1
|
Mohiuddin O, de Maissin H, Pravdivtsev AN, Brahms A, Herzog M, Schröder L, Chekmenev EY, Herges R, Hövener JB, Zaitsev M, von Elverfeldt D, Schmidt AB. Rapid in situ carbon-13 hyperpolarization and imaging of acetate and pyruvate esters without external polarizer. Commun Chem 2024; 7:240. [PMID: 39443619 PMCID: PMC11499913 DOI: 10.1038/s42004-024-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized 13C MRI visualizes real-time metabolic processes in vivo. In this study, we achieved high 13C polarization in situ in the bore of an MRI system for precursor molecules of most widely employed hyperpolarized agents: [1-13C]acetate and [1-13C]pyruvate ethyl esters in their perdeuterated forms, enhancing hyperpolarization lifetimes, hyperpolarized to P13C ≈ 28% at 80 mM concentration and P13C ≈ 19% at 10 mM concentration, respectively. Using vinyl esters as unsaturated Parahydrogen-Induced Polarization via Side-Arm Hydrogenation (PHIP-SAH) precursors and our novel polarization setup, we achieved these hyperpolarization levels by fast side-arm hydrogenation in acetone-d6 at elevated temperatures (up to 90°C) and hydrogenation pressures (up to 32 bar). We optimized the hyperpolarization process, reducing it to under 10 s, and employed advanced pulse sequences to enhance the polarization transfer efficiency. The hyperpolarization system has a small footprint, allowing it to be positioned in the same magnet, where 13C MRI is performed. We exemplified the utility of the design with sub-second in situ 13C MRI of ethyl [1-13C]pyruvate-d6. However, challenges remain in side-arm cleavage and purification in the MRI system to extract highly polarized aqueous agent solutions. Our results showcase efficient and rapid 13C hyperpolarization of these metabolite precursors in an MRI system with minimal additional hardware, promising to enhance future throughput and access to hyperpolarized 13C MRI.
Collapse
Affiliation(s)
- Obaid Mohiuddin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Marvin Herzog
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eduard Y Chekmenev
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Brahms A, Pravdivtsev AN, Thorns L, Sönnichsen FD, Hövener JB, Herges R. Exceptionally Mild and High-Yielding Synthesis of Vinyl Esters of Alpha-Ketocarboxylic Acids, Including Vinyl Pyruvate, for Parahydrogen-Enhanced Metabolic Spectroscopy and Imaging. J Org Chem 2023; 88:15018-15028. [PMID: 37824795 DOI: 10.1021/acs.joc.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metabolic changes often occur long before pathologies manifest and treatment becomes challenging. As key elements of energy metabolism, α-ketocarboxylic acids (α-KCA) are particularly interesting, e.g., as the upregulation of pyruvate to lactate conversion is a hallmark of cancer (Warburg effect). Magnetic resonance imaging with hyperpolarized metabolites has enabled imaging of this effect non-invasively and in vivo, allowing the early detection of cancerous tissue and its treatment. Hyperpolarization by means of dynamic nuclear polarization, however, is complex, slow, and expensive, while available precursors often limit parahydrogen-based alternatives. Here, we report the synthesis for novel 13C, deuterated ketocarboxylic acids, and a much-improved synthesis of 1-13C-vinyl pruvate-d6, arguably the most promising tracer for hyperpolarizing pyruvate using parahydrogen-induced hyperpolarization by side arm hydrogenation. The new synthesis is scalable and provides a high yield of 52%. We elucidated the mechanism of our Pd-catalyzed trans-vinylation reaction. Hydrogenation with parahydrogen allowed us to monitor the addition, which was found to depend on the electron demand of the vinyl ester. Electron-poor α-keto vinyl esters react slower than "normal" alkyl vinyl esters. This synthesis of 13C, deuterated α-ketocarboxylic acids opens up an entirely new class of biomolecules for fast and cost-efficient hyperpolarization with parahydrogen and their use for metabolic imaging.
Collapse
Affiliation(s)
- Arne Brahms
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Lynn Thorns
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Rainer Herges
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| |
Collapse
|
4
|
Hune T, Mamone S, Schroeder H, Jagtap AP, Sternkopf S, Stevanato G, Korchak S, Fokken C, Müller CA, Schmidt AB, Becker D, Glöggler S. Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1- 13 C-Pyruvate-d 3. Chemphyschem 2023; 24:e202200615. [PMID: 36106366 PMCID: PMC10092681 DOI: 10.1002/cphc.202200615] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.
