1
|
Wang J, Bai L, Huang T, Wang Y, Cheng Z, Liu Q, Su X, Zhao L, Lu F. A singlet oxygen-storing covalent organic framework for "Afterglow" photodynamic therapy. J Colloid Interface Sci 2024; 673:679-689. [PMID: 38901358 DOI: 10.1016/j.jcis.2024.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Photodynamic therapy (PDT) is an emerging treatment but often restricted by the availability of oxygen. Enhancing the lifespan of singlet oxygen (1O2) by fractionated generation is an effective approach to improve the efficacy of PDT. Herein, an imine-based nanoscale COF (TpDa-COF) has been synthesized and functionalized with a pyridone-derived structure (Py) to create a 1O2-storing nanoplatform TpDa-COF@Py, which can reversibly capture and release 1O2. Under 660 nm laser exposure, Py interacts with 1O2 produced by the porphyrin motif in COF backbones to generate 1O2-enriched COF (TpDa-COF@Py + hv), followed by the release of 1O2 through retro-Diels-Alder reactions at physiological temperatures. The continuous producing and releasing of 1O2 upon laser exposure leads to an "afterglow" effect and a prolonged 1O2 lifespan. In vitro cytotoxicity assays demonstrates that TpDa-COF@Py + hv exhibits an extremely low half-maximal inhibitory concentration (IC50) of 0.54 µg/mL on 4T1 cells. Remarkably, the Py-mediated TpDa-COF@Py nanoplatform demonstrates enhanced cell-killing capability under laser exposure, attributed to the sustained 1O2 cycling, compared to TpDa-COF alone. Further in vivo assessment highlights the potential of TpDa-COF@Py + hv as a promising strategy to enhance phototheronostics and achieve effective tumor regression. Accordingly, the study supplies a generalized 1O2 "afterglow" nanoplatform to improve the effectiveness of PDT.
Collapse
Affiliation(s)
- Jiahui Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China
| | - Li Bai
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Tiao Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China
| | - Yonghong Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| | - Linlu Zhao
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570216, China.
| |
Collapse
|
2
|
Wang Y, Frascella F, Gaglio CG, Pirri CF, Wei Q, Roppolo I. Vat Photopolymerization 3D Printing of Hydrogels Embedding Metal-Organic Frameworks for Photodynamic Antimicrobial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57778-57791. [PMID: 39399980 DOI: 10.1021/acsami.4c15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Given the variability in wounds based on the underlying causes, personalized medicine and tailored care for patients with wounds are required to ensure optimal therapeutic outcomes. With the emergence of high-precision and high-efficiency photocuring 3D printing technology, there is the potential for its use in customizing precise shapes that can match complex wound sites, thereby providing better treatment for patients with wound infections. In this work, porphyrinic metal-organic framework (MOF) crystals, serving as the functional filler, were incorporated into gelatin methacrylate (GelMA) as a photocurable composite resin to investigate the capabilities of producing customizable wound dressings through vat photopolymerization 3D printing. The embedded MOF crystals allow for better control of the photopolymerization process due to photon competition with the photoinitiator, enabling the precise printing of complex structures. In addition, these crystals impart photothermal and photodynamic capabilities to the printed object. The antibacterial assay confirms the potent photothermal and photodynamic bactericidal properties of the printed GelMA/MOF hydrogels. The hydrogel with the highest MOF content exhibited over 99.99% antibacterial efficiency against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli after 30 min of light exposure (∼30 mW/cm2, λ ≥ 420 nm). Simultaneously, hemolysis and cytotoxicity evaluations validated their excellent biocompatibility. The findings presented here introduce a strategy for integrating photosensitive MOF and 3D printing to fabricate size-adjustable photothermal/photodynamic monoliths and patches, opening perspectives toward personalized treatment for wound management.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Cesare Gabriele Gaglio
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Qufu Wei
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| |
Collapse
|
3
|
Zhang G, Wang L, Qiao Y, Zhang F, Sun R, Akkaya EU. Overcoming multidrug resistance by a singlet oxygen releasing camptothecin-endoperoxide. Chem Commun (Camb) 2024; 60:12197-12200. [PMID: 39350695 DOI: 10.1039/d4cc03576c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We made structural modifications on the A-ring of camptothecin (CPT) by incorporating methyl substituents on positions 9 and 12. This allows conversion of the camptothecin-derivative to an endoperoxide (ENDO-CPT). The endoperoxide obtained this way thermally releases singlet oxygen, reverting back to the original 9,12-dimethylcamptothecin (DM-CPT) with a half-life of 1.4 hours at 37 °C. Endoperoxide modification yields a significant improvement in cytotoxicity against MDR-cell lines, compared to both CPT and DM-CPT. It appears that the simultaneous action of singlet oxygen and CPT is highly effective due to the targeting of P-glycoprotein by singlet oxygen.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Yuan Qiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Feiyan Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Rensong Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| |
Collapse
|
4
|
Moura RS, Afonso JPR, Mello DACPG, Palma RK, Oliveira-Silva I, Oliveira RF, Oliveira DAAP, Santos DB, Silva CHM, Guedes OA, Insalaco G, Oliveira LVF. Hydrogels Associated with Photodynamic Therapy Have Antimicrobial Effect against Staphylococcus aureus: A Systematic Review. Gels 2024; 10:635. [PMID: 39451287 PMCID: PMC11507634 DOI: 10.3390/gels10100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that causes infections ranging from mild superficial cases to more severe, potentially fatal conditions. Many photosensitisers used in photodynamic therapy are more effective against superficial infections due to limitations in treating deeper tissue infections. Recently, attention to this bacterium has increased due to the emergence of multidrug-resistant strains, which complicate antibiotic treatment. As a result, alternative therapies, such as antimicrobial photodynamic therapy (PDT), have emerged as promising options for treating non-systemic infections. PDT combines a photosensitiser (PS) with light and oxygen to generate free radicals that destroy bacterial structures. This systematic review evaluates the effectiveness of PDT delivered via different types of hydrogels in treating wounds, burns, and contamination by S. aureus. Following PRISMA 2020 guidelines, a bibliographic search was conducted in PubMed, Web of Science, and Scopus databases, including articles published in English between 2013 and 2024. Seven relevant studies were included, demonstrating evidence of PDT use against S. aureus in in vitro and in vivo studies. We concluded that PDT can effectively complement antimicrobial therapy in the healing of wounds and burns. The effectiveness of this technique depends on the PS used, the type of hydrogel, and the lesion location. However, further in vivo studies are needed to confirm the safety and efficacy of PDT delivered via hydrogels.
Collapse
Affiliation(s)
- Ricardo S. Moura
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - João Pedro R. Afonso
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Diego A. C. P. G. Mello
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Renata Kelly Palma
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
- Facultad de Ciencias de la Salud de Manresa, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08243 Manresa, Spain
| | - Iransé Oliveira-Silva
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Rodrigo F. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Deise A. A. P. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Dante B. Santos
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Carlos Hassel M. Silva
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| | - Orlando A. Guedes
- Graduate Master’s Degree Program in Dentistry, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil;
| | - Giuseppe Insalaco
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy;
| | - Luís V. F. Oliveira
- Human Movement and Rehabilitation, Graduate Program, Evangelical University of Goiás—UniEVANGÉLICA, Anápolis 75083-450, GO, Brazil; (R.S.M.); (J.P.R.A.); (D.A.C.P.G.M.); (R.K.P.); (I.O.-S.); (R.F.O.); (D.A.A.P.O.); (D.B.S.); (C.H.M.S.)
