1
|
Shen L, Bi Y, Yu J, Zhong Y, Chen W, Zhao Z, Ding J, Shu G, Chen M, Lu C, Ji J. The biological applications of near-infrared optical nanomaterials in atherosclerosis. J Nanobiotechnology 2024; 22:478. [PMID: 39135099 PMCID: PMC11320980 DOI: 10.1186/s12951-024-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yi Zhong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| |
Collapse
|
2
|
Zhang S, Qu Y, Zhang D, Li S, Tang F, Ding A, Hu L, Zhang J, Wang H, Huang K, Li L. Rational Design and Biological Application of Hybrid Fluorophores. Chemistry 2024; 30:e202303208. [PMID: 38038726 DOI: 10.1002/chem.202303208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Fluorophores are considered powerful tools for not only enabling the visualization of cell structures, substructures, and biological processes, but also making for the quantitative and qualitative measurement of various analytes in living systems. However, most fluorophores do not meet the diverse requirements for biological applications in terms of their photophysical and biological properties. Hybridization is an important strategy in molecular engineering that provides fluorophores with complementarity and multifunctionality. This review summarizes the basic strategies of hybridization with four classes of fluorophores, including xanthene, cyanine, coumarin, and BODIPY with a focus on their structure-property relationship (SPR) and biological applications. This review aims to provide rational hybrid ideas for expanding the reservoir of knowledge regarding fluorophores and promoting the development of newly produced fluorophores for applications in the field of life sciences.
Collapse
Affiliation(s)
- Shiji Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Duoteng Zhang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Shuai Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Jin Zhang
- Technical Center of Xiamen Customs, Xiamen, 361001, China
| | - Hui Wang
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Lin Li
- Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| |
Collapse
|
3
|
Mizuno A, Matsuoka R, Mibu T, Kusamoto T. Luminescent Radicals. Chem Rev 2024; 124:1034-1121. [PMID: 38230673 DOI: 10.1021/acs.chemrev.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organic radicals are attracting increasing interest as a new class of molecular emitters. They demonstrate electronic excitation and relaxation dynamics based on their doublet or higher multiplet spin states, which are different from those based on singlet-triplet manifolds of conventional closed-shell molecules. Recent studies have disclosed luminescence properties and excited state dynamics unique to radicals, such as highly efficient electron-photon conversion in OLEDs, NIR emission, magnetoluminescence, an absence of heavy atom effect, and spin-dependent and spin-selective dynamics. These are difficult or sometimes impossible to achieve with closed-shell luminophores. This review focuses on luminescent organic radicals as an emerging photofunctional molecular system, and introduces the material developments, fundamental properties including luminescence, and photofunctions. Materials covered in this review range from monoradicals, radical oligomers, and radical polymers to metal complexes with radical ligands demonstrating radical-involved emission. In addition to stable radicals, transiently formed radicals generated in situ by external stimuli are introduced. This review shows that luminescent organic radicals have great potential to expand the chemical and spin spaces of luminescent molecular materials and thus broaden their applicability to photofunctional systems.
Collapse
Affiliation(s)
- Asato Mizuno
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
| | - Takuto Mibu
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
4
|
Wu ZH, Peng M, Ji C, Kardasis P, Tzourtzouklis I, Baumgarten M, Wu H, Basché T, Floudas G, Yin M, Müllen K. A Terrylene-Anthraquinone Dyad as a Chromophore for Photothermal Therapy in the NIR-II Window. J Am Chem Soc 2023; 145:26487-26493. [PMID: 38011640 PMCID: PMC10704552 DOI: 10.1021/jacs.3c11314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
A terrylenedicarboximide-anthraquinone dyad, FTQ, with absorption in the second near-infrared region (NIR-II) is obtained as a high-performance chromophore for photothermal therapy (PTT). The synthetic route proceeds by C-N coupling of amino-substituted terrylenedicarboximide (TMI) and 1,4-dichloroanthraquinone followed by alkaline-promoted dehydrocyclization. FTQ with extended π-conjugation exhibits an optical absorption band peaking at 1140 nm and extending into the 1500 nm range. Moreover, as determined by dielectric spectroscopy in dilute solutions, FTQ achieves an ultrastrong dipole moment of 14.4 ± 0.4 Debye due to intense intramolecular charge transfer. After encapsulation in a biodegradable polyethylene glycol (DSPE-mPEG2000), FTQ nanoparticles (NPs) deliver a high photothermal conversion efficiency of 49% under 1064 nm laser irradiation combined with excellent biocompatibility, photostability, and photoacoustic imaging capability. In vitro and in vivo studies reveal the great potential of FTQ NPs in photoacoustic-imaging-guided photothermal therapy for orthotopic liver cancer treatment in the NIR-II window.
