1
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2024. [DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Peng W, Liu J, Li Z, Wang Y, Sun Y, Chen Y, Lefer DJ, Guo W, Zheng Y. A Bifunctional Sulfide Donor Approach for Ischemic Stroke: Leveraging Butylphthalide as a Carrier for Sulfide Prodrug. J Med Chem 2024; 67:20695-20707. [PMID: 39565094 DOI: 10.1021/acs.jmedchem.4c02454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The physiological and pharmacological benefits of hydrogen sulfide (H2S) are well established, and various H2S and persulfide donors have been developed. However, few studies have examined the in vivo pharmacokinetics of sulfur donors, as most activity and metabolism tests are conducted in vitro, limiting insights into their clinical applications. This study utilized butylphthalide (NBP), an approved drug for ischemic stroke, by integrating H2S and persulfide moieties directly into NBP's carbonyl groups. We systematically compared drug metabolism in vitro and in vivo and evaluated donor efficacy in ischemia-reperfusion models. Results revealed notable in vitro/in vivo metabolic differences, with thioacid-containing donors showing promising therapeutic effects in cerebral ischemia, reducing infarct size, oxidative stress, and neuronal apoptosis.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhen Li
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S, Los Angeles, California 90048, United States
| | - Yuanan Wang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yangqian Sun
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yanzhao Chen
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - David J Lefer
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S, Los Angeles, California 90048, United States
| | - Weiwei Guo
- School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
4
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Lu H, Zeng H, Wei W, Chen Y, Zhou Z, Ning X, Hu P. A fluorogenic ROS-triggered hydrogen sulfide donor for alleviating cerebral ischemia-reperfusion injury. Theranostics 2024; 14:7589-7603. [PMID: 39659579 PMCID: PMC11626942 DOI: 10.7150/thno.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Cerebral ischemia-reperfusion injury is a severe neurovascular disease that urgently requires effective therapeutic interventions. Recently, hydrogen sulfide (H2S) has garnered significant attention as a potential treatment for stroke; however, the precise and targeted delivery of H2S remains a considerable challenge for its clinical application. Methods: We have developed HSDF-NH2, a novel H2S donor characterized by high selectivity, self-reporting capabilities, and the ability to penetrate the blood-brain barrier (BBB). Results: HSDF-NH2 effectively scavenges reactive oxygen species (ROS) while generating H2S, with emitted fluorescence facilitating the visualization and quantification of H2S release. This compound has demonstrated protective effects against cerebral ischemia-reperfusion (I/R) injury and contributes to the reconstruction of brain structure and function in a rat stroke model (tMCAO/R). Conclusion: As a ROS-responsive, self-reporting, and fluorescent H2S donor, HSDF-NH2 holds considerable promise for the treatment of ischemic diseases beyond stroke.
Collapse
Affiliation(s)
- Huangjie Lu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Wenlong Wei
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
| | - Yuying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ziqiang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xuyang Ning
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
6
|
Liu H, Yuan M, Wang Y, Wang M, Liu H, Xu K. A coumarin-based near infrared fluorescent probe for the detection of hydrogen sulfide/sulfur dioxide and mitochondrial viscosity. SENSORS AND ACTUATORS B: CHEMICAL 2024; 418:136243. [DOI: 10.1016/j.snb.2024.136243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Peng W, Qin L, Wang T, Sun Y, Li Z, Lefer DJ, Luo C, Ye F, Wang B, Guo W, Zheng Y. A Highly Atom-Efficient Prodrug Approach to Generate Synergy between H 2S and Nonsteroidal Anti-inflammatory Drugs and Improve Safety. J Med Chem 2024; 67:17350-17362. [PMID: 39316761 DOI: 10.1021/acs.jmedchem.4c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Efforts to synergize hydrogen sulfide (H2S) with NSAIDs have faced challenges due to complex structural entities and independent release kinetics. This study presents a highly atom-efficient approach of using a thiocarboxylic acid (thioacid) as a novel H2S releasing precursor and successfully employs it to modify NSAIDs, which offers several critical advantages. First, thioacid-modified NSAID is active in inhibiting cyclooxygenase, sometimes with improved potency. Second, this prodrug approach avoids introducing extra structural moieties, allowing for the release of only the intended active principals. Third, the release of H2S and NSAID is concomitant, thus optimally synchronizing the concentration profiles of the two active principals. The design is based on our discovery that esterases can directly and efficiently hydrolyze thiocarboxylic acids, enabling controlled release H2S. This study demonstrates the proof of principle through synthesizing analogs, assesses release kinetics, enzyme inhibition, and pharmacological efficacy, and evaluates toxicity and gut microbiota regulation in animal models.