| |
Collapse
|
5
|
Zhang W, Kang M, Li X, Pan Y, Li Z, Zhang Y, Liao C, Xu G, Zhang Z, Tang BZ, Xu Z, Wang D. Fiber Optic-Mediated Type I Photodynamic Therapy of Brain Glioblastoma Based on an Aggregation-Induced Emission Photosensitizer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410142. [PMID: 39344926 DOI: 10.1002/adma.202410142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal human malignancies. The current standard-of-care is highly invasive with strong toxic side effects, leading to poor prognosis and high mortality. As a safe and effective clinical approach, photodynamic therapy (PDT) has emerged as a suitable option for GBM. Nevertheless, its implementation is significantly impeded by the limits of light penetration depth and the firm reliance on oxygen. To overcome these challenges, herein, a promising strategy that harnesses a modified optical fiber and less oxygen-dependent Type I aggregation-induced emission (AIE) photosensitizer (PS) is developed for the first time to realize in vivo GBM treatments. The proposed AIE PS, namely TTTMN, characterized by a highly twisted molecular architecture and a bulky spacer, exhibits enhanced near-infrared emission and strong production of hydroxyl and superoxide radicals at the aggregated state, thus affording efficient fluorescence imaging-guided PDT once formulated into nanoparticles. The inhibition of orthotopic and subcutaneous GBM xenografts provides compelling evidence of the treatment efficacy of Type I PDT irradiated through a tumor-inserted optical fiber. These findings highlight the substantially improved therapeutic outcomes achieved through fiber optic-mediated Type I PDT, positioning it as a promising therapeutic modality for GBM.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yinzhen Pan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuorong Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
6
|
Wang L, Wu H, Liu Z, Sun R, Li Y, Si Y, Nie Y, Qiao Y, Qian X, Zhang S, Li G, Sun W, Pan Y, Akkaya EU. N-Phenyl-2-Pyridone-Derived Endoperoxide Suppressing both Lung Cancer and Idiopathic Pulmonary Fibrosis Progression by Three-Pronged Action. Angew Chem Int Ed Engl 2024; 63:e202408473. [PMID: 38979839 DOI: 10.1002/anie.202408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
We report an endoperoxide compound (E5) which can deliver three therapeutic components by a thermal cycloreversion, namely, singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone (P5), thus targeting multiple mechanisms for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous environment, E5 undergoes clean reaction to afford three therapeutic components with a half-life of 8.3 hours without the generation of other by-products, which not only achieves good cytotoxicity toward lung cancer cells and decreases the levels of hypoxia-inducible factor 1α (HIF-1α) protein, but also inhibits the transforming growth factor β1 (TGF-β1) induced fibrosis in vitro. In vivo experiments also demonstrated the efficacy of E5 in inhibiting tumor growth and relieving idiopathic pulmonary fibrosis, while exhibiting good biocompatibility. Many lines of evidence reveal the therapeutic efficacy of singlet oxygen and 3-methyl-N-phenyl-2-pyridone for these two lung diseases, and triplet oxygen could downregulate HIF-1α and relieve tumor hypoxia which is a critical issue in photodynamic therapy (PDT). Unlike other combination therapies, in which multiple therapeutic agents are given in independent formulations, our work demonstrates single molecule endoperoxide prodrugs could be developed as new platforms for treatment of cancers and related diseases.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Hao Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Rensong Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yanping Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yu Si
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yun Nie
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yuan Qiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Xiao Qian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Shengli Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
7
|
Liu C, Liu C, Ji X, Zhao W, Dong X. Synthesis and Photodynamic Activities of Pyridine- or Pyridinium-Substituted Aza-BODIPY Photosensitizers. J Med Chem 2024; 67:15908-15924. [PMID: 39167079 DOI: 10.1021/acs.jmedchem.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this work, various novel pyridinyl- and pyridinium-modified Aza-BODIPY PSs were designed and constructed based on monoiodo Aza-BODIPY PSs (BDP-4 and BDP-15) in an attempt to construct "structure-inherent organelles-targeted" PSs to endow potential organelle-targeting ability. Pyridinyl PSs displayed potent photodynamic efficacy, and monorigidified PSs were very effective. The monorigidified PS 20 with meta-pyridinyl moiety displayed the most potent photoactivity and negligible dark toxicity with a favorable dark/phototoxicity ratio (>4800). To our surprise, monorigidified PS with meta-pyridinyl moiety (e.g., 20) was lipid droplet-targeted. 20 showed good cellular uptake and intracellular ROS generation compared with BDP-15. The preliminary cell death process exploration indicated that 20 resulted in lipid peroxidation and induced cell death through an iron-independent ferroptosis-like cell death pathway. In vivo antitumor efficacy experiments manifested that 20 significantly inhibited tumor growth and outperformed BDP-15 and Ce6 even under a single low-dose light irradiation (30 J/cm2).
Collapse
Affiliation(s)
- Chang Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chuan Liu
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xin Ji
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
8
|
Vishnevetskii DV, Metlin FA, Andrianova YV, Polyakova EE, Ivanova AI, Averkin DV, Mekhtiev AR. Preparation of Composite Hydrogels Based on Cysteine-Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy. Gels 2024; 10:577. [PMID: 39330179 PMCID: PMC11431599 DOI: 10.3390/gels10090577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel supramolecular composite, "photogels", was synthesized by mixing of cysteine-silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Fedor A. Metlin
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Yana V. Andrianova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Alexandra I. Ivanova
- Department of Applied Physics, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| |
Collapse
|
9
|
Sugito SFA, Wibrianto A, Chang JY, Fahmi MZ, Khairunisa SQ, Sakti SCW, Ahmad MA, Hwei Voon L, Nikmah YL. Three-dimensional Au-MnO 2 nanostructure as an agent of synergistic cancer therapy: chemo-/photodynamic and photothermal approaches. Dalton Trans 2024; 53:11368-11379. [PMID: 38896134 DOI: 10.1039/d4dt01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The design of multimodal cancer therapy was focused on reaching an efficient process and minimizing harmful effects on patients. In the present study, the Au-MnO2 nanostructures have been successfully constructed and produced as novel multipurpose photosensitive agents simultaneously for photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). The prepared AuNPs were conjugated with MnO2 NPs by its participation in the thermal decomposition process of KMnO4 confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy (FT-IR). The 16.5 nm Au-MnO2 nanostructure exhibited an absorbance at 438 nm, which is beneficial for application in light induction therapy due to the NIR band, as well as its properties of generating reactive oxygen species (ROS) associated with the 808 nm laser light for PDT. The photothermal transduction efficiency was calculated and compared with that of the non-irradiated nanostructure, in which it was found that the 808 nm laser induced a high efficiency of 83%, 41.5%, and 37.5% for PDT, PTT, and CDT, respectively. The results of DPBF and TMB assays showed that the efficiency of PDT and PTT was higher than that of CDT. The nanostructure also confirmed the time-dependent peroxidase properties at different H2O2, TMB, and H2TMB concentrations, promising good potency in applying nanomedicine in clinical cancer therapy.
Collapse
Affiliation(s)
- Siti Febtria Asrini Sugito
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106, Taiwan
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siti Qamariyah Khairunisa
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Airlangga University, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Musbahu Adam Ahmad
- Supramodification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Lee Hwei Voon
- Nanotechnology Catalysis and Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yatim Lailun Nikmah
- Department of Chemistry, Faculty of Natural Science, Sepuluh Nopember Institute of Technology, Keputih, Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
10
|
Wei K, Wu Y, Zheng X, Ouyang L, Ma G, Ji C, Yin M. A Light-Triggered J-Aggregation-Regulated Therapy Conversion: from Photodynamic/Photothermal Therapy to Long-Lasting Chemodynamic Therapy for Effective Tumor Ablation. Angew Chem Int Ed Engl 2024; 63:e202404395. [PMID: 38577995 DOI: 10.1002/anie.202404395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) have become an effective tool for tumor treatment. The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) takes advantage of various ROS and enhances therapeutic effects. However, the activation of CDT usually occurs before PDT, which hinders the sustained maintenance of hydroxyl radicals (⋅OH) and reduces the treatment efficiency. Herein, we present a light-triggered nano-system based on molecular aggregation regulation for converting cancer therapy from PDT/photothermal therapy (PTT) to a long-lasting CDT. The ordered J-aggregation enhances the photodynamic properties of the cyanine moiety while simultaneously suppressing the chemodynamic capabilities of the copper-porphyrin moiety. Upon light irradiation, Cu-PCy JNPs demonstrate strong photodynamic and photothermal effects. Meanwhile, light triggers a rapid degradation of the cyanine backbone, leading to the destruction of the J-aggregation. As a result, a long-lasting CDT is sequentially activated, and the sustained generation of ⋅OH is observed for up to 48 hours, causing potent cellular oxidative stress and apoptosis. Due to their excellent tumor accumulation, Cu-PCy JNPs exhibit effective in vivo tumor ablation through the converting therapy. This work provides a new approach for effectively prolonging the chemodynamic activity in ROS-based cancer therapy.