Collapse
Affiliation(s)
- Ze-Hua Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| | - Min Peng
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Chendong Ji
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | | | | | - Martin Baumgarten
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hao Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Thomas Basché
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| | - George Floudas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, University of Ioannina, Ioannina 45110, Greece
- University
Research Center of Ioannina (URCI) - Institute of Materials Science
and Computing, Ioannina 45110, Greece
| | - Meizhen Yin
- State
Key Laboratory of Chemical Resource Engineering, Beijing Laboratory
of Biomedical Materials, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Chemistry, Johannes Gutenberg-University, Mainz 55099, Germany
| |
Collapse
|
5
|
Kannan R, Nayak P, Arumugam R, Krishna Rao D, Mote KR, Murali AC, Venkatasubbaiah K, Chandrasekhar V. Blue emissive amidinate-based tetra-coordinated boron compounds. Dalton Trans 2023; 52:16829-16840. [PMID: 37909254 DOI: 10.1039/d3dt03378c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A series of novel amidinate ligated four-coordinated boron compounds, [(Ar)-C(tBuN)2BF2] (1BF2-6BF2), were synthesised and structurally characterised (Ar = 1-phenyl, 2-naphthyl, 2-anthryl, 9-anthryl, 9-phenanthryl and 1-pyrene). The increased π-conjugation of Ar-substitution on the amidinate ligand results in dark blue-emission in compounds 3BF2-6BF2. All these compounds are emissive in the solution state. The 2-anthryl substituted compound 3BF2 was found to exhibit a maximum quantum yield of 48% in dichloromethane. Theoretical studies were carried out which validate the hypothesis about the increased π-conjugation.
Collapse
Affiliation(s)
- Ramkumar Kannan
- Tata Institute of Fundamental Research, Hyderabad, 500046, India.
| | - Prakash Nayak
- School of Chemical Sciences, National Institute of Science, Education and Research, Bhubaneswar, Orissa-752050, India
| | - Ramar Arumugam
- Tata Institute of Fundamental Research, Hyderabad, 500046, India.
| | - D Krishna Rao
- Tata Institute of Fundamental Research, Hyderabad, 500046, India.
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research, Hyderabad, 500046, India.
| | - Anna Chandrasekar Murali
- School of Chemical Sciences, National Institute of Science, Education and Research, Bhubaneswar, Orissa-752050, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science, Education and Research, Bhubaneswar, Orissa-752050, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research, Hyderabad, 500046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, Uttar Pradesh, India
| |
Collapse
|
6
|
Yuan L, Yang J, Qi S, Liu Y, Tian X, Jia T, Wang Y, Dou C. Diradicaloid Boron-Doped Molecular Carbons Achieved by Pentagon-Fusion. Angew Chem Int Ed Engl 2023:e202314982. [PMID: 37924227 DOI: 10.1002/anie.202314982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24 B and C38 B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38 B molecule exhibits absorption that covers the range of 300-1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Shuo Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
7
|
Maurya YK, Chmielewski PJ, Cybińska J, Prajapati B, Lis T, Kang S, Lee S, Kim D, Stępień M. Naphthalimide-Fused Dipyrrins: Tunable Halochromic Switches and Photothermal NIR-II Dyes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105886. [PMID: 35174648 PMCID: PMC9259717 DOI: 10.1002/advs.202105886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A family of tunable halochromic switches is developed using a naphthalimide-fused dipyrrin as the core π-conjugated motif. Electronic properties of these dipyrrins are tuned by substitution of their alpha and meso positions with aryl groups of variable donor-acceptor strength. The first protonation results in a conformational change that enhances electronic coupling between the dipyrrin chromophore and the meso substituent, leading to halochromic effects that occasionally exceed 200 nm and switch the absorption between the near-infrared (NIR)-I and NIR-II ranges. A NIR-II photothermal effect, switchable by acid-base chemistry is demonstrated for selected dipyrrins. Further protonation is possible for derivatives bearing additional amino groups, leading to up to four halochromic switching step. The most electron-rich dipyrrins are also susceptible to chemical oxidation, yielding NIR-absorbing radical cations and closed-shell dications.
Collapse
Affiliation(s)
- Yogesh Kumar Maurya
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | | | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Bibek Prajapati
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Seokwon Lee
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| |
Collapse
|
8
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Cui X, Zhang Z, Yang Y, Li S, Lee C. Organic radical materials in biomedical applications: State of the art and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210264. [PMID: 37323877 PMCID: PMC10190988 DOI: 10.1002/exp.20210264] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/24/2022] [Indexed: 06/17/2023]
Abstract
Owing to their unique chemical reactivities and paramagnetism, organic radicals with unpaired electrons have found widespread exploration in physical, chemical, and biological fields. However, most radicals are too short-lived to be separated and only a few of them can maintain stable radical forms via stereochemical strategies. How to utilize these raw radicals for developing stable radical-containing materials have long been a research hotspot for many years. This perspective introduces fundamental characteristics of organic radical materials and highlights their applications in biomedical fields, particularly for bioimaging, biosensing, and photo-triggered therapies. Molecular design of these radical materials is considered with reference to their outstanding imaging and therapeutic performances. Various challenges currently limiting the wide applications of these organic radical materials and their future development are also discussed.
Collapse
Affiliation(s)
- Xiao Cui
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| | - Zhen Zhang
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| | - Yuliang Yang
- College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Chun‐Sing Lee
- Department of ChemistryInstitution Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
10
|
Tian X, Guo J, Sun W, Yuan L, Dou C, Wang Y. Tuning Diradical Properties of Boron-Containing π-Systems by Structural Isomerism. Chemistry 2022; 28:e202200045. [PMID: 35146820 DOI: 10.1002/chem.202200045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/01/2023]
Abstract
Tuning diradical character is an important topic for organic diradicaloids. Herein, we report the precise borylation enabling structural isomerism as an effective strategy to modulate diradical character and thereby properties of organic diradicaloids. We synthesized a new B-containing polycyclic hydrocarbon that has the indeno[1,2-b]fluorene π-skeleton with the β-carbons bonding to two boron atoms. Detailed theoretical and experimental results show that this bonding pattern leads to its distinctive electronic structures and properties in comparison to that of its isomeric molecule. This molecule has the efficient conjugation between boron atoms and π-skeleton, resulting in downshifted LUMO and HOMO levels. Moreover, it exhibits smaller diradical character and thereby inhibited diradical properties, such as significantly blue-shifted light absorption, larger energy bandgap and weak para-magnetic resonance. Notably, this B-containing polycyclic hydrocarbon possesses much stronger Lewis acidity and its Lewis acid-base adducts display enhanced diradical character, demonstrating the positive effects of Lewis coordination on modulating diradical performance.