Collapse
Affiliation(s)
- Wen Peng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lixiao Qin
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tianci Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yangqian Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhen Li
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - David J Lefer
- Department of Cardiac Surgery Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
8
|
Tong X, Chen J, Wang M, Liu J, Li J, Wang X, Zuo Y, Xu X, Wang Y, Wang B, Guo W, Zheng Y. Development of a Bioorthogonal Click-to-Release Reaction for Hydrogen Polysulfide (H 2S n) Detection. Anal Chem 2024; 96:15631-15639. [PMID: 39287125 DOI: 10.1021/acs.analchem.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this study, we present an innovative "click-to-release" strategy for the design of highly specific H2Sn bioorthogonal probes that undergo a specific click reaction with H2Sn and release fluorophores by a following rearrangement. A library of cyclooctyne derivatives was established and successfully demonstrated the availability of the release strategy. Then, a model probe CM-CT was synthesized, which can achieve effective fluorophore release (>80%) in the presence of a H2Sn donor. To further validate the application of this class of probes, a new probe QN-RHO-CT based on Rhodamine 110 was developed. This probe showed good water solubility (>160 μM) and fast release kinetics and can achieve selective H2Sn detection in living cells. We used this probe to study the process of H2S-mediated protein S-persulfidation and demonstrated that excess H2S would directly react with protein persulfides to generate H2S2 and reduce the persulfides to thiols. Additionally, we elucidated the click-to-release mechanism in our design through a detailed mechanistic study, confirming the generation of the key intermediate α, β-unsaturated cyclooctanethione. This bioorthogonal click-to-release reaction provides a useful tool for investigating the function of H2Sn and paves the way for biological studies on H2Sn.
Collapse
Affiliation(s)
- Xidan Tong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Maolin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianru Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xin Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yifei Zuo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yichen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Weiwei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yueqin Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
9
|
Zhu C, Chen C, Weaver DE, Lukesh JC. Esterase-Activated Hydrogen Sulfide Donors with Self-Reporting Fluorescence Properties and Highly Tunable Rates of Delivery. ACS Chem Biol 2024; 19:1910-1917. [PMID: 39162330 DOI: 10.1021/acschembio.4c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a significant biomolecule with diverse activities, akin to other gaseous signaling molecules such as nitric oxide (NO) and carbon monoxide (CO). In the present study, we report on the development of esterase-activated donors that track their direct cellular donation of H2S by enlisting a cyclization reaction onto a thioamide that forms a fluorogenic byproduct. This simple donor design provides a noninvasive method for monitoring the biological delivery and activity of H2S, along with access to a library of compounds with highly variable rates of H2S delivery. These studies culminated with the identification of a slow-release, yet highly efficient, donor (ZL-DMA-Ph) that was shown to self-report its gradual and continuous cellular donation of H2S for up to 24 h which, in addition to better mimicking the natural biosynthesis of H2S, provided impressive cytoprotection in a cellular cardiotoxicity model, even at submicromolar concentrations. In total, these findings indicate that the esterase-triggered fluorogenic donors identified in this study will offer new opportunities for exploring the chemical biology and therapeutic potential of exogenous H2S supplementation.
Collapse
Affiliation(s)
- Changlei Zhu
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Chen Chen
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Devin E Weaver
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
10
|
Sufian A, Parihar N, Badirujjaman M, Barman P, Kesarwani R, Pemmaraju DB, Bhabak KP. Inflammatory-stimuli-responsive turn-on NIR fluorogenic theranostic prodrug: adjuvant delivery of diclofenac and hydrogen sulfide attenuates acute inflammatory disorders. J Mater Chem B 2024; 12:4248-4261. [PMID: 38602387 DOI: 10.1039/d3tb02552g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 μM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati 781101, Assam, India.
| | - Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rahul Kesarwani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati 781101, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
11
|
Li H, Liu Y, Wang Y, Li J, Li Y, Zhang G, Zhang C, Shuang S, Dong C. A near infrared fluorescence probe with dual-site for hydrogen sulfide and sulfur dioxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123523. [PMID: 37857073 DOI: 10.1016/j.saa.2023.123523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as double-edged swords. They are toxic gases at high concentration, and at low concentration they are beneficial to the human. Therefore, it is of great significance to develop single chemosensor which enable to detect them with different fluorescence signal changes. In this work, a novel dual-site fluorescence probe (AMN-SSPy) with near infrared emission (675 nm) was designed, which realized quantitative detection for H2S and SO2 by fluorescence enhancement and fluorescence quenching, respectively. AMN-SSPy showed advantages such as excellent selectivity to H2S and SO2, strong anti-interference ability, high sensitivity for H2S (LOD 1.03 µM for H2S and 77.08 µM for SO2) and low toxicity. In addition, AMN-SSPy possessed the capacity to successfully image the endogenous and exogenous H2S, and it was also used to demonstrate that Ca2+ could induce accumulation of H2S in cell and zebrafish. Finally, the rapid detection of SO2 by AMN-SSPy in real samples was also established.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinshan Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Ali R, Sen S, Hameed R, Nazir A, Verma S. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. J Control Release 2024; 365:132-160. [PMID: 37972768 DOI: 10.1016/j.jconrel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
13
|
Zhao Z, Chen L, Yang C, Guo W, Huang Y, Wang W, Wan M, Mao C, Shen J. Nanomotor-based H 2S donor with mitochondrial targeting function for treatment of Parkinson's disease. Bioact Mater 2024; 31:578-589. [PMID: 37771932 PMCID: PMC10522957 DOI: 10.1016/j.bioactmat.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Reduction of endogenous hydrogen sulfide (H2S) is considered to have an important impact on the progress of Parkinson's disease (PD), thus exogenous H2S supplementation is expected to become one of the key means to treat PD. However, at present, it is difficult for H2S donors to effectively penetrate the blood brain barrier (BBB), selectively release H2S in brain, and effectively target the mitochondria of neuron cells. Herein, we report a kind of nanomotor-based H2S donor, which is obtained by free radical polymerization reaction between l-cysteine derivative modified-polyethylene glycol (PEG-Cys) and 2-methacryloyloxyethyl phosphorylcholine (MPC). This kind of H2S donor can not only effectively break through BBB, but also be specifically catalyzed by cystathionine β-synthase (CBS) in neurons of PD site in brain and 3-mercaptopyruvate sulfurtransferase (3-MST) in mitochondria to produce H2S, endowing it with chemotaxis/motion ability. Moreover, the unique chemotaxis effect of nanomotor can realize the purpose of precisely targeting brain and the mitochondria of damaged neuron cytopathic diseases. This kind of nanomotor-based H2S donor is expected to enrich the current types of H2S donors and provide new ideas for the treatment of PD.