Collapse
Affiliation(s)
- Kai Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yanxin Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Li Ouyang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
11
|
Dirersa W, Kan TC, Chang J, Getachew G, Ochirbat S, Kizhepat S, Wibrianto A, Rasal A, Chen HA, Ghule AV, Chou TH, Chang JY. Engineering H 2O 2 Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24172-24190. [PMID: 38688027 PMCID: PMC11103653 DOI: 10.1021/acsami.3c18888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Worku
Batu Dirersa
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jungshan Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program for Cell Therapy and Regeneration Medicine, College
of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shamsa Kizhepat
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash Rasal
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Hung-An Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Anil Vithal Ghule
- Green
Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Tzung-Han Chou
- Department
of Chemical and Materials Engineering, National
Yunlin University of Science and Technology, Yunlin 64002, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
12
|
Bhuniya S, Vrettos EI. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives. Pharmaceutics 2024; 16:557. [PMID: 38675218 PMCID: PMC11054426 DOI: 10.3390/pharmaceutics16040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future.
Collapse
Affiliation(s)
- Sankarprasad Bhuniya
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India;
| | - Eirinaios I. Vrettos
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Paul S, Ghosh S, Maity T, Behera PP, Mukherjee A, De P. Photocleavable Visible Light-Triggered Anthraquinone-Derived Water-Soluble Block Copolymer for Peroxynitrite Generation in Cancer Therapy. ACS Macro Lett 2024; 13:288-295. [PMID: 38368530 DOI: 10.1021/acsmacrolett.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
We report a facile stimuli-responsive strategy to generate reactive oxygen and nitrogen species (ROS and RNS) in the biological milieu from a photocleavable water-soluble block copolymer under visible light irradiation (427 nm, 2.25 mW/cm2). An anthraquinone-based water-soluble polymeric nitric oxide (NO) donor (BCPx-NO) is synthesized, which exhibits NO release in the range of 40-65 μM within 10 h of photoirradiation with a half-life of 30-103 min. Additionally, BCPx-NO produces peroxynitrite (ONOO-) and singlet oxygen (1O2) under photoirradiation. To understand the mechanism of NO release and photolysis of the functional group under blue light, we prepared a small-molecule anthraquinone-based N-nitrosamine (NOD). The cellular investigation of the effect of spatiotemporally controlled ONOO- and 1O2 generation from the NO donor polymeric nanoparticles in a triple negative breast adenocarcinoma (MDA-MB-231) under visible light irradiation (white light, 5.83 mW/cm2; total dose 31.5 J/cm2) showed an IC50 of 0.6 mg/mL. The stimuli-responsive strategy using a photolabile water-soluble block copolymer employed to generate ROS and RNS in a biological setting widens the horizon for their potential in cancer therapy.
Collapse
|
14
|
Wang Y, Shen H, Li Z, Liao S, Yin B, Yue R, Guan G, Chen B, Song G. Enhancing Fractionated Cancer Therapy: A Triple-Anthracene Photosensitizer Unleashes Long-Persistent Photodynamic and Luminous Efficacy. J Am Chem Soc 2024; 146:6252-6265. [PMID: 38377559 DOI: 10.1021/jacs.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Conventional photodynamic therapy (PDT) is often limited in treating solid tumors due to hypoxic conditions that impede the generation of reactive oxygen species (ROS), which are critical for therapeutic efficacy. To address this issue, a fractionated PDT protocol has been suggested, wherein light irradiation is administered in stages separated by dark intervals to permit oxygen recovery during these breaks. However, the current photosensitizers used in fractionated PDT are incapable of sustaining ROS production during the dark intervals, leading to suboptimal therapeutic outcomes (Table S1). To circumvent this drawback, we have synthesized a novel photosensitizer based on a triple-anthracene derivative that is designed for prolonged ROS generation, even after the cessation of light exposure. Our study reveals a unique photodynamic action of these derivatives, facilitating the direct and effective disruption of biomolecules and significantly improving the efficacy of fractionated PDT (Table S2). Moreover, the existing photosensitizers lack imaging capabilities for monitoring, which constraints the fine-tuning of irradiation parameters (Table S1). Our triple-anthracene derivative also serves as an afterglow imaging agent, emitting sustained luminescence postirradiation. This imaging function allows for the precise optimization of intervals between PDT sessions and aids in determining the timing for subsequent irradiation, thus enabling meticulous control over therapy parameters. Utilizing our novel triple-anthracene photosensitizer, we have formulated a fractionated PDT regimen that effectively eliminates orthotopic pancreatic tumors. This investigation highlights the promise of employing long-persistent photodynamic activity in advanced fractionated PDT approaches to overcome the current limitations of PDT in solid tumor treatment.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hengxin Shen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhe Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renye Yue
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baode Chen
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
15
|
Ma Y, Yin W, Ji S, Wang J, Lam JWY, Kwok RTK, Huo Y, Sun J, Tang BZ. Red/NIR emissive aggregation-induced emission-active photosensitizers with strong donor-acceptor strength for image-guided photodynamic therapy of cancer. LUMINESCENCE 2023; 38:2086-2094. [PMID: 37740529 DOI: 10.1002/bio.4599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Light-mediated therapies such as photodynamic therapy (PDT) are considered emerging cancer treatment strategies. However, there are still lots of defect with common photosensitizers (PSs), such as short emission wavelength, weak photostability, poor cell permeability, and low PDT efficiency. Therefore, it is very important to develop high-performance PSs. Recently, luminogens with aggregation-induced emission (AIE) characteristics and red/near-infrared (NIR) emissive have been reported as promising PSs for image-guided cancer therapy, due to them being able to prevent autofluorescence in physiological environments, their enhanced fluorescence in the aggregated state, and generation of reactive oxygen species (ROS). Herein, we developed PSs named TBTCPM and MTBTCPM with donor-acceptor (D-A) structures, strong red/NIR, excellent targeting specificities to good cell permeability, and high photostability. Interestingly, both of them can efficiently generate ROS under white light irradiation and possess excellent killing effect on cancer cells. This study, thus, not only demonstrates applications in cell image-guided PDT cancer therapy performances but also provides strategy for construction of AIEgens with long emission wavelengths.
Collapse
Affiliation(s)
- Yucheng Ma
- Light Industry and Chemical Engineering College, Guangdong University of Technology, Guangzhou, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Weidong Yin
- Light Industry and Chemical Engineering College, Guangdong University of Technology, Guangzhou, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shaomin Ji
- Light Industry and Chemical Engineering College, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jin Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanping Huo
- Light Industry and Chemical Engineering College, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Roschenko V, Ayoub AM, Engelhardt K, Schäfer J, Amin MU, Preis E, Mandic R, Bakowsky U. Lipid-Coated Polymeric Nanoparticles for the Photodynamic Therapy of Head and Neck Squamous Cell Carcinomas. Pharmaceutics 2023; 15:2412. [PMID: 37896172 PMCID: PMC10610306 DOI: 10.3390/pharmaceutics15102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Next to alcohol and tobacco abuse, infection with human papillomaviruses (HPVs) is a major risk factor for developing head and neck squamous cell carcinomas (HNSCCs), leading to 350,000 casualties worldwide each year. Limited therapy options and drug resistance raise the urge for alternative methods such as photodynamic therapy (PDT), a minimally invasive procedure used to treat HNSCC and other cancers. We prepared lipid-coated polymeric nanoparticles encapsulating curcumin as the photosensitizer (CUR-LCNPs). The prepared CUR-LCNPs were in the nanometer range (153.37 ± 1.58 nm) and showed an encapsulation efficiency of 92.69 ± 0.03%. Proper lipid coating was visualized using atomic force microscopy (AFM). The CUR-LCNPs were tested in three HPVpos and three HPVneg HNSCC lines regarding their uptake capabilities and in vitro cell killing capacity, revealing a variable but highly significant tumor cell inhibiting effect in all tested HNSCC cell lines. No significant differences were detected between the HPVpos and HPVneg HNSCC groups (mean IC50: (9.34 ± 4.73 µmol/L vs. 6.88 ± 1.03 µmol/L), suggesting CUR-LCNPs/PDT to be a promising therapeutic option for HNSCC patients independent of their HPV status.