Collapse
Affiliation(s)
- Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Kaur P, Ali ME. Influence of the Radicaloid Character of Polyaromatic Hydrocarbon Couplers on Magnetic Exchange Interactions. Phys Chem Chem Phys 2022; 24:13094-13101. [DOI: 10.1039/d1cp02044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular properties of the conjugated spacers, such as the π-conjugation, aromaticity, length of the couplers, etc., that couple two localized spin-centers influence the intramolecular magnetic exchange interactions (2J) mediated...
Collapse
|
12
|
Wu S, Gai L, Zhou Z, Lu H. Recent advances in zig-zag-fused BODIPYs. Org Chem Front 2022. [DOI: 10.1039/d2qo01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the synthesis of zig-zag-fused BODIPY, structure–property relationships, as well as their applications are summarized.
Collapse
Affiliation(s)
- Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Zhikuan Zhou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
13
|
Guo J, Yang Y, Dou C, Wang Y. Boron-Containing Organic Diradicaloids: Dynamically Modulating Singlet Diradical Character by Lewis Acid-Base Coordination. J Am Chem Soc 2021; 143:18272-18279. [PMID: 34664955 DOI: 10.1021/jacs.1c08486] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organic diradicaloids have unique open-shell structures and properties and promising applications in organic electronics and spintronics. Incorporation of heteroatoms is an effective strategy to alter the electronic structures of organic diradicaloids. However, B-containing organic diradicaloids are very challenging due to their high reactivities, which are caused by not only diradical nature but also the B atom. In this article, we report a new kind of organic diradicaloids containing boron atoms. Our strategy is to incorporate planarized triarylboranes to antiaromatic polycyclic hydrocarbons (PHs). We synthesized two isomeric B-containing PHs composed of indenofluorene π-skeletons and two dioxa-bridged triphenylborane moieties. As proved by theoretical and experimental results, both of them have excellent ambient stability and open-shell singlet diradical structures, as well as intriguing magnetic and optoelectronic properties, such as thermally accessible triplet species, reversible multiredox ability, and narrow energy gaps. Notably, they possess sufficient Lewis acidity, which has never been observed for organic diradicaloids. In addition, they can coordinate with Lewis bases to form Lewis adducts, achieving unprecedented dynamic modulations of (anti)aromaticity and thus diradical character of organic diradicaloids.
Collapse
Affiliation(s)
- Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
14
|
Kang Z, Lv F, Wu Q, Li H, Li Z, Wu FX, Wang Z, Jiao L, Hao E. Palladium(II)-Catalyzed Dehydrogenative Strategy for Direct and Regioselective Oligomerization of BODIPY Dyes. Org Lett 2021; 23:7986-7991. [PMID: 34606282 DOI: 10.1021/acs.orglett.1c02996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of directly β,γ-linked BODIPY oligomers up to pentamers were regioselectively prepared via Pd(II)-catalyzed oxidative C-H cross-coupling. The structural integrity of β,γ-linked dimers was unambiguously confirmed by X-ray crystallography. These structurally unprecedented oligomers showed red-shifted absorptions and near-infrared emissions along with efficient intersystem crossing, giving ΦΔ in the range of 12-43%, for potential use as heavy-atom-free photosensitizers.
