1
|
Ishii N, Mascherpa A, Fairbanks AJ. Synthesis of a heptasaccharide N-glycan comprising two mannose-6-phosphate residues. Carbohydr Res 2025; 547:109327. [PMID: 39580870 DOI: 10.1016/j.carres.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
A deprotected biantennary high mannose heptasaccharide N-glycan comprising two mannose-6-phosphate residues was synthesised as a putative ligand for the mannose 6-phosphate receptors, using a convergent [3 + 4] glycosylation strategy.
Collapse
Affiliation(s)
- Nozomi Ishii
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Andrea Mascherpa
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
2
|
Yu Y, Yang J, Liu Y, Liu Z, Zhou P, Mao W, Kong Y, Zhou J, Rong Y, Chen M. Rational design of N-glycosyltransferases from Aggregatibacter aphrophilus to synthesize Gal-modified glycoconjugates targeting hepatocellular carcinoma cells. Int J Biol Macromol 2024; 289:138609. [PMID: 39662545 DOI: 10.1016/j.ijbiomac.2024.138609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) significantly impacts human health due to its tendency to develop multi-drug resistance. Regarding the treatment of HCC, galactosylated conjugates can target drug delivery. Bacterial N-glycosyltransferases (NGTs) catalyze glucosylation or galactosylation of the Asn residue motif Asn0-X+1-Ser/Thr+2 (X ≠ P). However, the limited utilization of the sugar donor UDP-Gal by NGTs severely restricts the potential applications in the development of glycol-drugs and vaccines. In this study, we rationally designed an NGT derived from Aggregatibacter aphrophilus and generated a mutant called AaFQ, which has a catalytic activity 18.8 times greater than that of wild-type towards UDP-Gal. AaFQ could rapidly synthesize Gal-modified peptides, which have been demonstrated to possess high targeting activity for HCC cells HepG2. Moreover, AaFQ exhibited a marked affinity for sugar donors with an equatorial bond-linked hydroxyl group at the C-2 position in monosaccharides. The mutant led to a significantly enhanced binding of K440 to the hydroxyl group at the C-2 position, which might be a major factor contributing to the significantly increased ability to utilize UDP-Gal. This work provides a crucial enzymatic synthetic tool for the targeted therapy of HCC and also offers a new perspective for the engineering modification and application of NGTs.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; College of Life Science, Shandong Normal University, Jinan 250399, China
| | - Jiangyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yongqi Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhaoxi Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ping Zhou
- College of Life Science, Shandong Normal University, Jinan 250399, China
| | - Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jun Zhou
- College of Life Science, Shandong Normal University, Jinan 250399, China
| | - Yongheng Rong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Min Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Ding Y, Chen ZH, Cui J, Ding XY, Gao XD, Wang N. Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei. Glycoconj J 2024; 41:279-289. [PMID: 39340613 DOI: 10.1007/s10719-024-10166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are pivotal enzymes in the degradation and remodeling of glycoproteins, which catalyze the cleavage or formation of β-1,4-glycosidic bond between two N-acetylglucosamine (GlcNAc) residues in N-linked glycan chains. It was investigated that targeted mutations of amino acids in ENGases active site may modulate their hydrolytic and transglycosylation activities. Endo-Tb, the ENGase derived from Trypanosoma brucei, belongs to the glycoside hydrolase family 85 (GH85). Our group previously demonstrated that Endo-Tb exhibits hydrolytic activity toward high-mannose and complex type N-glycans and preliminarily confirmed its transglycosylation potential. In this study, we further optimized the transglycosylation activity of recombinant Endo-Tb by focusing on the N536A, E538A and Y576F mutants. A comparative analysis of their transglycosylation activity with that of the wild-type enzyme revealed that all mutants exhibited enhanced transglycosylation capacity. The N536A mutant exhibited the most pronounced improvement in transglycosylation activity with a significant reduction in hydrolytic activity. It is suggested that Endo-Tb N536A possesses the potential as a tool for synthesizing a wide array of glycoconjugates bearing high-mannose and complex type N-glycans.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Hui Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Juan Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xin-Yu Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Mascherpa A, Ishii N, Tayagui A, Liu J, Sollogoub M, Fairbanks AJ. Lysosomal Targeting of β-Cyclodextrin. Chemistry 2023; 29:e202203252. [PMID: 36265126 PMCID: PMC10100462 DOI: 10.1002/chem.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/06/2022]
Abstract