Collapse
Affiliation(s)
- Valeri Roschenko
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Abdallah M. Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (V.R.); (A.M.A.); (K.E.); (J.S.); (M.U.A.)
| |
Collapse
|
17
|
Li J, Wei D, Fu Q. Anatase TiO 2-x and zwitterionic porphyrin polymer-based nanocomposite for enhanced cancer photodynamic therapy. NANOSCALE 2023; 15:14790-14799. [PMID: 37642471 DOI: 10.1039/d3nr03012a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photodynamic therapy has been used as a treatment option for cancer; however, the existing TiO2 photosensitizer does not have the ability to specifically target cancer cells. This lack of selectivity reduces its effectiveness in overcoming cancer resistance. To improve photodynamic therapy outcomes, an innovative solution is proposed. In this study, we report on the compounding of a zwitterionic covalent organic polymer (COP) with a TiO2 photosensitizer for the first time. The aim is to overcome cancer cellular resistance. A one-pot synthetic strategy, which includes the construction of a porphyrin-based COP has been employed. This strategy has also been applied to the rapid preparation of anatase defective TiO2 (TiO2-x). To improve the hydrophilic and antifouling properties of the polymer, zwitterion L-cysteine has been conjugated with a porphyrin-based COP using a thiol-ene "click chemistry" reaction. The novel zwitterionic porphyrin-based COP has the ability to trigger biodegradation under the acid microenvironment due to the presence of acid-sensitive β-thioether esters. When combined with TiO2-x, the resultant nanocomposite produces an enhanced photodynamic therapy effect for drug-resistant cancer cells under NIR laser irradiation. This is due to the strong mutual sensitization of zwitterionic porphyrin-based COP and TiO2-x. Importantly, the nanocomposite delivery system exhibits excellent cytocompatibility in the dark and has the potential to improve the accuracy of cancer diagnosis through fluorescence imaging. The results of this study demonstrate the potential application of this alternative nanocomposite delivery system for remote-controllable photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Jiaxu Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| |
Collapse
|
18
|
Jia S, Zhao Y, Liu J, Qi R, Liang H, Yuan H. Construction of Electrostatic Spinning Membranes Based on Conjugated Hemicyanine Derivatives for Photodynamic Antibacterial Application. ACS APPLIED BIO MATERIALS 2023; 6:3842-3847. [PMID: 37643920 DOI: 10.1021/acsabm.3c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The preparation of efficient antibacterial membrane materials is one of the important strategies to fight against bacterial infection and alleviate drug resistance. Herein, hemicyanine derivatives with different chain lengths (C3, C6, and C10) that exhibit excellent photodynamic antibacterial activity were doped into spinnable polyvinyl alcohol solution (PVA, 8%) to obtain composite fiber membrane Cn/PVA (C3/PVA, C6/PVA, and C10/PVA) by a simple "one-pot" method using electrospinning technology. The antibacterial nanofiber membrane has a dense fiber structure which has a good interception effect, high thermal stability, and great biocompatibility. Importantly, Cn/PVA nanofibers could efficiently sensitize oxygen to generate reactive oxygen species (ROS), leading to high photokilling efficacy against drug-resistant bacteria. The variation of structure for hemicyanines causes the difference of Cn/PVA nanofibers in the effects of antibacterial performance, and it is found that C3/PVA and C10/PVA with three and ten carbons in the alkyl chain could kill more than 97% of ampicillin-resistant E. coli, which is much better than that of C6/PVA. Moreover, C3/PVA and C10/PVA exhibited killing efficiencies of 98.6 and 90.6% against MRSA, respectively. The construction of Cn/PVA composite fibers provides research ideas for the development of structure-dependent antimicrobial surface materials and is expected to be applied as superficial medical antibacterial protection materials.
Collapse
Affiliation(s)
- Shaochuan Jia
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jiaqi Liu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Haiyan Liang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
19
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models. Photodiagnosis Photodyn Ther 2023; 43:103596. [PMID: 37148952 DOI: 10.1016/j.pdpdt.2023.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Melanoma is a highly metastatic skin cancer with limited response to current therapies in advanced patients. To overcome resistance, novel treatments based on photodynamic and photothermal therapies (PDT and PTT, respectively) have been developed to treat melanoma in preclinical murine models. Despite success inhibiting implanted tumors' growth, there has been limited evaluation of their long-term effectiveness in preventing metastasis, recurrence, or improving survival rates. METHODS Combined and multidrug therapies based on PDT and/or PTT to treat cutaneous malignant melanoma in the preclinical mouse model were reviewed from 2016 onwards. PubMed® was the database in which the search was performed using mesh search algorithms resulting in fifty-one studies that comply with strict inclusion rules of screening. RESULTS B16 melanoma-bearing C57BLACK6 mice model was the most used to evaluate immunotherapies, chemotherapies, and targeted therapies in combination with PDT and/or PTT. Combined therapies demonstrated a synergistic effect, resulting in intense antitumor activity. The most extensively studied protocol for developing metastatic models involved the intravenous administration of malignant cells, with some combined therapies being tested. Furthermore, the review presents the composition of the nanostructures utilized for delivering the drugs and light-responsive agents and the treatment plans for each combined approach. CONCLUSIONS The identified mechanisms to simulate metastatic melanoma models and the therapeutic combinations may aid in evaluating the systemic protection of combined PDT and PTT-based therapies, particularly in conducting short-term preclinical experiments. Such simulations could have relevance to clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico.
| |
Collapse
|
21
|
Wang L, Lai B, Ran X, Tang H, Cao D. Recent Advances of Diketopyrrolopyrrole Derivatives in Cancer Therapy and Imaging Applications. Molecules 2023; 28:molecules28104097. [PMID: 37241837 DOI: 10.3390/molecules28104097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is threatening the survival of human beings all over the world. Phototherapy (including photothermal therapy (PTT) and photodynamic therapy (PDT)) and bioimaging are important tools for imaging-mediated cancer theranostics. Diketopyrrolopyrrole (DPP) dyes have received more attention due to their high thermal and photochemical stability, efficient reactive oxygen species (ROS) generation and thermal effects, easy functionalization, and tunable photophysical properties. In this review, we outline the latest achievements of DPP derivatives in cancer therapy and imaging over the past three years. DPP-based conjugated polymers and small molecules for detection, bioimaging, PTT, photoacoustic imaging (PAI)-guided PTT, and PDT/PTT combination therapy are summarized. Their design principles and chemical structures are highlighted. The outlook, challenges, and future opportunities for the development of DPP derivatives are also presented, which will give a future perspective for cancer treatment.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Bihong Lai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
22
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
23
|
Chen L, Sun K, Hu D, Su X, Guo L, Yin J, Pei Y, Fan Y, Liu Q, Xu M, Feng W, Li F. Ultra-long Near-infrared Repeatable Photochemical Afterglow Mediated by Reversible Storage of Singlet Oxygen for Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202218670. [PMID: 36723229 DOI: 10.1002/anie.202218670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Photochemical afterglow systems have drawn considerable attention in recent years due to their regulable photophysical properties and charming application potential. However, conventional photochemical afterglow suffered from its unrepeatability due to the consumption of energy cache units as afterglow photons are emitted. Here we report a novel strategy to realize repeatable photochemical afterglow (RPA) through the reversible storage of 1 O2 by 2-pyridones. Near-infrared afterglow with a lifetime over 10 s is achieved, and its initial intensity shows no significant reduction over 50 excitation cycles. A detailed mechanism study was conducted and confirmed the RPA is realized through the singlet oxygen-sensitized fluorescence emission. Furthermore, the generality of this strategy is demonstrated and tunable afterglow lifetimes and colors are achieved by rational design. The developed RPA is further applied for attacker-misleading information encryption, presenting a repeatable-readout.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Kuangshi Sun