Collapse
Affiliation(s)
- Zhengxin Kang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Lv
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heng Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhongxin Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Feng-Xi Wu
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhaoyun Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
15
|
Jiang Z, Zhang C, Wang X, Yan M, Ling Z, Chen Y, Liu Z. A Borondifluoride-Complex-Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR-II Window. Angew Chem Int Ed Engl 2021; 60:22376-22384. [PMID: 34289230 DOI: 10.1002/anie.202107836] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 01/22/2023]
Abstract
Small organic photothermal agents (SOPTAs) that absorb in the second near-infrared (NIR-II, 1000-1700 nm) window are highly desirable in photothermal therapy for their good biocompatibility and deeper tissue penetration. However, the design of NIR-II absorbing SOPTAs remains a great challenge. Herein, we report that molecular engineering of BF2 complex via strengthening the donor-acceptor conjugation and increasing the intramolecular motions is an efficient strategy to achieve NIR-II absorbing SOPTAs with high photothermal performance. Based on this strategy, a BF2 complex, BAF4, was designed and synthesized. BAF4 exhibits an intense absorption maximum at 1000 nm and negligible fluorescence. Notably, the nanoparticles of BAF4 achieve a high photothermal conversion efficiency value of 80 % under 1064 nm laser irradiation (0.75 W cm-2 ). In vitro and in vivo studies reveal the great potential of BAF4 nanoparticles in photoacoustic imaging-guided photothermal therapy in the NIR-II window.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Yan
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
16
|
Prajapati B, Dang D, Chmielewski PJ, Majewski MA, Lis T, Gómez‐García CJ, Zimmerman PM, Stępień M. An Open‐Shell Coronoid with Hybrid Chichibabin–Schlenk Conjugation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bibek Prajapati
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Duy‐Khoi Dang
- Department of Chemistry University of Michigan 930 N. University Ave Ann Arbor MI 48109 USA
| | - Piotr J. Chmielewski
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin A. Majewski
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Carlos J. Gómez‐García
- Departamento de Química Inorgánica and Instituto de Ciencia Molecular Universidad de Valencia 46980 Paterna Spain
| | - Paul M. Zimmerman
- Department of Chemistry University of Michigan 930 N. University Ave Ann Arbor MI 48109 USA
| | - Marcin Stępień
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
17
|
Gong Q, Wu Q, Guo X, Li H, Li W, Yu C, Hao E, Jiao L. Thiophene-Fused BODIPY Dimers and Tetramers from Oxidative Aromatic Couplings as Near-Infrared Dyes. Org Lett 2021; 23:7661-7665. [PMID: 34546062 DOI: 10.1021/acs.orglett.1c02926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a straightforward, postmodification synthesis for a family of thiophene-fused BODIPY dimers and tetramers through transforming flexible sulfur bridges into coplanar thiophene fusions. FeCl3 was used as a bifunctional oxidant for both intramolecular and intermolecular oxidative aromatic coupling reactions. Oxidative fusion and dimerization gave strong red-shift absorptions from 509 nm for a BODIPY monomer to 830 nm for a tetramer.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
18
|
Kang Z, Wu Q, Guo X, Wang L, Ye Y, Yu C, Wang H, Hao E, Jiao L. FeCl 3-promoted regioselective synthesis of BODIPY dimers through oxidative aromatic homocoupling reactions. Chem Commun (Camb) 2021; 57:9886-9889. [PMID: 34494065 DOI: 10.1039/d1cc04098g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct 3,3'-dimerization of BODIPYs lacking substituent groups in the 1,2,6, and 7 positions was developed by oxidative coupling with FeCl3. This regioselective dimerization was achieved for BODIPYs substituted only in the 5-position with Cl or aryl groups. Further functionalization of the 5,5'-dichloride dimer gave the corresponding pyrrole or 4-(2-aminoethyl)morpholine disubstituted dimers 2f and 2g, respectively. While dimer 2f exhibited intense NIR absorption/emission maxima at 773/827 nm in toluene, dimer 2g showed favorable lysosome-targeting NIR fluorescence in living cells.
Collapse
Affiliation(s)
- Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Long Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yin Ye
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
19
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
20
|
Jiang Z, Zhang C, Wang X, Yan M, Ling Z, Chen Y, Liu Z. A Borondifluoride‐Complex‐Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR‐II Window. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107836] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Changli Zhang
- School of Environmental Science Nanjing Xiaozhuang University Nanjing 211171 China
| | - Xiaoqing Wang
- College of Science Nanjing Forestry University Nanjing 210037 China
| | - Ming Yan
- College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases the First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhipeng Liu
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
21
|
Stępień M, Prajapati B, Dang DK, Chmielewski PJ, Majewski MA, Lis T, Gómez-García CJ, Zimmerman PM. An Open-Shell Coronoid with Hybrid Chichibabin-Schlenk Conjugation. Angew Chem Int Ed Engl 2021; 60:22496-22504. [PMID: 34382721 DOI: 10.1002/anie.202109273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Indexed: 11/10/2022]
Abstract
A hexaradicaloid molecule with alternating Kekulé and non-Kekulé connectivities between adjacent spin centers was obtained by fusing two classic conjugation motifs, found respectively in the Chichibabin and Schlenk hydrocarbons, into a coronoid structure. 1 H NMR, ESR and SQUID experiments, combined with computational analyses reveal that the system has a singlet ground state, characterized by a significant hexaradicaloid character ( γ 0 = 0.826, γ 1 = γ 2 = 0.773). It possesses multiple thermally accessible high-spin states (up to the septet), with uniform energy gaps of ca 1.0 kcal/mol between consecutive multiplicities. In line with its open-shell character, the coronoid has a small electronic bandgap of ca. 0.8 eV and undergoes two consecutive one-electron oxidations at low potentials, yielding cationic forms with extended near-infrared absorption. The hexaradicaloid, which combines open-shell and macrocyclic contributions to its π conjugation, provides an example of a design strategy for multistate spin switches and redox-amphoteric NIR dyes.