β-Cyclodextrin (β-CD) and derivatives are approved therapeutics in >30 clinical settings. β-CDs have also shown promise as therapeutics for treatment of some lysosomal storage disorders, such as Niemann-Pick disease type C, and other disease states which involve metabolite accumulation in the lysosome. In these cases, β-CD activity relies on transport to the lysosome, wherein it can bind hydrophobic substrate and effect extraction. The post-translational attachment of N-glycans terminated in mannose-6-phosphate (M6P) residues is the predominant method by which lysosomal enzymes are targeted to the lysosome. In this work we covalently attach a synthetic biantennary bis-M6P-terminated N-glycan to β-CD and study the effect of the added glycans in a mammalian cell line. The formation of a host guest complex with a Cy5 fluorophore allows study of both cellular internalisation and transport to the lysosome by fluorescence microscopy. Results indicate that the rates of both internalisation and lysosomal transport are increased by the attachment of M6P-glycans to β-CD, indicating that M6P-glycan conjugation may improve the therapeutic effectiveness of β-CD for the treatment of disorders involving hydrophobic metabolite accumulation in the lysosome.
Collapse
Affiliation(s)
- Andrea Mascherpa
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Nozomii Ishii
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Ayelen Tayagui
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Jiang Liu
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Matthieu Sollogoub
- Sorbonne UniversityCNRSInstitut Parisien de Chimie Moléculaire (IPCM), UMR 82324, place Jussieu75005ParisFrance
| | - Antony J. Fairbanks
- School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| |
Collapse
|
5
|
Wu Q, Dong S, Xuan W. N-Glycan Engineering: Constructing the N-GlcNAc Stump. Chembiochem 2023; 24:e202200388. [PMID: 35977913 DOI: 10.1002/cbic.202200388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Indexed: 01/05/2023]
Abstract
N-Glycosylation is often essential for the structure and function of proteins. However, N-glycosylated proteins from natural sources exhibit considerable heterogeneity in the appended oligosaccharides, bringing daunting challenges to corresponding basic research and therapeutic applications. To address this issue, various synthetic, enzymatic, and chemoenzymatic approaches have been elegantly designed. Utilizing the endoglycosidase-catalyzed transglycosylation method, a single N-acetylglucosamine (N-GlcNAc, analogous to a tree stump) on proteins can be converted to various homogeneous N-glycosylated forms, thereby becoming the focus of research efforts. In this concept article, we briefly introduce the methods that allow the generation of N-GlcNAc and its close analogues on proteins and peptides and highlight the current challenges and opportunities the scientific community is facing.
Collapse
Affiliation(s)
- Qifan Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Weimin Xuan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Zhang X, Liu H, He J, Ou C, Donahue TC, Muthana MM, Su L, Wang LX. Site-Specific Chemoenzymatic Conjugation of High-Affinity M6P Glycan Ligands to Antibodies for Targeted Protein Degradation. ACS Chem Biol 2022; 17:3013-3023. [PMID: 35316032 PMCID: PMC9492806 DOI: 10.1021/acschembio.1c00751] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lysosome-targeting chimeras (LYTACs) offer an opportunity for the degradation of extracellular and membrane-associated proteins of interest. Here, we report an efficient chemoenzymatic method that enables a single-step and site-specific conjugation of high-affinity mannose-6-phosphate (M6P) glycan ligands to antibodies without the need of protein engineering and conventional click reactions that would introduce "unnatural" moieties, yielding homogeneous antibody-M6P glycan conjugates for targeted degradation of membrane-associated proteins. Using trastuzumab and cetuximab as model antibodies, we showed that the wild-type endoglycosidase S (Endo-S) could efficiently perform the antibody deglycosylation and simultaneous transfer of an M6P-glycan from a synthetic M6P-glycan oxazoline to the deglycosylated antibody in a one-pot manner, giving structurally well-defined antibody-M6P glycan conjugates. A two-step procedure, using wild-type Endo-S2 for deglycosylation followed by transglycosylation with an Endo-S2 mutant (D184M), was also efficient to provide M6P glycan-antibody conjugates. The chemoenzymatic approach was highly specific for Fc glycan remodeling when both Fc and Fab domains were glycosylated, as exemplified by the selective Fc-glycan remodeling of cetuximab. SPR binding analysis indicated that the M6P conjugates possessed a nanomolar range of binding affinities for the cation-independent mannose-6-phosphate receptor (CI-MPR). Preliminary cell-based assays showed that the M6P-trastuzumab and M6P-cetuximab conjugates were able to selectively degrade the membrane-associated HER2 and EGFR, respectively. This modular glycan-remodeling strategy is expected to find wide applications for antibody-based lysosome-targeted degradation of extracellular and membrane proteins.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jia He