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Donghao Hu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xianlong Su
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Linna Guo
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jiamiao Yin
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yuetian Pei
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Yiwei Fan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Qian Liu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Ming Xu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Yiwu Research Institute, Fudan University, Jinhua, Yiwu, 322000, China
| |
Collapse
|
24
|
Öztürk Gündüz E, Tasasız B, Gedik ME, Günaydın G, Okutan E. NI-BODIPY-GO Nanocomposites for Targeted PDT. ACS OMEGA 2023; 8:8320-8331. [PMID: 36910926 PMCID: PMC9996583 DOI: 10.1021/acsomega.2c06900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Three multifunctional targeted NI-BODIPYs (10-12) and GO-(10-12) nanocarriers were fabricated. NI-BODIPYs are designed to facilitate non-covalent interaction with graphene oxide (GO) and target toward cancer cells for specific recognition with glucose moieties while efficiently producing singlet oxygen. We probed detailed characterization, fundamental photophysical/photochemical properties, and interactions with GO of such triplet photosensitizers and nanocarriers. The effect of the formation of nanohybrids with GO on singlet oxygen formation as well as on the efficacies of the molecules in terms of in vitro killing of cancer cells was evaluated with K562 human chronic myelogenous leukemia cells. Amazingly, it was observed that GO exhibited favorable interactions with the NI-BODIPY dyads and promoted the formation of singlet oxygen, while not showing any dark toxicity.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| | - Berkan Tasasız
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| | - M. Emre Gedik
- Department
of Basic Oncology, Cancer Institute, Hacettepe
University, Çankaya, Ankara 06800, Turkey
| | - Gürcan Günaydın
- Department
of Basic Oncology, Cancer Institute, Hacettepe
University, Çankaya, Ankara 06800, Turkey
| | - Elif Okutan
- Department
of Chemistry, Faculty of Science, Gebze
Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
25
|
Li G, Wu M, Xu Y, Wang Q, Liu J, Zhou X, Ji H, Tang Q, Gu X, Liu S, Qin Y, Wu L, Zhao Q. Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Du P, Shen Y, Zhang B, Li S, Gao M, Wang T, Ding X, Yu B, Wang Z, Xu F. A H 2 O 2 -Supplied Supramolecular Material for Post-irradiated Infected Wound Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206851. [PMID: 36709479 PMCID: PMC10037955 DOI: 10.1002/advs.202206851] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Photodynamic therapy (PDT) is a light triggered therapy by producing reactive oxygen species (ROS), but traditional PDT may suffer from the real-time illumination that reduces the compliance of treatment and cause phototoxicity. A supramolecular photoactive G-quartet based material is reported, which is self-assembled from guanosine (G) and 4-formylphenylboronic acid/1,8-diaminooctane, with incorporation of riboflavin as a photocatalyst to the G4 nanowire, for post-irradiation photodynamic antibacterial therapy. The G4-materials, which exhibit hydrogel-like properties, provide a scaffold for loading riboflavin, and the reductant guanosine for the riboflavin for phototriggered production of the therapeutic H2 O2 . The photocatalytic activity shows great tolerance against room temperature storage and heating/cooling treatments. The riboflavin-loaded G4 hydrogels, after photo-irradiation, are capable of killing gram-positive bacteria (e.g., Staphylococcus aureus), gram-negative bacteria (e.g., Escherichia coli), and multidrug resistant bacteria (methicillin-resistant Staphylococcus aureus) with sterilization ratio over 99.999%. The post-irradiated hydrogels also exhibit great antibacterial activity in the infected wound of the rats, revealing the potential of this novel concept in the light therapy.
Collapse
Affiliation(s)
- Peidong Du
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yanzhe Shen
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Baoli Zhang
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shan Li
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Minzheng Gao
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
| | - Xiaokang Ding
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Bingran Yu
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhen‐Gang Wang
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fu‐Jian Xu
- State Key Laboratory of Organic‐Inorganic CompositesKey Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education)Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
27
|
Wu J, Liu Y, Cao M, Zheng N, Ma H, Ye X, Yang N, Liu Z, Liao W, Sun L. Cancer-Responsive Multifunctional Nanoplatform Based on Peptide Self-Assembly for Highly Efficient Combined Cancer Therapy by Alleviating Hypoxia and Improving the Immunosuppressive Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5667-5678. [PMID: 36651290 DOI: 10.1021/acsami.2c20388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hypoxia, as a main feature of the tumor microenvironment, has greatly limited the efficacy of photodynamic therapy (PDT), as well as its clinical application. Here, a multifunctional composite nanoplatform, the peptide/Ce6/MnO2 nanocomposite (RKCM), has been constructed to alleviate tumor hypoxia and increase the efficacy of PDT using rationally designed peptide fibrils to encapsulate chlorin e6 (Ce6) inside and to mineralize MnO2 nanoparticles on the surface. As a result, RKCM significantly improved the PDT efficacy by increasing reactive oxygen species (ROS) generation, decreasing tumor cell viability, and inhibiting tumor growth and metastasis. Besides, decreased HIF-1α expression and increased immune-activated cell infiltration were also observed in RKCM/laser treatment xenograft. Mechanically, (1) Ce6 can induce singlet oxygen (1O2) generation under laser irradiation to give photodynamic therapy (PDT); (2) MnO2 can react with H2O2 in situ to supply additional O2 to alleviate tumor hypoxia; and (3) the released Mn2+ ions can induce a Fenton-like reaction to generate •OH for chemical dynamic therapy (CDT). Moreover, RKCM/laser treatment also presented with an abscopal effect to block the occurrence of lung metastasis by remolding the pre-metastasis immune microenvironment. With these several aspects working together, the peptide/Ce6/MnO2 nanoplatform can achieve highly efficient tumor therapy. Such a strategy based on peptide self-assembly provides a promising way to rationally design a cancer-responsive multifunctional nanoplatform for highly efficient combined cancer therapy by alleviating hypoxia and improving the immune microenvironment.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Nannan Zheng
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, Air Force Medical Center of PLA, Air Force Medical University, Beijing 100089, China
| |
Collapse
|
28
|
Wei L, Zhang Z, Kumar A, Banerjee S, Huang H. Endoperoxides Compounds for Highly Efficient Cancer Treatment under Hypoxia. Chemistry 2022; 28:e202202233. [PMID: 36184567 DOI: 10.1002/chem.202202233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/06/2022]
Abstract
Photodynamic therapy (PDT) for cancer treatment has garnered tremendous attention with its promising non-invasiveness, low side effects, and spatiotemporal selectivity. However, the hypoxic microenvironment in solid tumours remains a serious resistant factor to reducing the effects of PDT. Endoperoxides are successfully utilized as the chemical storage or supplier of singlet oxygen (1 O2 ), the active substance for PDT in materials and other domains. Recent reports indicated that this type of compound could remarkably enhance the therapeutic effects of PDT under hypoxia. This concept mainly introduces a few representative endoperoxides and the outlook of their potent application for treating hypoxic cancer cells.