Collapse
Affiliation(s)
| | | | | | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yali Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenjing Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
14
|
Li W, Wang Y, Zhang R. Theoretical investigation on the sensing mechanism of a triphenylamine-benzofuran derived fluorescent probe for the detection of H 2S n. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123125. [PMID: 37478759 DOI: 10.1016/j.saa.2023.123125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
As one of the members of reactive sulfur species, hydrogen polysulfide (H2Sn, n > 1) plays an important role in enzyme activity and nervous system regulations, and the sensing mechanism study is of great significance for the design of novel efficient probes. Herein, we investigated the sensing mechanism of an efficient triphenylamine-benzofuran-based probe (TBF-SS) towards H2Sn using DFT method. The inherent fluorescence quenching of the probe is dominated by the twisted intramolecular charge transfer (TICT) as revealed by the torsional potential curve calculations. When the nitro fluorophenyl group is replaced by a hydroxyl group in the reaction with H2Sn, the TICT is eliminated and the excited state can return to the ground state in a radiative way, leading to strong fluorescence emission.
Collapse
Affiliation(s)
- Wenzhi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, PR China
| | - Yuxi Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
15
|
Sufian A, Badirujjaman M, Barman P, Bhabak KP. Dual-Stimuli-Activatable Hybrid Prodrug for the Self-Immolative Delivery of an Anticancer Agent and Hydrogen Sulfide with Turn-On Fluorescence. Chemistry 2023; 29:e202302197. [PMID: 37665099 DOI: 10.1002/chem.202302197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Stimuli-responsive fluorogenic prodrugs are advantageous for the targeted drug delivery enabling real-time non-invasive monitoring with turn-on fluorescence. We report herein the dual-stimuli (ROS and CA)-responsive thiocarbamate-based prodrug (AM-TCB) for the turn-on fluorogenic delivery of the naphthalimide-based anticancer agent amonafide along with the gasotransmitter hydrogen sulfide (H2 S). A carbamate-based prodrug AM-CB was also designed, capable of releasing the anticancer agent amonafide without any H2 S. The prodrugs were synthesized using multi-step organic synthesis. UV-Vis and fluorescence spectroscopic studies revealed selective reactivity of the boronate ester group of prodrugs towards ROS (primarily H2 O2 ) with the release of amonafide and COS/CO2 via self-immolative processes. Hydrolysis of the generated COS by carbonic anhydrase (CA) produces H2 S. While the prodrug AM-TCB retained the anticancer activity of free amonafide in cancer cells (MDA-MB-231 and HeLa), unlike amonafide, it enhanced the cellular viability of the non-malignant cells (HEK-293). Fluorescence imaging in HeLa cells revealed the simultaneous delivery of the anticancer agent and H2 S from AM-TCB with turn-on fluorescence. Western blot studies further revealed the cytoprotective effects of the released H2 S from AM-TCB. The present adjuvant strategy therefore would be helpful in future for ameliorating the anticancer drug-induced side-effects.