Collapse
Affiliation(s)
- Marcin Stępień
- University of Wroclaw, Department of Chemistry, ul. F. Joliot-Curie 14, 50-383, Wroclaw, POLAND
| | | | - Duy-Khoi Dang
- University of Michigan Ann Arbor, Department of Chemistry, UNITED STATES
| | | | | | - Tadeusz Lis
- Uniwersytet Wrocławski, Wydział Chemii, POLAND
| | - Carlos J Gómez-García
- Universidad de Valencia, Departamento de Química Inorgánica and Instituto de Ciencia Molecular, SPAIN
| | - Paul M Zimmerman
- University of Michigan Ann Arbor, Department of Chemistry, UNITED STATES
| |
Collapse
|
22
|
Cui H, Hu ZB, Chen C, Ruan H, Fang Y, Zhang L, Zhao Y, Tan G, Song Y, Wang X. A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. Chem Sci 2021; 12:9998-10004. [PMID: 34377394 PMCID: PMC8317668 DOI: 10.1039/d1sc01932e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism. We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.![]()
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing 210095 China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Wang J, Boens N, Jiao L, Hao E. Aromatic [b]-fused BODIPY dyes as promising near-infrared dyes. Org Biomol Chem 2021; 18:4135-4156. [PMID: 32441725 DOI: 10.1039/d0ob00790k] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Far-red and near-infrared (NIR) absorbing/emitting dyes have found diverse applications in biomedicine and material science. However, the absorption and emission of classical BODIPY chromophores at short wavelength hamper their applications. Several strategies have been adopted to modify the structure of the BODIPY core to design NIR dyes. Among these, the most efficient approach to expand the π-conjugation of the BODIPY core is via fusion of aromatic rings. So far, many novel BODIPY skeletons fused to aromatic hydrocarbons and heterocycles at the b bond have been reported. This review comprehensively describes the recent advances regarding the development of aromatic [b]-fused BODIPY dyes with the focus on the design and synthesis, the relationships between their photophysical/spectroscopic properties and molecular structures, and the potential applications in bioassays and optoelectronic devices.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. and Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
| | - Noël Boens
- Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Heverlee, Belgium
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
24
|
David S, Chang HJ, Lopes C, Brännlund C, Le Guennic B, Berginc G, Van Stryland E, Bondar MV, Hagan D, Jacquemin D, Andraud C, Maury O. Benzothiadiazole-Substituted Aza-BODIPY Dyes: Two-Photon Absorption Enhancement for Improved Optical Limiting Performances in the Short-Wave IR Range. Chemistry 2021; 27:3517-3525. [PMID: 33330997 DOI: 10.1002/chem.202004899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Aza-boron dipyrromethenes (aza-BODIPYs) presenting a benzothiadiazole substitution on upper positions are described. The strong electron-withdrawing effect of the benzothiadiazole moiety permits enhancement of the accepting strength and improves the delocalization of the aza-BODIPY core to attain a significant degree of electronic communication between the lower donating groups and the upper accepting groups. The nature of the intramolecular charge transfer is studied both experimentally and theoretically. Linear spectroscopy highlighted the strongly redshifted absorption and emission of the synthesized molecules with recorded fluorescence spectra over 1000 nm. Nonlinear optical properties were also investigated. Strong enhancement of the two-photon absorption of the substituted dyes compared with the unsubstituted one (up to 4520 GM at 1300 nm) results in an approximately 15-20 % improvement of the optical power limiting performances. These dyes are therefore a good starting point for further improvement of optical power limiting in the short-wave IR range.
Collapse
Affiliation(s)
- Sylvain David
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| | - Hao-Jung Chang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Cesar Lopes
- Electrooptical Systems, Swedish Defense Research Agency (FOI), Linköping, 58111, Sweden
| | - Carl Brännlund
- Electrooptical Systems, Swedish Defense Research Agency (FOI), Linköping, 58111, Sweden
| | - Boris Le Guennic
- CNRS, Institut des Sciences Chimiques de Rennes UMR 6226, Université Rennes, 35000, Rennes, France
| | - Gérard Berginc
- Thales LAS France, 2 Avenue Gay Lussac, 78990, Élancourt, France
| | - Eric Van Stryland
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Mykailo V Bondar
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.,Institute of Physics NASU, Prospect Nauki, 46, Kyiv-28, 03028, Ukraine
| | - David Hagan
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Chantal Andraud
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Maury
- Laboratoire de Chimie, UMR 5182, ENS Lyon, CNRS, Université Lyon 1, 46 Allée d'Italie, 69364, Lyon, France
| |
Collapse
|
25
|
Pascal S, David S, Andraud C, Maury O. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem Soc Rev 2021; 50:6613-6658. [DOI: 10.1039/d0cs01221a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in the field of two-photon absorbing chromophores in the short-wavelength infrared spectral range (SWIR 1100–2500 nm) are summarized, highlighting the development of optical power limiting devices in this spectral range.
Collapse
Affiliation(s)
- Simon Pascal
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Sylvain David
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| |
Collapse
|
26
|
Rao RS, Suman, Singh SP. Near-Infrared (>1000 nm) Light-Harvesters: Design, Synthesis and Applications. Chemistry 2020; 26:16582-16593. [PMID: 33443772 DOI: 10.1002/chem.202001126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Indexed: 01/11/2023]
Abstract
Organic molecules can absorb or emit light in UV, visible and infra-red (IR) region of solar radiation. Fifty percent of energy of solar radiation lies in the IR region of solar spectrum and extended π-conjugated molecules containing low optical band gap can absorb NIR radiations. Recently IR molecules have grabbed the attention of synthetic chemists. Although only few molecules have been reported so far such as derivative of BODIPY, naphthalimide, porphyrins, perylene, BBT etc., they have shown highest absorbing capacity towards greater than 1100 nm. These compounds have potential applications in different fields, such as for biomedical and optoelectronic applications. In this review, we present different classes of light-harvesters with harvesting range above 1000 nm.