Collapse
Affiliation(s)
- Theresa Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christoph A Müller
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Andreas B Schmidt
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.,Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, 48202, Detroit, MI, USA
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| |
Collapse
|
5
|
Fraser R, Rutjes FPJT, Feiters MC, Tessari M. Analysis of Complex Mixtures by Chemosensing NMR Using para-Hydrogen-Induced Hyperpolarization. Acc Chem Res 2022; 55:1832-1844. [PMID: 35709417 PMCID: PMC9260963 DOI: 10.1021/acs.accounts.1c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR) is a powerful technique for chemical
analysis. The use of NMR to investigate dilute analytes in complex
systems is, however, hampered by its relatively low sensitivity. An
additional obstacle is represented by the NMR signal overlap. Because
solutes in a complex mixture are usually not isotopically labeled,
NMR studies are often limited to 1H measurements, which,
because of the modest dispersion of the 1H resonances (typically
∼10 ppm), can result in challenging signal crowding. The low
NMR sensitivity issue can be alleviated by nuclear spin hyperpolarization
(i.e., transiently increasing the differences in nuclear spin populations),
which determines large NMR signal enhancements. This has been demonstrated
for hyperpolarization methods such as dynamic nuclear polarization,
spin-exchange optical pumping and para-hydrogen-induced
polarization (PHIP). In particular, PHIP has grown into a fast, efficient,
and versatile technique since the recent discovery of non-hydrogenative
routes to achieve nuclear spin hyperpolarization. For instance,
signal amplification by reversible exchange (SABRE)
can generate proton as well as heteronuclear spin hyperpolarization
in a few seconds in compounds that are able to transiently bind to
an iridium catalyst in the presence of para-hydrogen
in solution. The hyperpolarization transfer catalyst acts as a chemosensor
in the sense that it is selective for analytes that can coordinate
to the metal center, such as nitrogen-containing aromatic heterocycles,
sulfur heteroaromatic compounds, nitriles, Schiff bases, diaziridines,
carboxylic acids, and amines. We have demonstrated that the signal
enhancement achieved by SABRE allows rapid NMR detection and quantification
of a mixture of substrates down to low-micromolar concentration. Furthermore,
in the transient complex, the spin configuration of p-H2 can be easily converted to spin hyperpolarization
to produce up to 1000-fold enhanced NMR hydride signals. Because the
hydrides’ chemical shifts are highly sensitive to the structure
of the analyte associating with the iridium complex, they can be employed
as hyperpolarized “probes” to signal the presence of
specific compounds in the mixture. This indirect detection of the
analytes in solution provides important benefits in the case of complex
systems, as hydrides resonate in a region of the 1H spectrum
(at ca. −20 ppm) that is generally signal-free. The enhanced
sensitivity provided by non-hydrogenative PHIP (nhPHIP), together
with the absence of interference from the complex matrix (usually
resonating between 0 and 10 ppm), set the detection limit for this
NMR chemosensor down to sub-μM concentrations, approximately
3 orders of magnitude lower than for conventional NMR. This nhPHIP
approach represents, therefore, a powerful tool for NMR analysis of
dilute substrates in complex mixtures as it addresses at once the
issues of signal crowding and NMR sensitivity. Importantly, being
performed at high field inside the NMR spectrometer, the method allows
for rapid acquisition of multiple scans, multidimensional hyperpolarized
NMR spectra, in a fashion comparable to that of standard NMR measurements. In this Account, we focus on our chemosensing NMR technology, detailing
its principles, advantages, and limitations and presenting a number
of applications to real systems such as biofluids, beverages, and
natural extracts.
Collapse
Affiliation(s)
- Roan Fraser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martin C Feiters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
7
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
8
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
9
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
10
|
Chapman B, Joalland B, Meersman C, Ettedgui J, Swenson RE, Krishna MC, Nikolaou P, Kovtunov KV, Salnikov OG, Koptyug IV, Gemeinhardt ME, Goodson BM, Shchepin RV, Chekmenev EY. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. Anal Chem 2021; 93:8476-8483. [PMID: 34102835 PMCID: PMC8262381 DOI: 10.1021/acs.analchem.1c00716] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.
Collapse
Affiliation(s)
- Benjamin Chapman
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Collier Meersman
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Panayiotis Nikolaou
- XeUS Technologies LTD, Georgiou Karaiskaki 2A, Lakatamia 2312, Nicosia, Cyprus
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
11
|
Carrera C, Cavallari E, Digilio G, Bondar O, Aime S, Reineri F. ParaHydrogen Polarized Ethyl-[1- 13 C]pyruvate in Water, a Key Substrate for Fostering the PHIP-SAH Approach to Metabolic Imaging. Chemphyschem 2021; 22:1042-1048. [PMID: 33720491 PMCID: PMC8251755 DOI: 10.1002/cphc.202100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Indexed: 01/01/2023]
Abstract
An efficient synthesis of vinyl-[1-13 C]pyruvate has been reported, from which 13 C hyperpolarized (HP) ethyl-[1-13 C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13 C and 1 H hyperpolarizations of ethyl-[1-13 C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13 C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13 C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13 C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.