Collapse
Affiliation(s)
- Abu Sufian
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pallavi Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
16
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
17
|
Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol 2023; 214:115642. [PMID: 37321416 PMCID: PMC10529722 DOI: 10.1016/j.bcp.2023.115642] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Carbon monoxide (CO) is an endogenously produced gaseous signaling molecule with demonstrated pharmacological effects. In studying CO biology, three delivery forms have been used: CO gas, CO in solution, and CO donors of various types. Among the CO donors, four carbonyl complexes with either a transition metal ion or borane (BH3) (termed CO-releasing molecules or CORMs) have played the most prominent roles appearing in over 650 publications. These are CORM-2, CORM-3, CORM-A1, and CORM-401. Intriguingly, there have been unique biology findings that were only observed with these CORMs, but not CO gas; yet these properties were often attributed to CO, raising puzzling questions as to why CO source would make such a fundamental difference in terms of CO biology. Recent years have seen a large number of reports of chemical reactivity (e.g., catalase-like activity, reaction with thiol, and reduction of NAD(P)+) and demonstrated CO-independent biological activity for these four CORMs. Further, CORM-A1 releases CO in an idiosyncratic fashion; CO release from CORM-401 is strongly influenced or even dependent on reaction with an oxidant and/or a nucleophile; CORM-2 mostly releases CO2, not CO, after a water-gas shift reaction except in the presence of a strong nucleophile; and CORM-3 does not release CO except in the presence of a strong nucleophile. All these beg the question as to what constitutes an appropriate CO donor for studying CO biology. This review critically summarizes literature findings related to these aspects, with the aim of helping result interpretation when using these CORMs and development of essential criteria for an appropriate donor for studying CO biology.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Yu B, Yang X, Yuan Z, Wang B. Prodrugs of sulfide and persulfide species: Implications in their different pharmacological activities. Curr Opin Chem Biol 2023; 75:102329. [PMID: 37279623 DOI: 10.1016/j.cbpa.2023.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Reactive sulfur species (RSS), such as H2S, hydrogen polysulfide (H2Sn, n ≥ 2), and hydropersulfides (RSSnH, n ≥ 1), are known to mediate diverse signaling pathways and possess a plethora of exciting therapeutic opportunities. Historically, due to the rapid inter-conversion among those species in vivo, the biological differences of distinct sulfur species were often overlooked. These species were considered to enrich the global sulfur pool in almost an equal fashion. However, advancement in this field has revealed that sulfur species at different oxidation states result in different pharmacological effects including scavenging reactive oxygen species (ROS), activating ion channels, and exhibiting analgesic effects. Here, we summarize recent advances in studying the biological and pharmacological differences of distinct sulfur species; discuss this phenomenon from the view of chemical properties and sulfur signaling pathways; and lay out a roadmap to transforming such new knowledge into general principles in developing sulfur-based therapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
19
|
Kang X, Ye H, Liu S, Tu X, Zhu J, Sun H, Yi L. Insights into self-degradation of cysteine esters and amides under physiological conditions yield new cleavable chemistry. Chem Commun (Camb) 2023; 59:4233-4236. [PMID: 36942527 DOI: 10.1039/d3cc00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An unprecedented H2S release from cysteine esters and amides (CysO/NHR) under physiological conditions was discovered and the plausible mechanism was proposed. Alkylation of the amino moiety of cysteine esters enables the H2S release to be tuned and further provides support to the mechanistic insights. This discovery not only provides new insights into several fundamental science issues including non-enzymatic H2S-produced pathways, but also inspires new tunable cleavable motifs for sustained release of arylthiols and even for prodrug design.
Collapse
Affiliation(s)
- Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Shanshan Liu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xiaoqiang Tu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Jiqin Zhu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 TatChee Avenue, Kowloon, Hong Kong, China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
20
|
Sawase LR, C V J, Manna S, Chakrapani H. A modular scaffold for triggerable and tunable nitroxyl (HNO) generation with a fluorescence reporter. Chem Commun (Camb) 2023; 59:3415-3418. [PMID: 36852903 DOI: 10.1039/d2cc06134a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Nitroxyl (HNO) is a short-lived mediator of cell signalling and can enhance the sulfane sulfur pool, a cellular antioxidant reservoir, by reacting with hydrogen sulfide (H2S). Here, we report esterase-activated HNO-generators that are suitable for tunable HNO release and the design of these donors allows for real-time monitoring of HNO release. These tools will help gain a better understanding of the cross-talk among short-lived gaseous signalling molecules that have emerged as major players in health and disease.
Collapse
Affiliation(s)
- Laxman R Sawase
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Jishnu C V
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
21
|