Collapse
Affiliation(s)
- Ravulakollu Srinivasa Rao
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Suman
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
27
|
Wu Q, Jia G, Tang B, Guo X, Wu H, Yu C, Hao E, Jiao L. Conformationally Restricted α, α Directly Linked BisBODIPYs as Highly Fluorescent Near-Infrared Absorbing Dyes. Org Lett 2020; 22:9239-9243. [DOI: 10.1021/acs.orglett.0c03441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Guowei Jia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
28
|
Hayashi H, Barker JE, Cárdenas Valdivia A, Kishi R, MacMillan SN, Gómez-García CJ, Miyauchi H, Nakamura Y, Nakano M, Kato SI, Haley MM, Casado J. Monoradicals and Diradicals of Dibenzofluoreno[3,2- b]fluorene Isomers: Mechanisms of Electronic Delocalization. J Am Chem Soc 2020; 142:20444-20455. [PMID: 33206516 DOI: 10.1021/jacs.0c09588] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV-vis-NIR absorption spectroelectrochemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| | - Joshua E Barker
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Malaga 29071, Spain
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Samantha N MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry and Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Hidenori Miyauchi
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yosuke Nakamura
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shin-Ichiro Kato
- Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, Malaga 29071, Spain
| |
Collapse
|
29
|
Ang ECX, Tan CH. Golden Jubilee of Singapore National Institute of Chemistry (1970-2020): Celebrating its Partnership with Wiley-VCH. Angew Chem Int Ed Engl 2020; 59:19728-19731. [PMID: 32812317 DOI: 10.1002/anie.202002227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/08/2022]
Abstract
This year Singapore National Institute of Chemistry (SNIC) is celebrating its golden jubilee (1970-2020). Wiley-VCH has been a steadfast partner accompanying the rapid rise of chemistry research in Singapore. In celebration of this golden jubilee, we highlight 50 significant papers published in Angewandte Chemie by scholars currently based in Singapore, covering the widest possible spectrum of chemistry research.
Collapse
Affiliation(s)
- Esther Cai Xia Ang
- Singapore National Institute of Chemistry, SPMS-CBC-04-18.5, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Choon-Hong Tan
- Singapore National Institute of Chemistry, SPMS-CBC-04-18.5, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
30
|
Ang ECX, Tan C. Golden Jubilee of Singapore National Institute of Chemistry (1970–2020): Celebrating its Partnership with Wiley‐VCH. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esther Cai Xia Ang
- Singapore National Institute of Chemistry SPMS-CBC-04-18.5 School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- Singapore National Institute of Chemistry SPMS-CBC-04-18.5 School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
31
|
Mahata A, Chandra S, Maiti A, Rao DK, Yildiz CB, Sarkar B, Jana A. α,α′-Diamino-p-quinodimethanes with Three Stable Oxidation States. Org Lett 2020; 22:8332-8336. [DOI: 10.1021/acs.orglett.0c02964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alok Mahata
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Fakultät Chemie, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal Plants, University of Aksaray, Aksaray-68100, Turkey
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Fakultät Chemie, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
| |
Collapse
|
32
|
Wu Q, Kang Z, Gong Q, Guo X, Wang H, Wang D, Jiao L, Hao E. Strategic Construction of Ethene-Bridged BODIPY Arrays with Absorption Bands Reaching the Near-Infrared II Region. Org Lett 2020; 22:7513-7517. [PMID: 32969229 DOI: 10.1021/acs.orglett.0c02704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the controllable synthesis of BODIPY arrays based on the Stille cross-coupling reaction has been developed, from which a family of well-defined ethene-bridged BODIPY arrays from dimer to hexamer was synthesized. These arrays showed strong absorptions reaching the near-infrared II (NIR II, 1000-1700 nm) region with maxima tunable from 702 nm (dimer) to 1114 nm (hexamer) and possessed efficient light-harvesting capabilities, excellent photostability, and good photothermal conversion abilities under NIR light irradiation.
Collapse
Affiliation(s)
- Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
33
|
Wang D, Wu Q, Zhang X, Wang W, Hao E, Jiao L. A Photochemical Dehydrogenative Strategy for Direct and Regioselective Dimerization of BODIPY Dyes. Org Lett 2020; 22:7694-7698. [DOI: 10.1021/acs.orglett.0c02895] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiankang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenqing Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
34
|
Jin JL, Yang L, Ding X, Ou LH, Chen YD, Gu HY, Wu Y, Geng Y. Density Functional Studies on Photophysical Properties of Boron-Pyridyl-Imino-Isoindoline Dyes: Effect of the Fusion. ACS OMEGA 2020; 5:21067-21075. [PMID: 32875243 PMCID: PMC7450629 DOI: 10.1021/acsomega.0c02669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, to make out the aryl-fusion effect on the photophysical properties of boron-pyridyl-imino-isoindoline dyes, compounds 1-5 were theoretically studied through analyses of their geometric and electronic structures, optical properties, transport abilities, and radiative (k r) and non-radiative decay rate (k nr) constants. The highest occupied molecular orbitals of aryl-fused compounds 2-5 are higher owing to the extended conjugation. Interestingly, aryl fusion in pyridyl increases the lowest unoccupied molecular orbital (LUMO) level, while isoindoline decreases the LUMO level; thus, 4 and 5 with aryl fusion both in pyridyl and isoindoline exhibit a similar LUMO to 1. Compounds 4 and 5 show relatively low ionization potentials and high electron affinities, suggesting a better ability to inject holes and electrons. Importantly, the aryl fusion is conducive to the decrease of k IC. The designed compound 5 exhibits a red-shifted emission maximum, low λh, and low k IC, which endow it with great potential for applications in organic electronics. Our investigation provides an in-depth understanding of the aryl-fusion effect on boron-pyridyl-imino-isoindoline dyes at molecular levels and demonstrates that it is achievable.
