multiple O-methylation reactions and its characterization will be helpful to uncover novel biosynthetic genes for Amaryllidaceae alkaloids biosynthesis.
Collapse
|
31
|
Tang Q, Bornscheuer UT, Pavlidis IV. Specific Residues Expand the Substrate Scope and Enhance the Regioselectivity of a Plant
O
‐Methyltransferase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingyun Tang
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of Crete Voutes University Campus 70013 Heraklion Greece
| |
Collapse
|
32
|
Lee S, Kang J, Kim J. Structural and biochemical characterization of Rv0187, an O-methyltransferase from Mycobacterium tuberculosis. Sci Rep 2019; 9:8059. [PMID: 31147608 PMCID: PMC6543040 DOI: 10.1038/s41598-019-44592-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Catechol O-methyltransferase (COMT) is widely distributed in nature and installs a methyl group onto one of the vicinal hydroxyl groups of a catechol derivative. Enzymes belonging to this family require two cofactors for methyl transfer: S-adenosyl-l-methionine as a methyl donor and a divalent metal cation for regiospecific binding and activation of a substrate. We have determined two high-resolution crystal structures of Rv0187, one of three COMT paralogs from Mycobacterium tuberculosis, in the presence and absence of cofactors. The cofactor-bound structure clearly locates strontium ions and S-adenosyl-l-homocysteine in the active site, and together with the complementary structure of the ligand-free form, it suggests conformational dynamics induced by the binding of cofactors. Examination of in vitro activities revealed promiscuous substrate specificity and relaxed regioselectivity against various catechol-like compounds. Unexpectedly, mutation of the proposed catalytic lysine residue did not abolish activity but altered the overall landscape of regiospecific methylation.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jungwook Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
33
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
34
|
Cuyàs E, Verdura S, Lozano-Sánchez J, Viciano I, Llorach-Parés L, Nonell-Canals A, Bosch-Barrera J, Brunet J, Segura-Carretero A, Sanchez-Martinez M, Encinar JA, Menendez JA. The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase. Food Chem Toxicol 2019; 128:35-45. [PMID: 30935952 DOI: 10.1016/j.fct.2019.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-O-methyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil (EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially. Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new dimension to the physiological and therapeutic utility of EVOO secoiridoids.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | | | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL) L'Hospitalet del Llobregat, Barcelona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO) Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
35
|
Xu W, Huang Z, Ji X, Lumb JP. Catalytic Aerobic Cross-Dehydrogenative Coupling of Phenols and Catechols. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04443] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wenbo Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zheng Huang
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Xiang Ji
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
36
|
Wang X, Wang C, Duan L, Zhang L, Liu H, Xu YM, Liu Q, Mao T, Zhang W, Chen M, Lin M, Gunatilaka AAL, Xu Y, Molnár I. Rational Reprogramming of O-Methylation Regioselectivity for Combinatorial Biosynthetic Tailoring of Benzenediol Lactone Scaffolds. J Am Chem Soc 2019; 141:4355-4364. [PMID: 30767524 PMCID: PMC6416077 DOI: 10.1021/jacs.8b12967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 11/28/2022]
Abstract
O-Methylation modulates the pharmacokinetic and pharmacodynamic (PK/PD) properties of small-molecule natural products, affecting their bioavailability, stability, and binding to targets. Diversity-oriented combinatorial biosynthesis of new chemical entities for drug discovery and optimization of known bioactive scaffolds during drug development both demand efficient O-methyltransferase (OMT) biocatalysts with considerable substrate promiscuity and tunable regioselectivity that can be deployed in a scalable and sustainable manner. Here we demonstrate efficient total biosynthetic and biocatalytic platforms that use a pair of fungal OMTs with orthogonal regiospecificity to produce unnatural O-methylated benzenediol lactone polyketides. We show that rational, structure-guided active-site cavity engineering can reprogram the regioselectivity of these enzymes. We also characterize the interplay of engineered regioselectivity with substrate plasticity. These findings will guide combinatorial biosynthetic tailoring of unnatural products toward the generation of diverse chemical matter for drug discovery and the PK/PD optimization of bioactive scaffolds for drug development.