Collapse
Affiliation(s)
- Carla Carrera
- Institute of Biostructures and BioimagingNational Research CouncilVia Nizza 5210126TorinoItaly
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Giuseppe Digilio
- Department of Science and Technologic InnovationUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Oksana Bondar
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| |
Collapse
|
12
|
Chukanov NV, Salnikov OG, Trofimov IA, Kabir MSH, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis and 15 N NMR Signal Amplification by Reversible Exchange of [ 15 N]Dalfampridine at Microtesla Magnetic Fields. Chemphyschem 2021; 22:960-967. [PMID: 33738893 DOI: 10.1002/cphc.202100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15 N-labeled [15 N]dalfampridine (4-amino[15 N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15 N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15 N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15 N polarization levels of [15 N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15 N polarization levels of free and equatorial catalyst-bound [15 N]dalfampridine were investigated. Moreover, we studied 15 N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15 N polarization decay at the Earth's magnetic field and at 1.4 T.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.,Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
13
|
Svyatova A, Kozinenko VP, Chukanov NV, Burueva DB, Chekmenev EY, Chen YW, Hwang DW, Kovtunov KV, Koptyug IV. PHIP hyperpolarized [1- 13C]pyruvate and [1- 13C]acetate esters via PH-INEPT polarization transfer monitored by 13C NMR and MRI. Sci Rep 2021; 11:5646. [PMID: 33707497 PMCID: PMC7952547 DOI: 10.1038/s41598-021-85136-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen-induced polarization of 13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for 1H to 13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in 13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for 1H to 13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant 13C NMR signal enhancement with respect to thermal polarization allowed us to perform 13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090 ,grid.418953.2Institute of Cytology and Genetics SB RAS, 10 Ac. Lavrentieva Ave., Novosibirsk, Russia 630090
| | - Vitaly P. Kozinenko
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Nikita V. Chukanov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Dudari B. Burueva
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Eduard Y. Chekmenev
- grid.254444.70000 0001 1456 7807Department of Chemistry, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Integrative Biosciences, Wayne State University, Detroit, MI 48201 USA ,grid.4886.20000 0001 2192 9124Russian Academy of Sciences, Moscow, Russia 119991
| | - Yu-Wen Chen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Dennis W. Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Kirill V. Kovtunov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Igor V. Koptyug
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090
| |
Collapse
|
14
|
Dagys L, Jagtap AP, Korchak S, Mamone S, Saul P, Levitt MH, Glöggler S. Nuclear hyperpolarization of (1- 13C)-pyruvate in aqueous solution by proton-relayed side-arm hydrogenation. Analyst 2021; 146:1772-1778. [PMID: 33475626 DOI: 10.1039/d0an02389b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We employ Parahydrogen Induced Polarization with Side-Arm Hydrogenation (PHIP-SAH) to polarize (1-13C)-pyruvate. We introduce a new method called proton-relayed side-arm hydrogenation (PR-SAH) in which an intermediate proton is used to transfer polarization from the side-arm to the 13C-labelled site of the pyruvate before hydrolysis. This significantly reduces the cost and effort needed to prepare the precursor for radio-frequency transfer experiments while still maintaining acceptable polarization transfer efficiency. Experimentally we have attained on average 4.33% 13C polarization in an aqueous solution of (1-13C)-pyruvate after about 10 seconds of cleavage and extraction. PR-SAH is a promising pulsed NMR method for hyperpolarizing 13C-labelled metabolites in solution, conducted entirely in high magnetic field.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Anil P Jagtap
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Sergey Korchak
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Salvatore Mamone
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Philip Saul
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Malcolm H Levitt
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Stefan Glöggler
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| |
Collapse
|
15
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
16
|
Birchall JR, Coffey AM, Goodson BM, Chekmenev EY. High-Pressure Clinical-Scale 87% Parahydrogen Generator. Anal Chem 2020; 92:15280-15284. [DOI: 10.1021/acs.analchem.0c03358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan R. Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Aaron M. Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232, United States
| | | | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
17
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
18
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
19
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020; 59:8654-8660. [PMID: 32207871 PMCID: PMC7437572 DOI: 10.1002/anie.201916597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/03/2023]
Abstract
Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA 2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
20
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen‐Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Nuwandi M. Ariyasingha
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Sören Lehmkuhl
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University 52056 Aachen Germany
- Central Institute for Engineering, Electronics and Analytics—, Electronic Systems (ZEA 2) Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
21
|
Joalland B, Schmidt AB, Kabir MSH, Chukanov NV, Kovtunov KV, Koptyug IV, Hennig J, Hövener JB, Chekmenev EY. Pulse-Programmable Magnetic Field Sweeping of Parahydrogen-Induced Polarization by Side Arm Hydrogenation. Anal Chem 2020; 92:1340-1345. [PMID: 31800220 PMCID: PMC7436199 DOI: 10.1021/acs.analchem.9b04501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among the hyperpolarization techniques geared toward in vivo magnetic resonance imaging, parahydrogen-induced polarization (PHIP) shows promise due to its low cost and fast speed of contrast agent preparation. The synthesis of 13C-labeled, unsaturated precursors to perform PHIP by side arm hydrogenation has recently opened new possibilities for metabolic imaging owing to the biological compatibility of the reaction products, although the polarization transfer between the parahydrogen-derived protons and the 13C heteronucleus must yet be better understood, characterized, and eventually optimized. In this realm, a new experimental strategy incorporating pulse-programmable magnetic field sweeping and in situ detection has been developed. The approach is evaluated by measuring the 13C polarization of ethyl acetate-1-13C, i.e., the product of pairwise addition of parahydrogen to vinyl acetate-1-13C, resulting from zero-crossing magnetic field ramps of various durations, amplitudes, and step sizes. The results demonstrate (i) the profound effect these parameters have on the 1H to 13C polarization transfer efficiency and (ii) the high reproducibility of the technique.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Department or Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-Holstein, University of Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
22
|
Ledovskaya MS, Voronin VV, Rodygin KS, Ananikov VP. Efficient labeling of organic molecules using 13C elemental carbon: universal access to 13C2-labeled synthetic building blocks, polymers and pharmaceuticals. Org Chem Front 2020. [DOI: 10.1039/c9qo01357a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic methodology enabled by 13C-elemental carbon is reported. Calcium carbide Ca13C2 was applied to introduce a universal 13C2 unit in the synthesis of labeled alkynes, O,S,N-vinyl derivatives, labeled polymers and 13C2-pyridazine drug core.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
23
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
24
|
Itoda M, Naganawa Y, Ito M, Nonaka H, Sando S. Structural exploration of rhodium catalysts and their kinetic studies for efficient parahydrogen-induced polarization by side arm hydrogenation. RSC Adv 2019; 9:18183-18190. [PMID: 35515260 PMCID: PMC9064692 DOI: 10.1039/c9ra02580d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
New rhodium catalysts for parahydrogen-induced polarization.