Yang X, Tripathi R, Wang M, Lu W, Anifowose A, Tan C, Wang B. Toward "CO in a Pill": Silica-Immobilized Organic CO Prodrugs for Studying the Feasibility of Systemic Delivery of CO via In Situ Gastrointestinal CO Release. Mol Pharm 2023; 20:1850-1856. [PMID: 36802675 PMCID: PMC9997063 DOI: 10.1021/acs.molpharmaceut.2c01104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Carbon monoxide (CO), an endogenous signaling molecule, is known to exert a range of pharmacological effects, including anti-inflammation, organ protection, and antimetastasis in various animal models. We have previously shown the ability of organic prodrugs to deliver CO systemically through oral administration. As part of our efforts for the further development of these prodrugs, we are interested in minimizing the potential negative impact of the "carrier" portion of the prodrug. Along this line, we have previously published our work on using benign "carriers" and physically trapping the "carrier" portion in the gastrointestinal (GI) tract. We herein report our feasibility studies on using immobilized organic CO prodrugs for oral CO delivery while minimizing systemic exposure to the prodrug and the "carrier portion." In doing so, we immobilize a CO prodrug to silica microparticles, which are generally recognized as safe by the US FDA and known to provide large surface areas for loading and water accessibility. The latter point is essential for the hydrophobicity-driven activation of the CO prodrug. Amidation-based conjugation with silica is shown to provide 0.2 mmol/g loading degree, effective prodrug activation in buffer with comparable kinetics as the parent prodrug, and stable tethering to prevent detachment. One representative silica conjugate, SICO-101, is shown to exhibit anti-inflammation activity in LPS-challenged RAW264.7 cells and to deliver CO systemically in mice through oral administration and GI CO release. We envision this strategy as a general approach for oral CO delivery to treat systemic and GI-specific inflammatory conditions.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38677, United States
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Abiodun Anifowose
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38613, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
22
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
23
|
Dong R, Yang X, Wang B, Ji X. Mutual leveraging of proximity effects and click chemistry in chemical biology. Med Res Rev 2023; 43:319-342. [PMID: 36177531 DOI: 10.1002/med.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Nature has the remarkable ability to realize reactions under physiological conditions that normally would require high temperature and other forcing conditions. In doing so, often proximity effects such as simultaneous binding of two reactants in the same pocket and/or strategic positioning of catalytic functional groups are used as ways to achieve otherwise kinetically challenging reactions. Though true biomimicry is challenging, there have been many beautiful examples of how to leverage proximity effects in realizing reactions that otherwise would not readily happen under near-physiological conditions. Along this line, click chemistry is often used to endow proximity effects, and proximity effects are also used to further leverage the facile and bioorthogonal nature of click chemistry. This review brings otherwise seemingly unrelated topics in chemical biology and drug discovery under one unifying theme of mutual leveraging of proximity effects and click chemistry and aims to critically analyze the biomimicry use of such leveraging effects as powerful approaches in chemical biology and drug discovery. We hope that this review demonstrates the power of employing mutual leveraging proximity effects and click chemistry and inspires the development of new strategies that will address unmet needs in chemistry and biology.
Collapse
Affiliation(s)
- Ru Dong
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Cyclodextrin Metal-Organic Framework as a Broad-Spectrum Potential Delivery Vehicle for the Gasotransmitters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020852. [PMID: 36677910 PMCID: PMC9866194 DOI: 10.3390/molecules28020852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The important role of gasotransmitters in physiology and pathophysiology suggest employing gasotransmitters for biomedical treatment. Unfortunately, the difficulty in storage and controlled delivery of these gaseous molecules hindered the development of effective gasotransmitters-based therapies. The design of a safe, facile, and wide-scale method to delivery multiple gasotransmitters is a great challenge. Herein, we use an ultrasonic assisted preparation γ-cyclodextrin metal organic framework (γ-CD-MOF) as a broad-spectrum delivery vehicle for various gasotransmitters, such as SO2, NO, and H2S. The release rate of gasotransmitters could be tuned by modifying the γ-CD-MOF with different Pluronics. The biological relevance of the exogenous gasotransmitters produced by this method is evidenced by the DNA cleavage ability and the anti-inflammatory effects. Furthermore, the γ-CD-MOF composed of food-grade γ-CD and nontoxic metal salts shows good biocompatibility and particle size (180 nm). Therefore, γ-CD-MOF is expected to be an excellent tool for the study of co-delivery and cooperative therapy of gasotransmitters.
Collapse
|
25
|
Rong F, Wang T, Zhou Q, Peng H, Yang J, Fan Q, Li P. Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioact Mater 2023; 19:198-216. [PMID: 35510171 PMCID: PMC9034248 DOI: 10.1016/j.bioactmat.2022.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) plays an important role in regulating various pathological processes such as protecting mammalian cell from harmful injuries, promoting tissue regeneration, and regulating the process of various diseases caused by physiological disorders. Studies have revealed that the physiological effects of H2S are highly associated with its concentrations. At relatively low concentration, H2S shows beneficial functions. However, long-time and high-dose donation of H2S would inhibit regular biological process, resulting in cell dysfunction and apoptosis. To regulate the dosage of H2S delivery for precision medicine, H2S delivery systems with intelligent characteristics were developed and a variety of biocompatibility polymers have been utilized to establish intelligent polymeric H2S delivery systems, with the abilities to specifically target the lesions, smartly respond to pathological microenvironments, as well as real-timely monitor H2S delivery and lesion conditions by incorporating imaging-capable moieties. In this review, we focus on the design, preparation, and therapeutic applications of intelligent polymeric H2S delivery systems in cardiovascular therapy, inflammatory therapy, tissue regenerative therapy, cancer therapy and bacteria-associated therapy. Strategies for precise H2S therapies especially imaging-guided H2S theranostics are highlighted. Since H2S donors with stimuli-responsive characters are vital components for establishing intelligent H2S delivery systems, the development of H2S donors is also briefly introduced. H2S is an endogenous gasotransmitter that plays important role in regulating various physiological and pathological pathways. Controlled H2S delivery is vital since the therapeutic effects of H2S are highly associated with its concentrations. Intelligent polymeric H2S delivery systems possess specific targeting, stimuli responsive and imaging guided capabilities, representing a strategic option for next generation of therapies.