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Musleh M Muthana
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Zhao X, Huang Y, Zhou S, Ao J, Cai H, Tanaka K, Ito Y, Ishiwata A, Ding F. Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans. Front Chem 2022; 10:880128. [PMID: 35720985 PMCID: PMC9204336 DOI: 10.3389/fchem.2022.880128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Glycosylation is one of the major forms of protein post-translational modification. N-glycans attached to proteins by covalent bonds play an indispensable role in intercellular interaction and immune function. In human bodies, most of the cell surface glycoproteins and secreted glycopeptides are modified with complex-type N-glycans. Thus, for analytical or medicinal purposes, efficient and universal methods to provide homogeneous complex-type N-glycans have been an urgent need. Despite the extremely complicated structures, tremendous progress in the synthesis of N-glycans has been achieved. On one hand, chemical strategies are shown to be effective to prepare core oligosaccharides of N-glycans by focusing on stereoselective glycosylations such as β-mannosylation and α-sialylation, as well as the methodology of the N-glycan assembly. On the other hand, chemoenzymatic strategies have also become increasingly powerful in recent years. This review attempts to highlight the very recent advancements in chemical and chemoenzymatic strategies for eukaryotic complex-type N-glycans.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| |
Collapse
|
8
|
Qiu X, Garden AL, Fairbanks AJ. Protecting group free glycosylation: one-pot stereocontrolled access to 1,2- trans glycosides and (1→6)-linked disaccharides of 2-acetamido sugars. Chem Sci 2022; 13:4122-4130. [PMID: 35440979 PMCID: PMC8985506 DOI: 10.1039/d2sc00222a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.
Collapse
Affiliation(s)
- Xin Qiu
- School of Physical and Chemical Sciences, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Anna L Garden
- Department of Chemistry, University of Otago Dunedin 9054 New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington Wellington 6140 New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand .,Biomolecular Interaction Centre, University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
9
|
Zhang X, Liu H, Meena N, Li C, Zong G, Raben N, Puertollano R, Wang LX. Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game. Chem Sci 2021; 12:12451-12462. [PMID: 34603676 PMCID: PMC8480326 DOI: 10.1039/d1sc03188k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Functionalization of therapeutic lysosomal enzymes with mannose-6-phosphate (M6P) glycan ligands represents a major strategy for enhancing the cation-independent M6P receptor (CI-MPR)-mediated cellular uptake, thus improving the overall therapeutic efficacy of the enzymes. However, the minimal high-affinity M6P-containing N-glycan ligands remain to be identified and their efficient and site-selective conjugation to therapeutic lysosomal enzymes is a challenging task. We report here the chemical synthesis of truncated M6P-glycan oxazolines and their use for enzymatic glycan remodeling of recombinant human acid α-glucosidase (rhGAA), an enzyme used for treatment of Pompe disease which is a disorder caused by a deficiency of the glycogen-degrading lysosomal enzyme. Structure-activity relationship studies identified M6P tetrasaccharide oxazoline as the minimal substrate for enzymatic transglycosylation yielding high-affinity M6P glycan ligands for the CI-MPR. Taking advantage of the substrate specificity of endoglycosidases Endo-A and Endo-F3, we found that Endo-A and Endo-F3 could efficiently deglycosylate the respective high-mannose and complex type N-glycans in rhGAA and site-selectively transfer the synthetic M6P N-glycan to the deglycosylated rhGAA without product hydrolysis. This discovery enabled a highly efficient one-pot deglycosylation/transglycosylation strategy for site-selective M6P-glycan remodeling of rhGAA to obtain a more homogeneous product. The Endo-A and Endo-F3 remodeled rhGAAs maintained full enzyme activity and demonstrated 6- and 20-fold enhanced binding affinities for CI-MPR receptor, respectively. Using an in vitro cell model system for Pompe disease, we demonstrated that the M6P-glycan remodeled rhGAA greatly outperformed the commercial rhGAA (Lumizyme) and resulted in the reversal of cellular pathology. This study provides a general and efficient method for site-selective M6P-glycan remodeling of recombinant lysosomal enzymes to achieve enhanced M6P receptor binding and cellular uptake, which could lead to improved overall therapeutic efficacy of enzyme replacement therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Naresh Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| |