Collapse
Affiliation(s)
- Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Zhishang Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| | - Ashish Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P.R. China
| |
Collapse
|
29
|
Ren S, Dai R, Zheng Z, Chen X, Wu S, Zhang R, Gui Z. Multifunctional AuPd-cluster nanotheranostic agents with a cascade self-regulating redox tumor-microenvironment for dual-photodynamic synergized enzyme catalytic therapy. J Mater Chem B 2022; 11:109-118. [PMID: 36484167 DOI: 10.1039/d2tb02096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising strategy with higher selectivity and spatiotemporal control than conventional therapies. However, deep hypoxia in tumours has hampered the clinical use of PDT. In this study, a novel multifunctional cluster nanotheranostic agent (AuPd-BSA CN) was fabricated to generate a high amount of reactive oxygen species, regardless of oxygen dependence under 660 nm laser irradiation. The structure and properties of the AuPd-BSA CN were characterised using various technologies. The synthesised AuPd-BSA CN with high biocompatibility served as a superior photodynamic agent, showing prominent antitumour properties under laser irradiation. Additionally, the glucose oxidase-like activity of the AuPd-BSA CN synergistically enhanced the therapeutic performance. Notably, the intrinsic characteristics of the AuPd-BSA CN include dual-modal second near-infrared window fluorescence/photoacoustic imaging capabilities for monitoring and tracking the in vivo tumour therapeutic process. This work provides innovative insights into the AuPd-BSA CN as an "all-in-one" nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Shilei Ren
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, College of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
| | - Rong Dai
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Ziliang Zheng
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Xuejiao Chen
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Shutong Wu
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Ruiping Zhang
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, College of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
30
|
Xu Z, Yu Y, Zhao J, Liao Z, Sun Y, Cheng S, Gou S. A Unique Chemo-photodynamic Antitumor Approach to Suppress Hypoxia via Ultrathin Graphitic Carbon Nitride Nanosheets Supported a Platinum(IV) Prodrug. Inorg Chem 2022; 61:20346-20357. [DOI: 10.1021/acs.inorgchem.2c02806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zichen Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yongzhi Yu
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Zhixin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou215009, China
| | - Si Cheng
- National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen333001, P.R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing211189, China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| |
Collapse
|
31
|
Ji Kim H, Geun Lim Y, Jun Song Y, Park K. Folate receptor-targetable and tumor microenvironment-responsive manganese dioxide-based nano-photosensitizer for enhancing hypoxia alleviation-triggered phototherapeutic effects. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Liang X, Liu Z, Zhang J, Chen H, Gu Q, Zhang W, Shen C, Xiao Z, Wang Y, Liao J, Wen X, Xie J, Yao L, Cai W, Mo Y, Qing J, Su SJ, Hou L. Promoting Energy Transfer Between Quasi-2D Perovskite Layers Toward Highly Efficient Red Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204638. [PMID: 36310146 DOI: 10.1002/smll.202204638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Although tremendous progress has recently been made in quasi-2D perovskite light-emitting diodes (PeLEDs), the performance of red PeLEDs emitting at ≈650-660 nm, which have wide prospects for application in photodynamic therapy, is still limited by an inefficient energy transfer process between the quasi-2D perovskite layers. Herein, a symmetric molecule of 3,3'-(9H-fluorene-9,9-diyl)dipropanamide (FDPA) is designed and developed with two functional acylamino groups and incorporated into the quasi-2D perovskites as the additive for achieving high-performance red PeLEDs. It is demonstrated that the agent can simultaneously diminish the van der Waals gaps between individual perovskite layers and passivate uncoordinated Pb2+ related defects at the surface and grain boundaries of the quasi-2D perovskites, which truly results in an efficient energy transfer in the quasi-2D perovskite films. Consequently, the red PeLEDs emitting at 653 nm with a peak external quantum efficiency of 18.5% and a maximum luminance of 2545 cd m-2 are achieved, which is among the best performing red quasi-2D PeLEDs emitting at ≈650-660 nm. This work opens a way to further improve the electroluminescence performance of red PeLEDs.
Collapse
Affiliation(s)
- Xiangfei Liang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Jibin Zhang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| | - Hongting Chen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Qing Gu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, 510006, Guangzhou, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Zijie Xiao
- School of Physics and Materials Science, Guangzhou University, 510006, Guangzhou, China
| | - Yufei Wang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Jihai Liao
- Department of Physics, South China University of Technology, 510640, Guangzhou, China
| | - Xuemiao Wen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Jianing Xie
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, 528225, Foshan, China
| | - Lijun Yao
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Wanzhu Cai
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Yueqi Mo
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Jian Qing
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, 510632, Guangzhou, China
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, 450052, Zhengzhou, China
| |
Collapse
|
33
|
Zheng N, Zhou M, He Y, Xu H, Chen X, Duan Z, Yang L, Zeng R, Liu Y, Li M. Low curcumin concentrations combined with blue light inhibits cutibacterium acnes biofilm-induced inflammatory response through suppressing MAPK and NF-κB in keratinocytes. Photodiagnosis Photodyn Ther 2022; 40:103204. [PMID: 36403927 DOI: 10.1016/j.pdpdt.2022.103204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Curcumin has been employed as a photosensitizer agent during photodynamic therapy (PDT). Cutibacterium acnes (C. acnes) can cause an inflammatory response in human keratinocytes; however, no research has been conducted to determine whether curcumin and its photodynamic properties can prevent this inflammatory reaction. OBJECTIVE We hypothesized that curcumin may control the C. acnes biofilm-induced inflammatory response in keratinocytes, either alone or in combination with blue light photodynamic therapy. METHODS Following C. acnes biofilm stimulation, human primary keratinocytes were treated with 20 μM curcumin solution alone or 5 μM curcumin with combined blue light irradiation. The amount of secreted protein was measured using an ELISA kit. The expression levels of Toll-like receptor 2 (TLR2) and its downstream proteins were determined using western blot. RESULTS Treatment with 20 μM curcumin, but not 5 μM curcumin, reduced the inflammatory response to C. acnes biofilms in keratinocytes by blocking the TLR2/MAPK/NF-κB pathway. Interestingly, 5 μM curcumin combined with blue light also reduced the C. acnes biofilm-induced inflammation indicated above by blocking the TLR2/MAPK/NF-κB pathway. CONCLUSION Curcumin alone, in sufficient concentrations, or low-concentration curcumin with blue light had anti-inflammatory activity on keratinocytes stimulated by C. acnes biofilms through inhibition of MAPK and NF-κB signaling pathways by downregulating TLR2 expression.
Collapse
Affiliation(s)
- Nana Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Meng Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Lu Yang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Street, Nanjing, Jiangsu 210042, China.
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
34
|
Cui C, Su X, Guo Y, Zhu J, Chen Z, Qin W, Guo Y, Tao W. Enhancing electron transfer of a semiconducting polymer for type I photodynamic and photothermal synergistic therapy. Front Bioeng Biotechnol 2022; 10:1004921. [PMID: 36199364 PMCID: PMC9527290 DOI: 10.3389/fbioe.2022.1004921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor hypoxia is responsible for the reduced therapeutic efficacy of type II photodynamic therapy (PDT) because of the dependence of cellular oxygen during 1O2 generation. Type I PDT may be a better strategy to overcome the disadvantages of hypoxia for enhanced theranostics. Herein, a new semiconducting polymer PDPP was synthesized and encapsulated with hydrophilic PEG-PDPA to enhance the electron transfer for type I PDT. PDPP NPs show a high superoxide radical generation ability with DHR123 as a probe. In vitro MTT assay indicates PDPP NPs with considerably high phototoxicity on human cervical cancer cells (HeLa) with a low half-maximal inhibitory concentration (IC50) of 6.1 μg/ml. Furthermore, an in vivo study demonstrates that PDPP NPs can lead to complete tumor suppression with the help of laser, compared with the control and dark groups. The biosafety is confirmed by the H&E analysis of the normal tissues (the heart, liver, spleen, lungs, and kidney). The results provide a strategy to design nanosystems for type I PDT and PTT synergistic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yihang Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenming Tao
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
35
|
Malacarne MC, Gariboldi MB, Caruso E. BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. Int J Mol Sci 2022; 23:ijms231710198. [PMID: 36077597 PMCID: PMC9456687 DOI: 10.3390/ijms231710198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past 30 years, photodynamic therapy (PDT) has shown great development. In the clinical setting the few approved molecules belong almost exclusively to the porphyrin family; but in the scientific field, in recent years many researchers have been interested in other families of photosensitizers, among which BODIPY has shown particular interest. BODIPY is the acronym for 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene, and is a family of molecules well-known for their properties in the field of imaging. In order for these molecules to be used in PDT, a structural modification is necessary which involves the introduction of heavy atoms, such as bromine and iodine, in the beta positions of the pyrrole ring; this change favors the intersystem crossing, and increases the 1O2 yield. This mini review focused on a series of structural changes made to BODIPYs to further increase 1O2 production and bioavailability by improving cell targeting or photoactivity efficiency.
Collapse
|
36
|
Dan Q, Yuan Z, Zheng S, Ma H, Luo W, Zhang L, Su N, Hu D, Sheng Z, Li Y. Gold Nanoclusters-Based NIR-II Photosensitizers with Catalase-like Activity for Boosted Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14081645. [PMID: 36015272 PMCID: PMC9416189 DOI: 10.3390/pharmaceutics14081645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Photodynamic therapy (PDT) under fluorescence imaging as a selective and non-invasive treatment approach has been widely applied for the therapy of cancer and bacterial infections. However, its treatment efficiency is hampered by high background fluorescence in the first near-infrared window (NIR-I, 700–900 nm) and oxygen-dependent photosensitizing activity of traditional photosensitizers. In this work, we employ gold nanoclusters (BSA@Au) with the second near-infrared (NIR-II, 1000–1700 nm) fluorescence and catalase-like activity as alternative photosensitizers to realize highly efficient PDT. The bright NIR-II fluorescence of BSA@Au enables the visualization of PDT for tumor with a high signal-to-background ratio (SBR = 7.3) in 4T1 tumor-bearing mouse models. Furthermore, the catalase-like activity of BSA@Au endows its oxygen self-supplied capability, contributing to a five-fold increase in the survival period of tumor-bearing mice receiving boosted PDT treatment compared to that of the control group. Moreover, we further demonstrate that BSA@Au-based PDT strategy can be applied to treat bacterial infections. Our studies show the great potential of NIR-II BSA@Au as a novel photosensitizer for boosted PDT against cancer and bacterial infections.