Collapse
Affiliation(s)
- Jun-Ling Jin
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials,
Hunan Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Province Cooperative Innovation Center for the Construction
& Development of Dongting Lake Ecological Economic Zone, College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Lixia Yang
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials,
Hunan Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Province Cooperative Innovation Center for the Construction
& Development of Dongting Lake Ecological Economic Zone, College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Xiang Ding
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials,
Hunan Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Province Cooperative Innovation Center for the Construction
& Development of Dongting Lake Ecological Economic Zone, College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Li-Hui Ou
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials,
Hunan Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Province Cooperative Innovation Center for the Construction
& Development of Dongting Lake Ecological Economic Zone, College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Yuan-Dao Chen
- Hunan
Provincial Key Laboratory of Water Treatment Functional Materials,
Hunan Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Province Cooperative Innovation Center for the Construction
& Development of Dongting Lake Ecological Economic Zone, College
of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, Hunan, China
| | - Hao-Yu Gu
- Institute
of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yong Wu
- Institute
of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yun Geng
- Institute
of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| |
Collapse
|
35
|
Dressler JJ, Haley MM. Learning how to fine‐tune diradical properties by structure refinement. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Justin J. Dressler
- Department of Chemistry and Biochemistry and the Materials Science Institute University of Oregon Eugene Oregon USA
| | - Michael M. Haley
- Department of Chemistry and Biochemistry and the Materials Science Institute University of Oregon Eugene Oregon USA
| |
Collapse
|
36
|
Dressler JJ, Cárdenas Valdivia A, Kishi R, Rudebusch GE, Ventura AM, Chastain BE, Gómez-García CJ, Zakharov LN, Nakano M, Casado J, Haley MM. Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Li L, Gao Y, Dou C, Liu J. B⟵N-containing azaacenes with propynyl groups on boron atoms. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC‐Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Jessica Stubbe
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
| | - Nicolás I. Neuman
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Instituto de Desarrollo Tecnológico para laIndustria Química, CCT Santa Fe CONICET-UNL Colectora Ruta Nacional 168, Km 472, Paraje El Pozo 3000 Santa Fe Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| | - Carola Schulzke
- Institut für BiochemieUniversität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Biprajit Sarkar
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität Berlin Fabeckstraße 34–36 14195 Berlin Germany
- Institut für Anorganische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad-500107 Telangana India
| |
Collapse
|
39
|
Maiti A, Stubbe J, Neuman NI, Kalita P, Duari P, Schulzke C, Chandrasekhar V, Sarkar B, Jana A. CAAC-Based Thiele and Schlenk Hydrocarbons. Angew Chem Int Ed Engl 2020; 59:6729-6734. [PMID: 31960562 PMCID: PMC7187164 DOI: 10.1002/anie.201915802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/17/2023]
Abstract
Diradicals have been of tremendous interest for over a century ever since the first reports of p- and m-phenylene-bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non-Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head-to-tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox-active organic compounds.
Collapse
Affiliation(s)
- Avijit Maiti
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Jessica Stubbe
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Instituto de Desarrollo Tecnológico para la, Industria Química, CCT Santa Fe CONICET-UNL, Colectora Ruta Nacional 168, Km 472, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Pankaj Kalita
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Prakash Duari
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Gopanpally, Hyderabad-500107, Telangana, India
| |
Collapse
|
40
|
Berraud-Pache R, Neese F, Bistoni G, Izsák R. Unveiling the Photophysical Properties of Boron-dipyrromethene Dyes Using a New Accurate Excited State Coupled Cluster Method. J Chem Theory Comput 2019; 16:564-575. [PMID: 31765141 DOI: 10.1021/acs.jctc.9b00559] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Boron-dipyrromethene (BODIPY) molecules form a class of fluorescent dyes known for their exceptional photoluminescence properties. Today, they are used extensively in various applications from fluorescent imaging to optoelectronics. The ease of altering the BODIPY core has allowed scientists to synthesize dozens of analogues by exploring chemical substitutions of various kinds or by increasing the length of conjugated groups. However, predicting the impact of any chemical change accurately is still a challenge, especially as most computational methods fail to describe correctly the photophysical properties of BODIPY derivatives. In this study, the recently developed coupled cluster method called "domain-based local pair natural orbital similarity transformed equation of motion-coupled cluster singles and doubles" (DLPNO-STEOM-CCSD) is employed to compute the lowest vertical excitation energies of more than 50 BODIPY molecules. The method performs remarkably well yielding an accuracy of about 0.06 eV compared to the experimental absorption maxima. We also provide an estimate to the error made by neglecting vibronic effects in the computed spectra. The dyes selected for investigation here span a large range of molecular sizes and chemical functionalities and are embedded in solvents with different polarities. We have also investigated if the method is able to correctly reproduce the impact of a single chemical modification on the absorption energy. To characterize the method in more specific terms, we have studied four large BODIPY analogues used in real-life applications due to their interesting chemical properties. These examples should illustrate the capacity of the DLPNO-STEOM-CCSD procedure to become a method of choice for the study of photophysical properties of medium to large organic compounds.