Collapse
|
10
|
Chemical (neo)glycosylation of biological drugs. Adv Drug Deliv Rev 2021; 171:62-76. [PMID: 33548302 DOI: 10.1016/j.addr.2021.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023]
Abstract
Biological drugs, specifically proteins and peptides, are a privileged class of medicinal agents and are characterized with high specificity and high potency of therapeutic activity. However, biologics are fragile and require special care during storage, and are often modified to optimize their pharmacokinetics in terms of proteolytic stability and blood residence half-life. In this review, we showcase glycosylation as a method to optimize biologics for storage and application. Specifically, we focus on chemical glycosylation as an approach to modify biological drugs. We present case studies that illustrate the success of this methodology and specifically address the highly important question: does connectivity within the glycoconjugate have to be native or not? We then present the innovative methods of chemical glycosylation of biologics and specifically highlight the emerging and established protecting group-free methodologies of glycosylation. We discuss thermodynamic origins of protein stabilization via glycosylation, and analyze in detail stabilization in terms of proteolytic stability, aggregation upon storage and/or heat treatment. Finally, we present a case study of protein modification using sialic acid-containing glycans to avoid hepatic clearance of biological drugs. This review aims to spur interest in chemical glycosylation as a facile, powerful tool to optimize proteins and peptides as medicinal agents.
Collapse
|
11
|
Kok K, Zwiers KC, Boot RG, Overkleeft HS, Aerts JMFG, Artola M. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Biomolecules 2021; 11:271. [PMID: 33673160 PMCID: PMC7918333 DOI: 10.3390/biom11020271] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure. Among the therapeutic possibilities are intravenous administered enzyme replacement therapy (ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive therapies to clinically manage FD-related chronic renal, cardiac and neurological complications. Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy (SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD, the pathophysiology and diagnostic procedures, together with the current treatments and potential therapeutic avenues that FD patients could benefit from in the future.
Collapse
Affiliation(s)
- Ken Kok
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kimberley C Zwiers
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Fairbanks AJ. Applications of Shoda's reagent (DMC) and analogues for activation of the anomeric centre of unprotected carbohydrates. Carbohydr Res 2020; 499:108197. [PMID: 33256953 DOI: 10.1016/j.carres.2020.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
2-Chloro-1,3-dimethylimidazolinium chloride (DMC, herein also referred to as Shoda's reagent) and its derivatives are useful for numerous synthetic transformations in which the anomeric centre of unprotected reducing sugars is selectively activated in aqueous solution. As such unprotected sugars can undergo anomeric substitution with a range of added nucleophiles, providing highly efficient routes to a range of glycosides and glycoconjugates without the need for traditional protecting group manipulations. This mini-review summarizes the development of DMC and some of its derivatives/analogues, and highlights recent applications for protecting group-free synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
13
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
14
|
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and can exert profound effects on the inherent properties and biological functions of a given protein. Structurally well-defined homogeneous glycopeptides are highly demanded for functional studies and biomedical applications. Various chemical and chemoenzymatic methods have been reported so far for synthesizing different N- and O-glycopeptides. Among them, the chemoenzymatic method based on an endoglycosidase-catalyzed ligation of free N-glycans and GlcNAc-tagged peptides is emerging as a highly efficient method for constructing large complex N-glycopeptides. This chemoenzymatic approach consists of two key steps. The first step is to prepare the GlcNAc peptide through automated solid-phase peptide synthesis (SPPS) by incorporating an Asn-linked GlcNAc moiety at a predetermined glycosylation site; and the second step is to transfer an N-glycan from the corresponding N-glycan oxazoline en bloc to the GlcNAc peptide by an endoglycosidase or its efficient glycosynthase mutant. In this chapter, we provide detailed procedures of this chemoenzymatic method by demonstrating the synthesis of two HIV-1 V3 glycopeptide antigens carrying a high-mannose-type and a complex-type N-glycan, respectively. The described procedures should be generally applicable for the synthesis of other biologically important N-glycopeptides.