Collapse
|
26
|
Bauer N, Yang X, Yuan Z, Wang B. Reassessing CORM-A1: redox chemistry and idiosyncratic CO-releasing characteristics of the widely used carbon monoxide donor. Chem Sci 2023; 14:3215-3228. [PMID: 36970102 PMCID: PMC10033827 DOI: 10.1039/d3sc00411b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Redox activity and unreliable carbon monoxide production of CO donor, CORM-A1, presents new complications in its use for studying CO biology.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
27
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
28
|
Jiang S, Chen Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front Mol Biosci 2022; 9:928287. [PMID: 36339716 PMCID: PMC9626809 DOI: 10.3389/fmolb.2022.928287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that brings about great social and economic burden, with oxidative stress and inflammation affecting the whole disease progress. Sulfur compounds such as hydrogen sulfide (H2S), thiols, and persulfides/polysulfides have intrinsic antioxidant and anti-inflammatory ability, which is engaged in the pathophysiological process of COPD. Hydrogen sulfide mainly exhibits its function by S-sulfidation of the cysteine residue of the targeted proteins. It also interacts with nitric oxide and acts as a potential biomarker for the COPD phenotype. Thiols’ redox buffer such as the glutathione redox couple is a major non-enzymatic redox buffer reflecting the oxidative stress in the organism. The disturbance of redox buffers was often detected in patients with COPD, and redressing the balance could delay COPD exacerbation. Sulfane sulfur refers to a divalent sulfur atom bonded with another sulfur atom. Among them, persulfides and polysulfides have an evolutionarily conserved modification with antiaging effects. Sulfur compounds and their relative signaling pathways are also associated with the development of comorbidities in COPD. Synthetic compounds which can release H2S and persulfides in the organism have gradually been developed. Naturally extracted sulfur compounds with pharmacological effects also aroused great interest. This study discussed the biological functions and mechanisms of sulfur compounds in regulating COPD and its comorbidities.
Collapse
|
29
|
Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232012202. [PMID: 36293058 PMCID: PMC9603526 DOI: 10.3390/ijms232012202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as the third “gasotransmitters” and has a crucial function in the diversity of physiological functions in mammals. In particular, H2S is considered indispensable in preventing the development of liver inflammation in the case of excessive caloric ingestion. Note that the concentration of endogenous H2S was usually low, making it difficult to discern the precise biological functions. Therefore, exogenous delivery of H2S is conducive to probe the physiological and pathological roles of this gas in cellular and animal studies. In this review, the production and metabolic pathways of H2S in vivo, the types of donors currently used for H2S release, and study evidence of H2S improvement effects on nonalcoholic fatty liver disease are systematically introduced.
Collapse
|
30
|
Bhattacherjee D, Raina K, Mandal TK, Thummer RP, Bhabak KP. Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free Radic Biol Med 2022; 191:82-96. [PMID: 36038037 DOI: 10.1016/j.freeradbiomed.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The potent anti-cancer activity of naturally occurring organopolysulfides has attracted wide research attention over the last two decades. Sustained donation of hydrogen sulfide (H2S) from organopolysulfides is found to be beneficial for the treatment of several organ-specific cancers. In the present study, for the first time, the mechanism of action for the potent anti-cancer activity of bis(3,5-dimethoxybenzyl) trisulfide 4 against highly aggressive triple-negative breast cancer cells (MDA-MB-231) is described. Preliminary in vitro studies revealed potent anti-proliferative activity of the trisulfide 4 against triple-negative breast cancer cells with an IC50 value of 1.0 μM. Mechanistic studies reveal that the compound exhibited anti-cancer activity, primarily by targeting and suppressing the Wnt/β-catenin signaling pathway. The inactivation of the β-catenin level was associated with the cell cycle arrest in the G2/M phase and the significant down-regulation of downstream signaling genes such as Cyclin D1 and c-Myc expression. Several control experiments with analogous organosulfur compounds and the key enzyme inhibitors reveal that the presence of a trisulfide unit in the compound is crucial for the desired inactivation of β-catenin expression, which is promoted by GSK-3β-induced phosphorylation of β-catenin and its proteasomal degradation. Moreover, the trisulfide unit or the released H2S induced down-regulation of the p53 expression with the possible S-sulfhydration process led to p53-independent up-regulation of p21 expression. Therefore, the key results of this study highlighting the potency of synthetic benzylic organotrisulfide and the released H2S towards the growth inhibition of triple-negative breast cancer via Wnt/β-catenin signaling pathway would certainly be helpful for further studies and developing small-molecule anti-cancer therapeutics in future.
Collapse
Affiliation(s)
- Debojit Bhattacherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Khyati Raina
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Tapas K Mandal
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajkumar P Thummer
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
31
|
Zhang J, Mu S, Wang W, Sun H, Li S, Shi X, Liu Y, Liu X, Zhang H. Design strategy for an analyte-compensated fluorescent probe to reduce its toxicity. Chem Commun (Camb) 2022; 58:9136-9139. [PMID: 35881542 DOI: 10.1039/d2cc02789e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During biological detection, the toxicity caused by probes to living organisms is neglected. In this study, an analyte-compensated fluorescent probe (NP-SN3) was constructed for the detection of H2S. Through experiments with HepG2 cells and zebrafish embryos and larvae, the NP-SN3 probe showed no significant difference in imaging performance compared with the traditional probe (NP-N3) but exhibited lower detection-induced toxicity in the imaging of liver fibrosis in activated HSC-T6 cells. During the development of zebrafish embryos and continuous administration in rats, NP-SN3 showed a lower death rate, higher hatchability and lower malformation in zebrafish embryos and milder pathological symptoms in stained rat tissues.