Collapse
Affiliation(s)
- Marino Itoda
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Yuki Naganawa
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Makoto Ito
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
25
|
Maptue N, Jiang W, Harrison C, Funk AM, Sharma G, Malloy CR, Sherry D, Khemtong C. Esterase-Catalyzed Production of Hyperpolarized 13C-Enriched Carbon Dioxide in Tissues for Measuring pH. ACS Sens 2018; 3:2232-2236. [PMID: 30398335 DOI: 10.1021/acssensors.8b01097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
13C Magnetic resonance imaging of hyperpolarized (HP) 13C-enriched bicarbonate (H13CO3-) and carbon dioxide (13CO2) is a novel and sensitive technique for tissue pH mapping in vivo. Administration of the HP physiological buffer pair is attractive, but poor polarization and the short T1 of 13C-enriched inorganic bicarbonate salts are major drawbacks for this approach. Here, we report a new class of mixed anhydrides for esterase-catalyzed production of highly polarized 13CO2 and H13CO3- in tissue. A series of precursors with different alkoxy and acyl groups were synthesized and tested for chemical stability and T1. 13C-enriched ethyl acetyl carbonate (13C-EAC) was found to be the most suitable candidate due to the relatively long T1 and good chemical stability. Our results showed that 13C-EAC can be efficiently and rapidly polarized using BDPA. HP 13C-EAC was rapidly hydrolyzed by esterase to 13C-enriched monoacetyl carbonate (13C-MAC), which then decomposed to HP 13CO2. Equilibrium between the newly produced 13CO2 and H13CO3- was quickly established by carbonic anhydrase, producing a physiological buffer pair with 13C NMR signals that can be quantified for pH measurements. Finally, in vivo tissue pH measurements using HP 13C-EAC was successfully demonstrated in the liver of healthy rats. These results suggest that HP 13C-EAC is a novel imaging probe for in vivo pH measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Craig R. Malloy
- Veteran Affairs North Texas Health Care System, Dallas, Texas 75216, United States
| | - Dean Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | |
Collapse
|
26
|
Salnikov OG, Shchepin RV, Chukanov NV, Jaigirdar L, Pham W, Kovtunov KV, Koptyug IV, Chekmenev EY. Effects of Deuteration of 13C-Enriched Phospholactate on Efficiency of Parahydrogen-Induced Polarization by Magnetic Field Cycling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:24740-24749. [PMID: 31447960 PMCID: PMC6707357 DOI: 10.1021/acs.jpcc.8b07365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report herein a large-scale (>10 g) synthesis of isotopically enriched 1-13C-phosphoenolpyruvate and 1-13C-phosphoenolpyruvate-d2 for application in hyperpolarized imaging technology. The 1-13C-phosphoenolpyruvate-d2 was synthesized with 57% overall yield (over two steps), and >98% 2H isotopic purity, representing an improvement over the previous report. The same outcome was achieved for 1-13C-phosphoenolpyruvate. These two unsaturated compounds with C=C bonds were employed for parahydrogen-induced polarization via pairwise parahydrogen addition in aqueous medium. We find that deuteration of 1-13C-phosphoenolpyruvate resulted in overall increase of 1H T1 of nascent hyperpolarized protons (4.30 ± 0.04 s versus 2.06 ± 0.01 s) and 1H polarization (~2.5% versus ~0.7%) of the resulting hyperpolarized 1-13C-phospholactate. The nuclear spin polarization of nascent parahydrogen-derived protons was transferred to 1-13C nucleus via magnetic field cycling procedure. The proton T1 increase in hyperpolarized deuterated 1-13C-phospholactate yielded approximately 30% better 13C polarization compared to non-deuterated hyperpolarized 1-13C-phospholactate. Analysis of T1 relaxation revealed that deuteration of 1-13C-phospholactate may have resulted in approximately 3-fold worse H→13C polarization transfer efficiency via magnetic field cycling. Since magnetic field cycling is a key polarization transfer step in the Side-Arm Hydrogenation approach, the presented findings may guide more rationale design of contrast agents using parahydrogen polarization of a broad range of 13C hyperpolarized contrast agents for molecular imaging employing 13C MRI. The hyperpolarized 1-13C-phospholactate-d2 is of biomedical imaging relevance because it undergoes in vivo dephosphorylation and becomes 13C hyperpolarized lactate, which as we show can be detected in the brain using 13C hyperpolarized MRI; an implication for future imaging of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