Collapse
Affiliation(s)
- Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Si Zheng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huanrong Ma
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ning Su
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zonghai Sheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (Z.S.); (Y.L.)
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Z.S.); (Y.L.)
| |
Collapse
|
37
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
38
|
Caging and photo-triggered uncaging of singlet oxygen by excited state engineering of electron donor-acceptor-linked molecular sensors. Sci Rep 2022; 12:11371. [PMID: 35790770 PMCID: PMC9256616 DOI: 10.1038/s41598-022-15054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Singlet oxygen (1O2), one of the most sought-after species in oxidative chemical reactions and photodynamic cancer therapy, is activated and neutralized in the atmosphere and living cells. It is essential to see "when" and "where" 1O2 is produced and delivered to understand and utilize it. There is an increasing demand for molecular sensor tools to capture, store, and supply 1O2, controlled by light and engineered singlet and triplet states, indicating the 1O2-capturing-releasing state. Here, we demonstrate the outstanding potential of an aminocoumarin-methylanthracene-based electron donor–acceptor molecule (1). Spectroscopic measurements confirm the formation of an endoperoxide (1-O2) which is not strongly fluorescent and remarkably different from previously reported 1O2 sensor molecules. Moreover, the photoexcitation on the dye in 1-O2 triggers fluorescence enhancement by the oxidative rearrangement and a competing 1O2 release. The unique ability of 1 will pave the way for the spatially and temporally controlled utilization of 1O2 in various areas such as chemical reactions and phototherapies.
Collapse
|
39
|
Dual Molecular Design toward a Lysosome-Tagged AIEgen and Heavy-Atom-Free Photosensitizers for Hypoxic Cancer Photodynamic Therapy. BIOSENSORS 2022; 12:bios12060420. [PMID: 35735567 PMCID: PMC9221524 DOI: 10.3390/bios12060420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
To date, a large number of photosensitizers (PS) have introduced heavy atoms to improve the ISC process and 1O2 generation. However, they often show low efficiency in hypoxic conditions, aggregate states, and turn-off PDT in the dark. Besides that, the toxicity of heavy metals is also concerned. Therefore, we developed lysosome-targeted heavy-metal-free PS (3S and 4S) based on thionated naphthalimide for hypoxic cancer photodynamic therapy (PDT), not only under white light but also in the dark via thermal-induced 1O2 generation. AIEgen (3O and 4O) were prepared for studying the PDT action of PSs (3S and 4S) in lysosome and aggregate state. We also examined the photophysical properties of AIEgen (3O and 4O) and PS (3S and 4S) by UV–vis absorption, fluorescent emission spectra, and theoretical calculations.
Collapse
|
40
|
Li J, Wang L, Li J, Shao Y, Liu Z, Li G, Akkaya EU. Taming of Singlet Oxygen: Towards Artificial Oxygen Carriers Based on 1,4‐Dialkylnaphthalenes. Chemistry 2022; 28:e202200506. [DOI: 10.1002/chem.202200506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jin Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| | - Engin U. Akkaya
- State Key Laboratory of Fine Chemicals Department of Pharmaceutical Science Dalian University of Technology 2 Linggong Road 116024 Dalian P. R. China
| |
Collapse
|
41
|
|
42
|
An J, Tang S, Hong G, Chen W, Chen M, Song J, Li Z, Peng X, Song F, Zheng WH. An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nat Commun 2022; 13:2225. [PMID: 35469028 PMCID: PMC9038921 DOI: 10.1038/s41467-022-29862-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
The most common working mechanism of photodynamic therapy is based on high-toxicity singlet oxygen, which is called Type II photodynamic therapy. But it is highly dependent on oxygen consumption. Recently, Type I photodynamic therapy has been found to have better hypoxia tolerance to ease this restriction. However, few strategies are available on the design of Type I photosensitizers. We herein report an unexpected strategy to alleviate the limitation of traditional photodynamic therapy by biotinylation of three photosensitizers (two fluorescein-based photosensitizers and the commercially available Protoporphyrin). The three biotiylated photosensitizers named as compound 1, 2 and 3, exhibit impressive ability in generating both superoxide anion radicals and singlet oxygen. Moreover, compound 1 can be activated upon low-power white light irradiation with stronger ability of anion radicals generation than the other two. The excellent combinational Type I / Type II photodynamic therapy performance has been demonstrated with the photosensitizers 1. This work presents a universal protocol to provide tumor-targeting ability and enhance or trigger the generation of anion radicals by biotinylation of Type II photosensitizers against tumor hypoxia. Type I photodynamic therapy (PDT) sensitizers show good hypoxia tolerance but only few strategies are available for the design of purely organic Type I photosensitizers (PS). Here, the authors use biotinylation as design strategy to obtain PS-Biotin sensitizers with high efficiency for the generation of superoxide anion radicals and singlet oxygen.
Collapse
Affiliation(s)
- Jing An
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Shanliang Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Miaomiao Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Jitao Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Zhiliang Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China. .,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China.
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 110042, Shenyang, China.
| |
Collapse
|
43
|
Shen J, Pan L, Zhang X, Zou Z, Wei B, Chen Y, Tang X, Zou D. Delivering Singlet Oxygen in Dark Condition With an Anthracene-Functionalized Semiconducting Compound for Enhanced Phototheranostics. Front Bioeng Biotechnol 2022; 10:781766. [PMID: 35356771 PMCID: PMC8959821 DOI: 10.3389/fbioe.2022.781766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Photodynamic therapy (PDT) utilizes the photogeneration of reactive oxygen species (ROS) with high cytotoxicity to kill cancer cells, holding great promise for cancer treatment. Fractionated delivery of singlet oxygen (1O2) is a wise approach to relieving hypoxia, thus enhancing the therapeutic efficacy. In this article, an anthracene-functionalized semiconducting compound (DPPA) has been designed and synthesized. With irradiation, the compound is able to undergo efficient intersystem crossing (ISC) and non-radioactive decay for photodynamic/photothermal synergistic therapy. In addition, the anthracene module is able to capture and release 1O2 reversibly with or without irradiation. DPPA nanoparticles (NPs) obtained by nanoprecipitation with DSPE-PEG exhibit considerable high phototoxicity on human kidney cancer cells (A498), and the half maximum inhibitory concentration (IC50) is 15.8 μg/ml. Furthermore, an in vivo study demonstrates that complete tumor suppression was observed when the mice were administered DPPA NPs with the help of laser, compared with the control and dark groups. The H&E analysis of the normal tissues (the heart, liver, spleen, lungs, and kidney) indicates that such NPs cause no side effects, indicating the biosafety of DPPA NPs. The results provide a strategy to design a heavy-atom–free photosensitizer for photothermal and fractionated PDT against kidney tumors.