Collapse
Affiliation(s)
- Xiaojing Wang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- State
Key Laboratory of Plant Physiology and Biochemistry, Department of
Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Chen Wang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Lixin Duan
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- Guangzhou
University of Chinese Medicine, 232 Waihuan East Road, Guangzhou University
City, Panyu District, Guangzhou 510006, P.R. China
| | - Liwen Zhang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hang Liu
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Ya-ming Xu
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Qingpei Liu
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
- Key
Laboratory of Environment Correlative Dietology, College of Food Science
and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Tonglin Mao
- State
Key Laboratory of Plant Physiology and Biochemistry, Department of
Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Zhang
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Ming Chen
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Min Lin
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - A. A. Leslie Gunatilaka
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| | - Yuquan Xu
- Biotechnology
Research Institute, Chinese Academy of Agricultural
Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - István Molnár
- Southwest
Center for Natural Products Research, University
of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United
States
| |
Collapse
|
37
|
Farnberger JE, Richter N, Hiebler K, Bierbaumer S, Pickl M, Skibar W, Zepeck F, Kroutil W. Biocatalytic methylation and demethylation via a shuttle catalysis concept involving corrinoid proteins. Commun Chem 2018. [DOI: 10.1038/s42004-018-0083-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Islam K. The Bump-and-Hole Tactic: Expanding the Scope of Chemical Genetics. Cell Chem Biol 2018; 25:1171-1184. [PMID: 30078633 PMCID: PMC6195450 DOI: 10.1016/j.chembiol.2018.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/13/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
Abstract
Successful mapping of the human genome has sparked a widespread interest in deciphering functional information encoded in gene sequences. However, because of the high degree of conservation in sequences along with topological and biochemical similarities among members of a protein superfamily, uncovering physiological role of a particular protein has been a challenging task. Chemical genetic approaches have made significant contributions toward understanding protein function. One such effort, dubbed the bump-and-hole approach, has convincingly demonstrated that engineering at the protein-small molecule interface constitutes a powerful method for elucidating the function of a specific gene product. By manipulating the steric component of protein-ligand interactions in a complementary manner, an orthogonal system is developed to probe a specific enzyme-cofactor pair without interference from related members. This article outlines current efforts to expand the approach for diverse protein classes and their applications. Potential future innovations to address contemporary biological problems are highlighted as well.
Collapse
Affiliation(s)
- Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
39
|
Martínez-Montero L, Schrittwieser JH, Kroutil W. Regioselective Biocatalytic Transformations Employing Transaminases and Tyrosine Phenol Lyases. Top Catal 2018. [DOI: 10.1007/s11244-018-1054-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Saez DA, Zinovjev K, Tuñón I, Vöhringer-Martinez E. Catalytic Reaction Mechanism in Native and Mutant Catechol-O-methyltransferase from the Adaptive String Method and Mean Reaction Force Analysis. J Phys Chem B 2018; 122:8861-8871. [DOI: 10.1021/acs.jpcb.8b07339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Adrian Saez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| |
Collapse
|
41
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine N-Methyltransferase. Angew Chem Int Ed Engl 2018; 57:10600-10604. [PMID: 29791083 PMCID: PMC6099451 DOI: 10.1002/anie.201805060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/03/2022]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites, which have been exploited to develop analgesics, antibiotics, antitumor agents, and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives.
Collapse
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
42
|
Bennett MR, Thompson ML, Shepherd SA, Dunstan MS, Herbert AJ, Smith DRM, Cronin VA, Menon BRK, Levy C, Micklefield J. Structure and Biocatalytic Scope of Coclaurine
N
‐Methyltransferase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew R. Bennett
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark L. Thompson
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Sarah A. Shepherd
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Mark S. Dunstan
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Abigail J. Herbert
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Duncan R. M. Smith
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Victoria A. Cronin
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Binuraj R. K. Menon
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Colin Levy
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
43
|
Zhang Q, Zhang J, Gavathiotis E. ICBS 2017 in Shanghai-Illuminating Life with Chemical Innovation. ACS Chem Biol 2018; 13:1111-1122. [PMID: 29677443 PMCID: PMC6855916 DOI: 10.1021/acschembio.8b00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein College of Medicine, New York 10461, United States
| |
Collapse
|
44
|
Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 2017; 257:211-221. [DOI: 10.1016/j.jbiotec.2016.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023]
|
45
|
Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 2017; 6:e28474. [PMID: 28534737 PMCID: PMC5462536 DOI: 10.7554/elife.28474] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.