Collapse
Affiliation(s)
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
41
|
Ito H, Sakai H, Suzuki Y, Kawamata J, Hasobe T. Systematic Control of Structural and Photophysical Properties of π‐Extended Mono‐ and Bis‐BODIPY Derivatives. Chemistry 2019; 26:316-325. [DOI: 10.1002/chem.201904282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroaki Ito
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Hayato Sakai
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation Yamaguchi University 1677-1 Yoshida Yamaguchi 753-8512 Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation Yamaguchi University 1677-1 Yoshida Yamaguchi 753-8512 Japan
| | - Taku Hasobe
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
42
|
Hattori Y, Michail E, Schmiedel A, Moos M, Holzapfel M, Krummenacher I, Braunschweig H, Müller U, Pflaum J, Lambert C. Luminescent Mono-, Di-, and Triradicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes. Chemistry 2019; 25:15463-15471. [PMID: 31478580 PMCID: PMC6916318 DOI: 10.1002/chem.201903007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.
Collapse
Affiliation(s)
- Yohei Hattori
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Evripidis Michail
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Schmiedel
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Ulrich Müller
- Institute of PhysicsJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Jens Pflaum
- Institute of PhysicsJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
43
|
|
44
|
Min Y, Dou C, Liu D, Dong H, Liu J. Quadruply B←N-Fused Dibenzo-azaacene with High Electron Affinity and High Electron Mobility. J Am Chem Soc 2019; 141:17015-17021. [DOI: 10.1021/jacs.9b09640] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Dan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
45
|
Panda S, Ansari MA, Mandal A, Lahiri GK. Near‐IR Absorbing Ruthenium Complexes of Non‐Innocent 6,12‐Di(pyridin‐2‐yl)indolo[3,2‐
b
]carbazole: Variation as a Function of Co‐Ligands. Chem Asian J 2019; 14:4631-4640. [DOI: 10.1002/asia.201900719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Sanjib Panda
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Md Asif Ansari
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Abhishek Mandal
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| | - Goutam Kumar Lahiri
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai- 400076 India
| |
Collapse
|
46
|
A BODIPY-Bridged Bisphenoxyl Diradicaloid: Solvent-Dependent Diradical Character and Physical Properties. Molecules 2019; 24:molecules24081446. [PMID: 31013683 PMCID: PMC6514698 DOI: 10.3390/molecules24081446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 02/03/2023] Open
Abstract
We report a new boron dipyrromethene (BODIPY)-bridged bisphenoxyl diradicaloid (2), which showed closed-shell diamagnetic character in less polar solvents such as dichloromethane but open-shell diradical character with paramagnetic activity in the very polar solvent N,N-dimethylformamide. X-ray crystallographic analysis of 2 revealed an anti-parallel stacked dimer structure via intermolecular dipole-dipole interaction, and the observed solvent-dependent diradical character can be explained by the different dihedral angles between the phenoxyl units and the BODIPY bridge, and structural flexibility of the molecule in different solvents. Compound 2 also exhibited solvent-dependent optical and electrochemical properties.
Collapse
|
47
|
Wei H, Feng R, Fang Y, Wang L, Chen C, Zhang L, Cui H, Wang X. The Diradical-Dication Strategy for BODIPY- and Porphyrin-Based Dyes with Near-Infrared Absorption Maxima from 1070 to 2040 nm. Chemistry 2018; 24:19341-19347. [PMID: 30285312 DOI: 10.1002/chem.201804449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Indexed: 01/10/2023]
Abstract
Four stable boron dipyrromethene (BODIPY)- and porphyrin-based bis-arylamine diradical dications were synthesized by two-electron oxidation of their neutral molecules. The two BODIPY-based dications have open-shell singlet ground states. UV/Vis absorption spectra of all four dications showed large redshifts in the NIR region compared to their neutral precursors with absorption maxima at 1274 and 1068 nm for the two BODIPY-based dications and 1746 and 2037 nm for the two porphyrin-based dications. Thus, two new types of NIR dyes with longer wavelengths are provided by the diradical-dication strategy, which can be applied for the generation of other NIR dyes with a range of different chromophores and auxochromes.
Collapse
Affiliation(s)
- Houjia Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Haiyan Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
48
|
Okamoto Y, Tanioka M, Muranaka A, Miyamoto K, Aoyama T, Ouyang X, Kamino S, Sawada D, Uchiyama M. Stable Thiele’s Hydrocarbon Derivatives Exhibiting Near-Infrared Absorption/Emission and Two-Step Electrochromism. J Am Chem Soc 2018; 140:17857-17861. [DOI: 10.1021/jacs.8b11092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Okamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaru Tanioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuya Aoyama
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Xingmei Ouyang
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Next-Generation
Imaging Team, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Next-Generation
Imaging Team, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster for Pioneering
Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
49
|
Ito H, Sakai H, Okayasu Y, Yuasa J, Mori T, Hasobe T. Significant Enhancement of Absorption and Luminescence Dissymmetry Factors in the Far‐Red Region: A Zinc(II) Homoleptic Helicate Formed by a Pair of Achiral Dipyrromethene Ligands. Chemistry 2018; 24:16889-16894. [DOI: 10.1002/chem.201804171] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Hiroaki Ito
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama Kanagawa 223-8522 Japan
| | - Hayato Sakai
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama Kanagawa 223-8522 Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry Faculty of Science Tokyo University of Science, Shinjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Faculty of Science Tokyo University of Science, Shinjuku-ku Tokyo 162-8601 Japan
| | - Tadashi Mori
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Osaka 565-0871 Japan
| | - Taku Hasobe
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
50
|
|