Collapse
Affiliation(s)
- Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
| |
Collapse
|
15
|
Fairbanks AJ. Chemoenzymatic synthesis of glycoproteins. Curr Opin Chem Biol 2019; 53:9-15. [DOI: 10.1016/j.cbpa.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
16
|
Van Landuyt L, Lonigro C, Meuris L, Callewaert N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 2019; 60:17-28. [DOI: 10.1016/j.copbio.2018.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
|
17
|
Paramasivam S, Fairbanks AJ. Rapid synthesis of N-glycan oxazolines from locust bean gum via the Lafont rearrangement. Carbohydr Res 2019; 477:11-19. [DOI: 10.1016/j.carres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
|
18
|
Marqvorsen MHS, Paramasivam S, Doelman W, Fairbanks AJ, van Kasteren SI. Efficient synthesis and enzymatic extension of an N-GlcNAz asparagine building block. Chem Commun (Camb) 2019; 55:5287-5290. [PMID: 30994122 DOI: 10.1039/c9cc02051a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Azidoacetyl-d-glucosamine (GlcNAz) is a particularly useful tool in chemical biology as the azide is a metabolically stable yet accessible handle within biological systems. Herein, we report a practical synthesis of FmocAsn(N-Ac3GlcNAz)OH, a building block for solid phase peptide synthesis (SPPS). Protecting group manipulations are minimised by taking advantage of the inherent chemoselectivity of phosphine-mediated azide reduction, and the resulting glycosyl amine is employed directly in the opening of Fmoc protected aspartic anhydride. We show potential application of the building block by establishing it as a substrate for enzymatic glycan extension using sugar oxazolines of varying size and biological significance with several endo-β-N-acetylglucosaminidases (ENGases). The added steric bulk resulting from incorporation of the azide is shown to have no or a minor impact on the yield of enzymatic glycan extension.
Collapse
Affiliation(s)
| | - Sivasinthujah Paramasivam
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Ward Doelman
- Leiden Institute of Chemistry (LIC), Division of Bio-Organic Chemistry, Einsteinweg 55, Leiden, The Netherlands.
| | - Antony John Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Sander Izaäk van Kasteren
- Leiden Institute of Chemistry (LIC), Division of Bio-Organic Chemistry, Einsteinweg 55, Leiden, The Netherlands.
| |
Collapse
|
19
|
Fairbanks AJ. Meet the Board of ChemistryOpen: Antony J. Fairbanks. ChemistryOpen 2019; 8:188-189. [PMID: 30740293 PMCID: PMC6356170 DOI: 10.1002/open.201900020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antony J. Fairbanks is a Professor in the Department of Chemistry at the University of Canterbury in New Zealand. The research of his group focuses on the broad areas of organic synthesis, particularly applied to carbohydrates. He currently serves as an active Editorial Board member for ChemistryOpen.