| | - Nikita V. Chukanov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS)
- School of Engineering
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
- Department of Biomedical Engineering
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United
States
| | - Kirill V. Kovtunov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS)
- Department of Radiology
- Department of Biomedical Engineering
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United
States
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute
(KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
- Corresponding Author:
| |
Collapse
|
27
|
|
28
|
Stewart NJ, Kumeta H, Tomohiro M, Hashimoto T, Hatae N, Matsumoto S. Long-range heteronuclear J-coupling constants in esters: Implications for 13C metabolic MRI by side-arm parahydrogen-induced polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:85-92. [PMID: 30223155 DOI: 10.1016/j.jmr.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Side-arm parahydrogen induced polarization (PHIP-SAH) presents a cost-effective method for hyperpolarization of 13C metabolites (e.g. acetate, pyruvate) for metabolic MRI. The timing and efficiency of typical spin order transfer methods including magnetic field cycling and tailored RF pulse sequences crucially depends on the heteronuclear J coupling network between nascent parahydrogen protons and 13C, post-parahydrogenation of the target compound. In this work, heteronuclear nJHC (1 < n ≤ 5) couplings of acetate and pyruvate esters pertinent for PHIP-SAH were investigated experimentally using selective HSQMBC-based pulse sequences and numerically using DFT simulations. The CLIP-HSQMBC technique was used to quantify 2/3-bond JHC couplings, and 4/5-bond JHC ≲ 0.5 Hz were estimated by the sel-HSQMBC-TOCSY approach. Experimental and numerical (DFT-simulated) nJHC couplings were strongly correlated (P < 0.001). Implications for 13C hyperpolarization by magnetic field cycling, and PH-INEPT and ESOTHERIC type spin order transfer methods for PHIP-SAH were assessed, and the influence of direct nascent parahydrogen proton to 13C coupling when compared with indirect homonuclear TOCSY-type transfer through intermediate (non-nascent parahydrogen) protons was studied by the density matrix approach.
Collapse
Affiliation(s)
- Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takuya Hashimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan; Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Noriyuki Hatae
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan; JST, PREST, Saitama, Japan.
| |
Collapse
|
29
|
Tokmic K, Greer RB, Zhu L, Fout AR. 13C NMR Signal Enhancement Using Parahydrogen-Induced Polarization Mediated by a Cobalt Hydrogenation Catalyst. J Am Chem Soc 2018; 140:14844-14850. [DOI: 10.1021/jacs.8b08614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenan Tokmic
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Rianna B. Greer
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
31
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
32
|
Kidd BE, Mashni JA, Limbach MN, Shi F, Chekmenev EY, Hou Y, Goodson BM. Toward Cleavable Metabolic/pH Sensing "Double Agents" Hyperpolarized by NMR Signal Amplification by Reversible Exchange. Chemistry 2018; 24:10641-10645. [PMID: 29800491 PMCID: PMC6097920 DOI: 10.1002/chem.201802622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/05/2022]
Abstract
We show the simultaneous generation of hyperpolarized 13 C-labeled acetate and 15 N-labeled imidazole following spin-relay of hyperpolarization and hydrolysis of the acetyl moiety on 1-13 C-15 N2 -acetylimidazole. Using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), transfer of spin order occurs from parahydrogen to acetylimidazole 15 N atoms and the acetyl 13 C site (≈263-fold enhancement), giving rise to relatively long hyperpolarization lifetimes at 0.3 T (T1 ≈52 s and ≈149 s for 13 C and 15 N, respectively). Immediately following polarization transfer, the 13 C-labeled acetyl group is hydrolytically cleaved to produce hyperpolarized 13 C-acetate/acetic acid (≈140-fold enhancement) and 15 N-imidazole (≈180-fold enhancement), the former with a 13 C T1 of ≈14 s at 0.3 T. Straightforward synthetic routes, efficient spin-relay of SABRE hyperpolarization, and facile bond cleavage open a door to the cheap and rapid generation of long-lived hyperpolarized states within a wide range of molecular targets, including biologically relevant carboxylic acid derivatives, for metabolic and pH imaging.