Collapse
Affiliation(s)
- Timothy Erickson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Clive P Morgan
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | | | - Reo Maeda
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rachel Clemens
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Alex Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
46
|
Sadler JC, Humphreys LD, Snajdrova R, Burley GA. A Tandem Enzymatic sp 2 -C-Methylation Process: Coupling in Situ S-Adenosyl-l-Methionine Formation with Methyl Transfer. Chembiochem 2017; 18:992-995. [PMID: 28371017 DOI: 10.1002/cbic.201700115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 01/07/2023]
Abstract
A one-pot, two-step biocatalytic platform for the regiospecfic C-methylation and C-ethylation of aromatic substrates is described. The tandem process utilises SalL (Salinospora tropica) for in situ synthesis of S-adenosyl-l-methionine (SAM), followed by alkylation of aromatic substrates by the C-methyltransferase NovO (Streptomyces spheroides). The application of this methodology is demonstrated for the regiospecific labelling of aromatic substrates by the transfer of methyl, ethyl and isotopically labelled 13 CH3,13 CD3 and CD3 groups from their corresponding SAM analogues formed in situ.
Collapse
Affiliation(s)
- Joanna C Sadler
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Luke D Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.,Present address: Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, AB, T6S 1A1, Canada
| | - Radka Snajdrova
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Glenn A Burley
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
47
|
Bennett MR, Shepherd SA, Cronin VA, Micklefield J. Recent advances in methyltransferase biocatalysis. Curr Opin Chem Biol 2017; 37:97-106. [DOI: 10.1016/j.cbpa.2017.01.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
|
48
|
Abstract
![]()
Although QM/MM calculations
are the primary current tool for modeling enzymatic reactions, the
reliability of such calculations can be limited by the size of the
QM region. Thus, we examine in this work the dependence of QM/MM calculations
on the size of the QM region, using the reaction of catechol-O-methyl transferase (COMT) as a test case. Our study focuses
on the effect of adding residues to the QM region on the activation
free energy, obtained with extensive QM/MM sampling. It is found that
the sensitivity of the activation barrier to the size of the QM is
rather limited, while the dependence of the reaction free energy is
somewhat larger. Of course, the results depend on the inclusion of
the first solvation shell in the QM regions. For example, the inclusion
of the Mg2+ ion can change the activation barrier due to
charge transfer effects. However, such effects can easily be included
in semiempirical approaches by proper parametrization. Overall, we
establish that QM/MM calculations of activation barriers of enzymatic
reactions are not highly sensitive to the size of the QM region, beyond
the immediate region that describes the reacting atoms.
Collapse
|
49
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
50
|
Law BJC, Bennett MR, Thompson ML, Levy C, Shepherd SA, Leys D, Micklefield J. Effects of Active-Site Modification and Quaternary Structure on the Regioselectivity of Catechol-O-Methyltransferase. Angew Chem Int Ed Engl 2016; 55:2683-7. [PMID: 26797714 PMCID: PMC4770447 DOI: 10.1002/anie.201508287] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/08/2022]
Abstract
Catechol‐O‐methyltransferase (COMT), an important therapeutic target in the treatment of Parkinson's disease, is also being developed for biocatalytic processes, including vanillin production, although lack of regioselectivity has precluded its more widespread application. By using structural and mechanistic information, regiocomplementary COMT variants were engineered that deliver either meta‐ or para‐methylated catechols. X‐ray crystallography further revealed how the active‐site residues and quaternary structure govern regioselectivity. Finally, analogues of AdoMet are accepted by the regiocomplementary COMT mutants and can be used to prepare alkylated catechols, including ethyl vanillin.
Collapse
Affiliation(s)
- Brian J C Law
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew R Bennett
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Mark L Thompson
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin Levy
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sarah A Shepherd
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jason Micklefield
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|