Collapse
Affiliation(s)
- Antony J. Fairbanks
- Department of ChemistryUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| |
Collapse
|
20
|
Hyun JY, Kim S, Lee HS, Shin I. A Glycoengineered Enzyme with Multiple Mannose-6-Phosphates Is Internalized into Diseased Cells to Restore Its Activity in Lysosomes. Cell Chem Biol 2018; 25:1255-1267.e8. [DOI: 10.1016/j.chembiol.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/20/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
|
21
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Meng B, Wang J, Wang Q, Serianni AS, Pan Q. Synthesis of high-mannose oligosaccharides containing mannose-6-phosphate residues using regioselective glycosylation. Carbohydr Res 2018; 467:23-32. [PMID: 30075362 PMCID: PMC6121786 DOI: 10.1016/j.carres.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/23/2022]
Abstract
Molecular recognition of mannose-6-phosphate (M6P)-modified oligosaccharides by transmembrane M6P receptors is a key signaling event in lysosomal protein trafficking in vivo. Access to M6P-containing high-mannose N-glycans is essential to achieving a thorough understanding of the M6P ligand-receptor recognition process. Herein we report the application of a versatile and reliable chemical strategy to prepare asymmetric di-antennary M6P-tagged high-mannose oligosaccharides in >20% overall yield and in high purity (>98%). Regioselective chemical glycosylation coupled with effective phosphorylation and product purification protocols were applied to rapidly assemble these oligosaccharides. The development of this synthetic strategy simplifies the preparation of M6P-tagged high-mannose oligosaccharides, which will improve access to these compounds to study their structures and biological functions.
Collapse
Affiliation(s)
- Bo Meng
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Jun Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Quanli Wang
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA
| | - Anthony S Serianni
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Qingfeng Pan
- Omicron Biochemicals, Inc., 115 South Hill Street, South Bend, IN, 46617-2701, USA.
| |
Collapse
|
23
|
Carlo U, Yasuhiro K. Recent advances in the chemical synthesis of N-linked glycoproteins. Curr Opin Chem Biol 2018; 46:130-137. [PMID: 30144649 DOI: 10.1016/j.cbpa.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/15/2022]
Abstract
Glycoproteins have many biological roles. Due to the heterogeneity of natural glycoproteins in the sugar part resulting in glycoforms the evaluation of the biochemical roles of individual glycans remains difficult to investigate. Since pure glycoforms are still not accessible via recombinant or chromatographic methods, the synthesis of proteins with uniform posttranslational modifications using ligation methods or glycan remodeling are currently the best options for accessing these targets. Recent developments in chemical protein synthesis, the assembly of N-glycans and the use of enzymatic procedures have provided access to many glycoproteins with modifications as well as their analogs.
Collapse
Affiliation(s)
- Unverzagt Carlo
- Bioorganic Chemistry, Gebäude NWI, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Kajihara Yasuhiro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
24
|
Beau JM, Boyer FD, Norsikian S, Urban D, Vauzeilles B, Xolin A. Glycosylation: The Direct Synthesis of 2-Acetamido-2-Deoxy-Sugar Glycosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jean-Marie Beau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; 78000 Versailles France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Dominique Urban
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Amandine Xolin
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
25
|
Lysosomal Targeting Enhancement by Conjugation of Glycopeptides Containing Mannose-6-phosphate Glycans Derived from Glyco-engineered Yeast. Sci Rep 2018; 8:8730. [PMID: 29880804 PMCID: PMC5992200 DOI: 10.1038/s41598-018-26913-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Many therapeutic enzymes for lysosomal storage diseases require a high content of mannose-6-phosphate (M6P) glycan, which is important for cellular uptake and lysosomal targeting. We constructed glyco-engineered yeast harboring a high content of mannosylphosphorylated glycans, which can be converted to M6P glycans by uncapping of the outer mannose residue. In this study, the cell wall of this yeast was employed as a natural M6P glycan source for conjugation to therapeutic enzymes. The extracted cell wall mannoproteins were digested by pronase to generate short glycopeptides, which were further elaborated by uncapping and α(1,2)-mannosidase digestion steps. The resulting glycopeptides containing M6P glycans (M6PgPs) showed proper cellular uptake and lysosome targeting. The purified M6PgPs were successfully conjugated to a recombinant acid α-glucosidase (rGAA), used for the treatment of Pompe disease, by two-step reactions using two hetero-bifunctional crosslinkers. First, rGAA and M6PgPs were modified with crosslinkers containing azide and dibenzocyclooctyne, respectively. In the second reaction using copper-free click chemistry, the azide-functionalized rGAA was conjugated with dibenzocyclooctyne-functionalized M6PgPs without the loss of enzyme activity. The M6PgP-conjugated rGAA had a 16-fold higher content of M6P glycan than rGAA, which resulted in greatly increased cellular uptake and efficient digestion of glycogen accumulated in Pompe disease patient fibroblasts.