Collapse
Affiliation(s)
- Jinlong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Weilin Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xuezhao Shi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yunbo Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
32
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
33
|
Mhatre S, Opere CA, Singh S. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies. J Control Release 2022; 347:256-269. [PMID: 35526614 DOI: 10.1016/j.jconrel.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Glaucoma is an optic neuropathy disorder marked by progressive degeneration of the retinal ganglion cells (RGC). It is a leading cause of blindness worldwide, prevailing in around 2.2% of the global population. The hallmark of glaucoma, intraocular pressure (IOP), is governed by the aqueous humor dynamics which plays a crucial role in the pathophysiology of the diesease. Glaucomatous eye has an IOP of more than 22 mmHg as compared to normotensive pressure of 10-21 mmHg. Currently used treatments focus on reducing the elevated IOP through use of classes of drugs that either increase aqueous humor outflow and/or decrease its production. However, effective treatments should not only reduce IOP, but also offer neuroprotection and regeneration of RGCs. Hydrogen Sulfide (H2S), a gasotransmitter with several endogenous functions in mammalian tissues, is being investigated for its potential application in glaucoma. In addition to decreasing IOP by increasing aqueous humor outflow, it scavenges reactive oxygen species, upregulates the cellular antioxidant glutathione and protects RGCs from excitotoxicity. Despite the potential of H2S in glaucoma, its delivery to anterior and posterior regions of the eye is a challenge due to its unique physicochemical properties. Firstly, development of any delivery system should not require an aqueous environment since many H2S donors are susceptible to burst release of the gas in contact with water, causing potential toxicity and adverse effects owing to its inherent toxicity at higher concentrations. Secondly, the release of the gas from the donor needs to be sustained for a prolonged period of time to reduce dosing frequency as per the requirements of regulatory bodies. Lastly, the delivery system should provide adequate bioavailability throughout its period of application. Hence, an ideal delivery system should aim to tackle all the above challenges related to barriers of ocular delivery and physicochemical properties of H2S itself. This review discusses the therapeutic potential of H2S, its delivery challenges and strategies to overcome the associated chalenges.
Collapse
Affiliation(s)
- Susmit Mhatre
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Catherine A Opere
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Somnath Singh
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
34
|
Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo? Angew Chem Int Ed Engl 2022; 61:e202201668. [PMID: 35218121 DOI: 10.1002/anie.202201668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Sulfide and persulfide are chemically different and one might expect persulfide to be more effective in mediating sulfur signaling because persulfide can directly modify protein cysteine residue. However, rapid scrambling, and interconversions occur among sulfur species. Then there is the question of whether the chemical reactivity differences between sulfide and persulfide would translate into pharmacological differences. Utilizing a delivery system to generate pure hydrogen sulfide (H2 S), hydrogen persulfide (H2 S2 ), and N-acetyl-l-cysteine persulfide (N-CysSSH), we examined the activities of sulfide and persulfide in vitro and in vivo. Persulfide prodrugs exhibited increased activities compared to the H2 S prodrug. In particular, the H2 S2 prodrug offers much-elevated analgesic effects compared to the H2 S prodrug in vivo. Persulfide prodrugs also possess a reduced level of toxicity compared to the H2 S prodrug in vivo, indicating persulfide might represent a better therapeutic paradigm than H2 S.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ting Kang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yuan Xu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yiqing Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Yaru Ma
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
35
|
Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Yu B, Kang T, Xu Y, Liu Y, Ma Y, Ke B. Prodrugs of Persulfide and Sulfide: Is There a Pharmacological Difference between the Two in the Context of Rapid Exchanges among Various Sulfur Species In Vivo
?. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics Georgia State University Atlanta GA 30303 USA
| | - Ting Kang
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yuan Xu
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yiqing Liu
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Yaru Ma
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| | - Bowen Ke
- Department of Anesthesiology Laboratory of Anesthesia and Critical Care Medicine National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology West China Hospital Sichuan University Chengdu 610041 Sichuan P. R. China
| |
Collapse
|
37
|
Chen Y, Zhao R, Tang C, Zhang C, Xu W, Wu L, Wang Y, Ye D, Liang Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria‐Targeted Hydrogen Sulfide (H
2
S) Delivery System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinghan Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Chun Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| |
Collapse
|
38
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
39
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
40
|
Huang Y, Du Y, Su W. Convenient and Flexible Syntheses of gem-Dimethyl Carboxylic Triggers via Mono-Selective β-C(sp3)-H Arylation of Pivalic Acid with ortho-Substituted Aryl Iodides. Org Chem Front 2022. [DOI: 10.1039/d2qo00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a palladium(II)-catalyzed mono-selective C(sp3)-H arylation of pivalic acid for rapid construction of an important library of 3-aryl-2,2-dimethylpropanoic acids, especially those ortho-substituted-aryl compounds. The strategy greatly streamlines the...