Collapse
Affiliation(s)
- Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jamil A Mashni
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Yuqing Hou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
33
|
Korchak S, Mamone S, Glöggler S. Over 50 % 1H and 13C Polarization for Generating Hyperpolarized Metabolites-A para-Hydrogen Approach. ChemistryOpen 2018; 7:672-676. [PMID: 30191091 PMCID: PMC6121117 DOI: 10.1002/open.201800086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
para‐Hydrogen‐induced polarization (PHIP) is a method to rapidly generate hyperpolarized compounds, enhancing the signal of nuclear magnetic resonance (NMR) experiments by several thousand‐fold. The hyperpolarization of metabolites and their use as contrast agents in vivo is an emerging diagnostic technique. High degrees of polarization and extended polarization lifetime are necessary requirements for the detection of metabolites in vivo. Here, we present pulsed NMR methods for obtaining hyperpolarized magnetization in two metabolites. We demonstrate that the hydrogenation with para‐hydrogen of perdeuterated vinyl acetate allows us to create hyperpolarized ethyl acetate with close to 60 % 1H two‐spin order. With nearly 100 % efficiency, this order can either be transferred to 1H in‐phase magnetization or 13C magnetization of the carbonyl function. Close to 60 % polarization is experimentally verified for both nuclei. Cleavage of the ethyl acetate precursor in a 20 s reaction yields ethanol with approximately 27 % 1H polarization and acetate with around 20 % 13C polarization. This development will open new opportunities to generate metabolic contrast agents in less than one minute.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| |
Collapse
|
34
|
Chukanov N, Salnikov OG, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis of Unsaturated Precursors for Parahydrogen-Induced Polarization and Molecular Imaging of 1- 13C-Acetates and 1- 13C-Pyruvates via Side Arm Hydrogenation. ACS OMEGA 2018; 3:6673-6682. [PMID: 29978146 PMCID: PMC6026840 DOI: 10.1021/acsomega.8b00983] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Hyperpolarized forms of 1-13C-acetates and 1-13C-pyruvates are used as diagnostic contrast agents for molecular imaging of many diseases and disorders. Here, we report the synthetic preparation of 1-13C isotopically enriched and pure from solvent acetates and pyruvates derivatized with unsaturated ester moiety. The reported unsaturated precursors can be employed for NMR hyperpolarization of 1-13C-acetates and 1-13C-pyruvates via parahydrogen-induced polarization (PHIP). In this PHIP variant, Side arm hydrogenation (SAH) of unsaturated ester moiety is followed by the polarization transfer from nascent parahydrogen protons to 13C nucleus via magnetic field cycling procedure to achieve hyperpolarization of 13C nuclear spins. This work reports the synthesis of PHIP-SAH precursors: vinyl 1-13C-acetate (55% yield), allyl 1-13C-acetate (70% yield), propargyl 1-13C-acetate (45% yield), allyl 1-13C-pyruvate (60% yield), and propargyl 1-13C-pyruvate (35% yield). Feasibility of PHIP-SAH 13C hyperpolarization was verified by 13C NMR spectroscopy: hyperpolarized allyl 1-13C-pyruvate was produced from propargyl 1-13C-pyruvate with 13C polarization of ∼3.2% in CD3OD and ∼0.7% in D2O. 13C magnetic resonance imaging is demonstrated with hyperpolarized 1-13C-pyruvate in aqueous medium.
Collapse
Affiliation(s)
- Nikita
V. Chukanov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
- Department
of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- E-mail:
| |
Collapse
|
35
|
Barskiy DA, Ke LA, Li X, Stevenson V, Widarman N, Zhang H, Truxal A, Pines A. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents. J Phys Chem Lett 2018; 9:2721-2724. [PMID: 29739186 DOI: 10.1021/acs.jpclett.8b01007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
- Material Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720-3220 , United States
| | - Lucia A Ke
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Xingyang Li
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Vincent Stevenson
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Nevin Widarman
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Ashley Truxal
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Alexander Pines
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
- Material Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720-3220 , United States
| |
Collapse
|
36
|
|
37
|
Cavallari E, Carrera C, Sorge M, Bonne G, Muchir A, Aime S, Reineri F. The 13C hyperpolarized pyruvate generated by ParaHydrogen detects the response of the heart to altered metabolism in real time. Sci Rep 2018; 8:8366. [PMID: 29849091 PMCID: PMC5976640 DOI: 10.1038/s41598-018-26583-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 01/13/2023] Open
Abstract
Many imaging methods have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarkers characteristics of the injured organ have not yet been described. Hyperpolarized [1-13C]pyruvate allows real time monitoring of metabolism in vivo. ParaHydrogen Induced Polarization (PHIP) is a portable, cost effective technique able to generate 13C MR hyperpolarized molecules within seconds. The introduction of the Side Arm Hydrogenation (SAH) strategy offered a way to widen the field of PHIP generated systems and to make this approach competitive with the currently applied dissolution-DNP (Dynamic Nuclear Polarization) method. Herein, we describe the first in vivo metabolic imaging study using the PHIP-SAH hyperpolarized [1-13C]pyruvate. In vivo maps of pyruvate and of its metabolic product lactate have been acquired on a 1 T MRI scanner. By comparing pyruvate/lactate 13C label exchange rate in a mouse model of dilated cardiomyopathy, it has been found that the metabolic dysfunction occurring in the cardiac muscle of the diseased mice can be detected well before the disease can be assessed by echocardiographic investigations.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Carla Carrera
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS974, Center of Research in Myology, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Antoine Muchir
- Sorbonne Université, Inserm UMRS974, Center of Research in Myology, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
38
|
Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J 2018; 13:10.1002/asia.201800551. [PMID: 29790649 PMCID: PMC6251772 DOI: 10.1002/asia.201800551] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/10/2022]
Abstract
The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Oleg G. Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Samuel Cousin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Basile Vuichoud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Eduard Y. Chekmenev
- Department of Chemistry & Karmanos Cancer Center, Wayne State University, Detroit, 48202, MI, United States
- Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Southern Illinois University, Carbondale, IL 62901, United States
| | - Danila A. Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, United States
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| |
Collapse
|
39
|
Cavallari E, Carrera C, Aime S, Reineri F. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:12-17. [PMID: 29448129 DOI: 10.1016/j.jmr.2018.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 05/12/2023]
Abstract
The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, Torino, Italy
| | - Carla Carrera
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, Torino, Italy
| | - Silvio Aime
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, Torino, Italy
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, Torino, Italy.
| |
Collapse
|
40
|
Coffey AM, Shchepin RV, Feng B, Colon RD, Wilkens K, Waddell KW, Chekmenev EY. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:115-124. [PMID: 29028543 PMCID: PMC5708540 DOI: 10.1016/j.jmr.2017.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C=20±2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.