Collapse
Affiliation(s)
- Jian Shen
- Department of Urology, Changshu No. 2 People’s Hospital, Changshu, China
| | - Liuhong Pan
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Xujing Zhang
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhenyuan Zou
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Bo Wei
- Department of Materials Engineering, Changshu Institute of Technology, Changshu, China
| | - Yongchang Chen
- Department of Urology, Changshu No. 2 People’s Hospital, Changshu, China
- *Correspondence: Yongchang Chen, ; Xiaoyan Tang, ; Dengfeng Zou,
| | - Xiaoyan Tang
- Department of Materials Engineering, Changshu Institute of Technology, Changshu, China
- *Correspondence: Yongchang Chen, ; Xiaoyan Tang, ; Dengfeng Zou,
| | - Dengfeng Zou
- School of Pharmacy, Guilin Medical University, Guilin, China
- *Correspondence: Yongchang Chen, ; Xiaoyan Tang, ; Dengfeng Zou,
| |
Collapse
|
44
|
Kuang S, Wei F, Karges J, Ke L, Xiong K, Liao X, Gasser G, Ji L, Chao H. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J Am Chem Soc 2022; 144:4091-4101. [PMID: 35171598 DOI: 10.1021/jacs.1c13137] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the clinical success of photodynamic therapy (PDT), the application of this medical technique is intrinsically limited by the low oxygen concentrations found in cancer tumors, hampering the production of therapeutically necessary singlet oxygen (1O2). To overcome this limitation, we report on a novel mitochondria-localized iridium(III) endoperoxide prodrug (2-O-IrAn), which, upon two-photon irradiation in NIR, synergistically releases a highly cytotoxic iridium(III) complex (2-IrAn), singlet oxygen, and an alkoxy radical. 2-O-IrAn was found to be highly (photo-)toxic in hypoxic tumor cells and multicellular tumor spheroids (MCTS) in the nanomolar range. To provide cancer selectivity and improve the pharmacological properties of 2-O-IrAn, it was encapsulated into a biotin-functionalized polymer. The generated nanoparticles were found to nearly fully eradicate the tumor inside a mouse model within a single treatment. This study presents, to the best of our knowledge, the first example of an iridium(III)-based endoperoxide prodrug for synergistic photodynamic therapy/photoactivated chemotherapy, opening up new avenues for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, United States
| | - Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
45
|
Wu T, Chen K, Jiang M, Li A, Peng X, Chen S, Yang Z, Zhou X, Zheng X, Jiang ZX. Hydrofluorocarbon nanoparticles for 19F MRI-fluorescence dual imaging and chemo-photodynamic therapy. Org Biomol Chem 2022; 20:1299-1305. [PMID: 35072680 DOI: 10.1039/d1ob02392f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synergistic chemotherapy and photodynamic therapy (PDT) may significantly improve the cancer therapeutic efficacy, in which fluorinated nanoemulsions are highly advantageous for their ability to deliver oxygen to hypoxic tumors and provide fluorine-19 magnetic resonance imaging (19F MRI). The low solubility of chemotherapy drugs and photosensitizers in current perfluorocarbon (PFC)-based 19F MRI agents usually leads to complicated formulations or chemical modifications and low nanoemulsion stability and performance. Herein, we employ readily available partially fluorinated ethyl 2-(3,5-bis(trifluoromethyl)phenyl)acetate as the 19F MRI agent and the solvent to dissolve the cancer stem cell inhibitor salinomycin and the photosensitizer ICG for the convenient preparation of 19F MRI-fluorescence dual imaging and synergistic chemotherapy, photothermal and photodynamic therapy nanoemulsions. The chemotherapy drug salinomycin has a high solubility in the partially fluorinated reagent, facilitating its high loading and efficient delivery. Paramagnetic iron(III) (Fe3+) is incorporated into the nanoemulsion through the dissolved chelator to significantly improve the 19F MRI sensitivity. Furthermore, the dissolved fluorinated 2-pyridone enables the efficient capture and sustained release of singlet oxygen in the dark for high PDT efficacy. The multifunctional nanoemulsions show sensitive 19F MRI and fluorescence dual imaging capability and high synergistic chemotherapy, photothermal and photodynamic therapy efficacy in cancer cells, which may be valuable oxygen delivery, sustained ROS generating and release, dual imaging and multimodal therapy agents for hypoxic tumors. This study provided a convenient co-solubilization strategy for the rapid construction of multifunctional theranostics for hypoxic tumors.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| |
Collapse
|
46
|
Wang L, Tang L, Liu Y, Wu H, Liu Z, Li J, Pan Y, Akkaya EU. Prostate-specific membrane antigen (PSMA) targeted singlet oxygen delivery via endoperoxide tethered ligands. Chem Commun (Camb) 2022; 58:1902-1905. [PMID: 35029263 DOI: 10.1039/d1cc05810j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Singlet oxygen is the primary agent responsible for the therapeutic effects of photodynamic therapy (PDT). In this work, we demonstrate that singlet oxygen release due to thermal endoperoxide cycloreversion can be targeted towards specific features of selected cancer cells, and this targeted singlet oxygen delivery can serve as an effective therapeutic tool. Thus, cytotoxic singlet oxygen can be delivered regioselectively into prostate specific membrane antigen (PSMA) overexpressing lymph node carcinoma (LNCaP) cells. However, unlike typical photodynamic processes, there is no need for light or oxygen. The potential of the approach is exciting, considering the limitations on the availability of light and oxygen in deep-seated tumors.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Lei Tang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Yingjie Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Hao Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Ziang Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Jin Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, China.
| |
Collapse
|
47
|
Fan C, Wang Y, Zhao J, Zhao Y, Yang D, Li B, Yu L, Yang XJ, Wu B. Reversible [4 + 2] Photooxygenation in Anion-Coordination-Driven-Assembled A 2L 2-Type Complexes. Inorg Chem 2022; 61:2198-2203. [PMID: 35049281 DOI: 10.1021/acs.inorgchem.1c03392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two bis-bis(urea) ligands (L1 and L2) incorporating the photoactive 9,10-diphenylanthracene fragment were designed for the construction of anion-coordination-driven assemblies and subsequent oxygenation of anthracene moieties for singlet oxygen storage. The corresponding A2L2-type sulfate complexes [TEA]4[(SO4)2(L1)2] (1) and [TEA]4[(SO4)2(L2)2] (2), where TEA = tetraethylammonium, were achieved by coordinating the ligands L1 or L2 with sulfate anions. Both 1 and 2 were able to undergo [4 + 2] photooxygenation to form endoperoxide photoproducts 1-EPO and 2-EPO, which can be partially converted back to the original anthracene compounds after heating. The structures of 1-EPO and 2-EPO were unambiguously confirmed by X-ray crystallography, NMR and UV-vis spectroscopy, and high-resolution electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Chaochao Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Boyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
48
|
Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022; 12:biom12010081. [PMID: 35053229 PMCID: PMC8774200 DOI: 10.3390/biom12010081] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that uses light to target tumors and minimize damage to normal tissues. It offers advantages including high spatiotemporal selectivity, low side effects, and maximal preservation of tissue functions. However, the PDT efficiency is severely impeded by the hypoxic feature of tumors. Moreover, hypoxia may promote tumor metastasis and tumor resistance to multiple therapies. Therefore, addressing tumor hypoxia to improve PDT efficacy has been the focus of antitumor treatment, and research on this theme is continuously emerging. In this review, we summarize state-of-the-art advances in strategies for overcoming hypoxia in tumor PDTs, categorizing them into oxygen-independent phototherapy, oxygen-economizing PDT, and oxygen-supplementing PDT. Moreover, we highlight strategies possessing intriguing advantages such as exceedingly high PDT efficiency and high novelty, analyze the strengths and shortcomings of different methods, and envision the opportunities and challenges for future research.
Collapse
|
49
|
Lu F, Pan L, Wu T, Pan W, Gao W, Li N, Tang B. Endoperoxide-containing covalent organic framework as a singlet oxygen reservoir for cancer therapy. Chem Commun (Camb) 2022; 58:11013-11016. [DOI: 10.1039/d2cc04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porphyrin-based COF containing dialkylnaphthalene derivative was constructed to deliver extracellular singlet oxygen (1O2) into cancer cells through the Diels-Alder/retro-Diels-Alder reaction between dialkylnaphthalene and 1O2 to realize a light- and...
Collapse
|
50
|
Fan Z, Zhuang C, Wang S, Zhang Y. Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Front Oncol 2021; 11:787780. [PMID: 34950591 PMCID: PMC8688153 DOI: 10.3389/fonc.2021.787780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor. It is ranked the sixth most common neoplasm and the third most common cause of cancer mortality. At present, the most common treatment for HCC is surgery, but the 5-year recurrence rates are still high. Patients with early stage HCC with few nodules can be treated with resection or radiofrequency ablation (RFA); while for multinodular HCC, transarterial chemoembolization (TACE) has been the first-line treatment. In recent years, based on medical engineering cooperation, nanotechnology has been increasingly applied to the treatment of cancer. Photodynamic therapy and photothermal therapy are effective for cancer. This paper summarizes the latest progress of photodynamic therapy and photothermal therapy for HCC, with the aim of providing new ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Chengjun Zhuang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|