Collapse
|
41
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
42
|
Jiao Y, Ye H, Huang H, Yi L, Sun L. Thiobenzophenones: tunable hydrolysis-based donors for intracellular H2S delivery. NEW J CHEM 2022. [DOI: 10.1039/d2nj01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, the third gasotransmitter, is involved in many physiological and pathological processes. Compounds that can release H2S slowly under physiological conditions are useful chemical tools for studying H2S biology as...
Collapse
|
43
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
44
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
45
|
Chen Y, Zhao R, Tang C, Zhang C, Xu W, Wu L, Wang Y, Ye D, Liang Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria-Targeted Hydrogen Sulfide (H 2 S) Delivery System. Angew Chem Int Ed Engl 2021; 61:e202112734. [PMID: 34806810 DOI: 10.1002/anie.202112734] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Hydrogen sulfide (H2 S) is an important endogenous gasotransmitter, but the targeted delivery and real-time feedback of exogenous H2 S are still challenging. With the aid of density functional theory (DFT) calculations, we designed a new 1,3-dithiolium-4-olate (DTO) compound, which can react with a strained alkyne via the 1,3-dipolar cycloaddition and the retro-Diels-Alder reaction to generate carbonyl sulfide (COS) as the precursor of H2 S, and a thiophene derivative with turn-on fluorescence. Moreover, the diphenylamino substituent in DTO greatly increases the mitochondrial targeting of this H2 S delivery system. Such a bioorthogonal click-and-release reaction has integrated three functions in one system for the first time: (1) in situ controllable H2 S release, (2) concomitant fluorescence response, and (3) mitochondria-targeted delivery. In addition, we investigated the mitochondrial membrane potential loss alleviation by using this system in H9c2 cells under oxidative stress.
Collapse
Affiliation(s)
- Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Chun Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
46
|
Design, synthesis and biological evaluation of new thiazole scaffolds as potential TRPM8 antagonists. Bioorg Med Chem Lett 2021; 52:128392. [PMID: 34606996 DOI: 10.1016/j.bmcl.2021.128392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
The preliminary results on the development of a viable methodology for the further functionalization of 4-hydroxythiazole derivatives to afford target TRPM8 antagonists are reported. The combined Sonogashira coupling/annulation reactions of the ethyl 2-(3-fluorophenyl)-4-tifluoromethylsulfonyloxy-1,3-thiazole-5-carboxylate have been applied to the synthesis of analogues of the selective blocker of TRPM8 DFL23448. Among all the synthetised derivatives, the most promising compound resulted to be active as TRPM8 blocker (IC50 = 4.06 µM), showing an excellent metabolic stability and no cytotoxic effects. Finally, in silico characterisation of the derivatives showed no violation of the drug-likeness rules.
Collapse
|
47
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
48
|
Ni X, Li X, Shen TL, Qian WJ, Xian M. A Sweet H 2S/H 2O 2 Dual Release System and Specific Protein S-Persulfidation Mediated by Thioglucose/Glucose Oxidase. J Am Chem Soc 2021; 143:13325-13332. [PMID: 34383487 DOI: 10.1021/jacs.1c06372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
H2S and H2O2 are two redox regulating molecules that play important roles in many physiological and pathological processes. While each of them has distinct biosynthetic pathways and signaling mechanisms, the crosstalk between these two species is also known to cause critical biological responses such as protein S-persulfidation. So far, many chemical tools for the studies of H2S and H2O2 have been developed, such as the donors and sensors for H2S and H2O2. However, these tools are normally targeting single species (e.g., only H2S or only H2O2). As such, the crosstalk and synergetic effects between H2S and H2O2 have hardly been studied with those tools. In this work, we report a unique H2S/H2O2 dual donor system by employing 1-thio-β-d-glucose and glucose oxidase (GOx) as the substrates. This enzymatic system can simultaneously produce H2S and H2O2 in a slow and controllable fashion, without generating any bio-unfriendly byproducts. This system was demonstrated to cause efficient S-persulfidation on proteins. In addition, we expanded the system to thiolactose and thioglucose-disulfide; therefore, additional factors (β-galactosidase and cellular reductants) could be introduced to further control the release of H2S/H2O2. This dual release system should be useful for future research on H2S and H2O2.
Collapse
Affiliation(s)
- Xiang Ni
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tun-Li Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
49
|
Bakalarz D, Korbut E, Yuan Z, Yu B, Wójcik D, Danielak A, Magierowska K, Kwiecień S, Brzozowski T, Marcinkowska M, Wang B, Magierowski M. Novel Hydrogen Sulfide (H 2S)-Releasing BW-HS-101 and Its Non-H 2S Releasing Derivative in Modulation of Microscopic and Molecular Parameters of Gastric Mucosal Barrier. Int J Mol Sci 2021; 22:5211. [PMID: 34069086 PMCID: PMC8155842 DOI: 10.3390/ijms22105211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5-50 μmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 μmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
- Department of Forensic Toxicology, Institute of Forensic Research, 31033 Cracow, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Slawomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| |
Collapse
|
50
|
Zhu C, Suarez SI, Lukesh JC. Illuminating and alleviating cellular oxidative stress with an ROS-activated, H2S-donating theranostic. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|