Collapse
Affiliation(s)
- Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Bibo Feng
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Raul D Colon
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Kevin W Waddell
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232-2310, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
41
|
Bales L, Kovtunov KV, Barskiy DA, Shchepin RV, Coffey AM, Kovtunova LM, Bukhtiyarov AV, Feldman MA, Bukhtiyarov VI, Chekmenev EY, Koptyug IV, Goodson BM. Aqueous, Heterogeneous Parahydrogen-Induced 15N Polarization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:15304-15309. [PMID: 29238438 PMCID: PMC5723423 DOI: 10.1021/acs.jpcc.7b05912] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 06/20/2017] [Indexed: 05/20/2023]
Abstract
The successful transfer of parahydrogen-induced polarization to 15N spins using heterogeneous catalysts in aqueous solutions was demonstrated. Hydrogenation of a synthesized unsaturated 15N-labeled precursor (neurine) with parahydrogen (p-H2) over Rh/TiO2 heterogeneous catalysts yielded a hyperpolarized structural analog of choline. As a result, 15N polarization enhancements of over two orders of magnitude were achieved for the 15N-ethyl trimethyl ammonium ion product in deuterated water at elevated temperatures. Enhanced 15N NMR spectra were successfully acquired at 9.4 T and 0.05 T. Importantly, long hyperpolarization lifetimes were observed at 9.4 T, with a 15N T1 of ~6 min for the product molecules, and the T1 of the deuterated form exceeded 8 min. Taken together, these results show that this approach for generating hyperpolarized species with extended lifetimes in aqueous, biologically compatible solutions is promising for various biomedical applications.
Collapse
Affiliation(s)
- Liana
B. Bales
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kirill V. Kovtunov
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
- E-mail: (K.V.K.)
| | - Danila A. Barskiy
- Department of Biomedical Engineering and Physics,
Vanderbilt-Ingram
Cancer Center (VICC), and Vanderbilt Institute of Imaging Science (VUIIS),
Department of Radiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Roman V. Shchepin
- Department of Biomedical Engineering and Physics,
Vanderbilt-Ingram
Cancer Center (VICC), and Vanderbilt Institute of Imaging Science (VUIIS),
Department of Radiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Aaron M. Coffey
- Department of Biomedical Engineering and Physics,
Vanderbilt-Ingram
Cancer Center (VICC), and Vanderbilt Institute of Imaging Science (VUIIS),
Department of Radiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Larisa M. Kovtunova
- Novosibirsk
State University, Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
| | | | - Matthew A. Feldman
- Department of Biomedical Engineering and Physics,
Vanderbilt-Ingram
Cancer Center (VICC), and Vanderbilt Institute of Imaging Science (VUIIS),
Department of Radiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Valerii I. Bukhtiyarov
- Novosibirsk
State University, Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Biomedical Engineering and Physics,
Vanderbilt-Ingram
Cancer Center (VICC), and Vanderbilt Institute of Imaging Science (VUIIS),
Department of Radiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Russian
Academy of Sciences, Moscow 119991, Russia
- E-mail: (E.Y.C.)
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
- E-mail: (B.M.G.)
| |
Collapse
|
42
|
Cavallari E, Carrera C, Reineri F. ParaHydrogen Hyperpolarized Substrates for Molecular Imaging Studies. Isr J Chem 2017. [DOI: 10.1002/ijch.201700030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eleonora Cavallari
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| | - Carla Carrera
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| |
Collapse
|
43
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
45
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017; 56:3925-3929. [DOI: 10.1002/anie.201701314] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
46
|
Barskiy DA, Salnikov OG, Shchepin RV, Feldman MA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. NMR SLIC Sensing of Hydrogenation Reactions Using Parahydrogen in Low Magnetic Fields. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:29098-29106. [PMID: 28066517 PMCID: PMC5204359 DOI: 10.1021/acs.jpcc.6b07555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/26/2016] [Indexed: 05/12/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is an NMR hyperpolarization technique that increases nuclear spin polarization by orders of magnitude, and it is particularly well-suited to study hydrogenation reactions. However, the use of high-field NMR spectroscopy is not always possible, especially in the context of potential industrial-scale reactor applications. On the other hand, the direct low-field NMR detection of reaction products with enhanced nuclear spin polarization is challenging due to near complete signal cancellation from nascent parahydrogen protons. We show that hydrogenation products prepared by PHIP can be irradiated with weak (on the order of spin-spin couplings of a few hertz) alternating magnetic field (called Spin-Lock Induced Crossing or SLIC) and consequently efficiently detected at low magnetic field (e.g., 0.05 T used here) using examples of several types of organic molecules containing a vinyl moiety. The detected hyperpolarized signals from several reaction products at tens of millimolar concentrations were enhanced by 10000-fold, producing NMR signals an order of magnitude greater than the background signal from protonated solvents.
Collapse
Affiliation(s)
- Danila A. Barskiy
- Vanderbilt
University Institute of Imaging Sciences, Nashville, Tennessee 37232, United States
| | - Oleg G. Salnikov
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt
University Institute of Imaging Sciences, Nashville, Tennessee 37232, United States
| | - Matthew A. Feldman
- Vanderbilt
University Institute of Imaging Sciences, Nashville, Tennessee 37232, United States
| | - Aaron M. Coffey
- Vanderbilt
University Institute of Imaging Sciences, Nashville, Tennessee 37232, United States
| | - Kirill V. Kovtunov
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk
State University, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt
University Institute of Imaging Sciences, Nashville, Tennessee 37232, United States
- Russian
Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
47
|
Cavallari E, Carrera C, Aime S, Reineri F. 13 C MR Hyperpolarization of Lactate by Using ParaHydrogen and Metabolic Transformation in Vitro. Chemistry 2016; 23:1200-1204. [PMID: 27870463 DOI: 10.1002/chem.201605329] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 12/16/2022]
Abstract
Hyperpolarization of the 13 C magnetic resonance signal of l-[1-13 C]lactate has been obtained using the chemically based, cost-effective method called parahydrogen-induced polarization by means of side-arm hydrogenation (PHIP-SAH). Two ester derivatives of lactate were tested and the factors that determine the polarization level on the product have been investigated in detail. The metabolic conversion of hyperpolarized l-[1-13 C]lactate into pyruvate has been observed in vitro using lactate dehydrogenase (LDH) and in a cells lysate. From the acquisition of a series of 13 C NMR spectra, the metabolic build-up of the [1-13 C]pyruvate signal has been observed. These studies demonstrate that, even if the experimental set-up used for these PHIP-SAH hyperpolarization studies is still far from optimal, the attained polarization level is already sufficient to carry out in vitro metabolic studies.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Carla Carrera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy.,Istituto Bioimmagini e Biostrutture del CNR, Sezione di Torino c/o Center of Molecular Imaging, Via Nizza 52, Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| |
Collapse
|
48
|
Kovtunov KV, Barskiy DA, Shchepin RV, Salnikov OG, Prosvirin IP, Bukhtiyarov AV, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Production of Pure Aqueous 13 C-Hyperpolarized Acetate by Heterogeneous Parahydrogen-Induced Polarization. Chemistry 2016; 22:16446-16449. [PMID: 27607402 PMCID: PMC5544125 DOI: 10.1002/chem.201603974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 12/18/2022]
Abstract
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13 C-hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13 C-enriched ethyl acetate-1-13 C detected at 9.4 T. An approximately 14-fold 13 C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen-derived protons to 13 C nuclei. This first observation of 13 C PHIP-hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst-free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP-SAH) approach.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Roman V Shchepin
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor P Prosvirin
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Andrey V Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Valerii I Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA.
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia.
| |
Collapse
|
49
|
Salnikov OG, Barskiy DA, Coffey AM, Kovtunov KV, Koptyug IV, Chekmenev EY. Efficient Batch-Mode Parahydrogen-Induced Polarization of Propane. Chemphyschem 2016; 17:3395-3398. [PMID: 27459542 PMCID: PMC5433086 DOI: 10.1002/cphc.201600564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/10/2022]
Abstract
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen-induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous-flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch-mode method is applied: propene is first loaded into the catalyst-containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous-flow homogeneous catalytic hydrogenation, and a factor of 3-10 more efficient compared to the typical results of heterogeneous continuous-flow hydrogenations.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center, SB RAS, Insitutskaya Street 3A, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090, Novosibirsk, Russia
| | - Danila A Barskiy
- Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee, 37232-2310, USA
| | - Aaron M Coffey
- Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee, 37232-2310, USA
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, Insitutskaya Street 3A, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, Insitutskaya Street 3A, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Street 2, 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee, 37232-2310, USA
- Russian Academy of Sciences, Leninskiy Prospect 14, 119991, Moscow, Russia
| |
Collapse
|
50
|
Coffey AM, Shchepin RV, Truong ML, Wilkens K, Pham W, Chekmenev EY. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents. Anal Chem 2016; 88:8279-88. [PMID: 27478927 PMCID: PMC4991553 DOI: 10.1021/acs.analchem.6b02130] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
An
open-source hyperpolarizer producing 13C hyperpolarized
contrast agents using parahydrogen induced polarization (PHIP) for
biomedical and other applications is presented. This PHIP hyperpolarizer
utilizes an Arduino microcontroller in conjunction with a readily
modified graphical user interface written in the open-source processing
software environment to completely control the PHIP hyperpolarization
process including remotely triggering an NMR spectrometer for efficient
production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization.
Key advantages of this hyperpolarizer include: (i) use of open-source
software and hardware seamlessly allowing for replication and further
improvement as well as readily customizable integration with other
NMR spectrometers or MRI scanners (i.e., this is a multiplatform design),
(ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance
is demonstrated by production of a dose (∼2–3 mL) of
hyperpolarized 13C-succinate with %P13C ∼ 28% and 30 mM concentration and 13C-phospholactate
at %P13C ∼ 15% and 25 mM concentration
in aqueous medium. These contrast agents are used for ultrafast molecular
imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion
of hyperpolarized 13C-phospholactate to 13C-lactate in vivo is used here to demonstrate the feasibility of ultrafast
multislice 13C MRI after tail vein injection of hyperpolarized 13C-phospholactate in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Eduard Y Chekmenev
- Russian Academy of Sciences , Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|