Collapse
|
26
|
Manabe S, Yamaguchi Y, Abe J, Matsumoto K, Ito Y. Acceptor range of endo-β- N-acetylglucosaminidase mutant endo-CC N180H: from monosaccharide to antibody. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171521. [PMID: 29892355 PMCID: PMC5990847 DOI: 10.1098/rsos.171521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
The endo-β-N-acetylglucosaminidase mutant endo-CC N180H transfers glycan from sialylglycopeptide (SGP) to various acceptors. The scope and limitations of low-molecular-weight acceptors were investigated. Several homogeneous glycan-containing compounds, especially those with potentially useful labels or functional moieties, and possible reagents in glycoscience were synthesized. The 1,3-diol structure is important in acceptor molecules in glycan transfer reactions mediated by endo-CC N180H as well as by endo-M-N175Q. Glycan remodelling of antibodies was explored using core-fucose-deficient anti-CCR4 antibody with SGP and endo-CC N180H. Homogeneity of the glycan in the antibody was confirmed by mass spectrometry without glycan cleavage.
Collapse
Affiliation(s)
- Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
- Authors for correspondence: Shino Manabe e-mail:
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
- Authors for correspondence: Yoshiki Yamaguchi e-mail:
| | - Junpei Abe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Matsumoto
- Structural Glycobiology Team, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Fairbanks AJ. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 2018; 46:5128-5146. [PMID: 28681051 DOI: 10.1039/c6cs00897f] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endo-β-N-acetylglucosaminidases (ENGases) are an enzyme class (EC 3.2.1.96) produced by a range of organisms, ranging from bacteria, through fungi, to higher order species, including humans, comprising two-sub families of glycosidases which all cleave the chitobiose core of N-linked glycans. Synthetic applications of these enzymes, i.e. to catalyse the reverse of their natural hydrolytic mode of action, allow the attachment of N-glycans to a wide variety of substrates which contain an N-acetylglucosamine (GlcNAc) residue to act as an 'acceptor' handle. The use of N-glycan oxazolines, high energy intermediates on the hydrolytic pathway, as activated donors allows their high yielding attachment to almost any amino acid, peptide or protein that contains a GlcNAc residue as an acceptor. The synthetic effectiveness of these biocatalysts has been significantly increased by the production of mutant glycosynthases; enzymes which can still catalyse synthetic processes using oxazolines as donors, but which do not hydrolyse the reaction products. ENGase biocatalysts are now finding burgeoning application for the production of biologically active glycopeptides and glycoproteins, including therapeutic monoclonal antibodies (mAbs) for which the oligosaccharides have been remodelled to optimise effector functions.
Collapse
Affiliation(s)
- Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
28
|
Fairbanks AJ. Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines. Beilstein J Org Chem 2018; 14:416-429. [PMID: 29520306 PMCID: PMC5827820 DOI: 10.3762/bjoc.14.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022] Open
Abstract
N-Glycan oxazolines have found widespread use as activated donor substrates for endo-β-N-acetylglucosaminidase (ENGase) enzymes, an important application that has correspondingly stimulated interest in their production, both by total synthesis and by semi-synthesis using oligosaccharides isolated from natural sources. Amongst the many synthetic approaches reported, the majority rely on the fabrication (either by total synthesis, or semi-synthesis from locust bean gum) of a key Manβ(1-4)GlcNAc disaccharide, which can then be elaborated at the 3- and 6-positions of the mannose unit using standard glycosylation chemistry. Early approaches subsequently relied on the Lewis acid catalysed conversion of peracetylated N-glycan oligosaccharides produced in this manner into their corresponding oxazolines, followed by global deprotection. However, a key breakthrough in the field has been the development by Shoda of 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and related reagents, which can direct convert an oligosaccharide with a 2-acetamido sugar at the reducing terminus directly into the corresponding oxazoline in water. Therefore, oxazoline formation can now be achieved in water as the final step of any synthetic sequence, obviating the need for any further protecting group manipulations, and simplifying synthetic strategies. As an alternative to total synthesis, significant quantities of several structurally complicated N-glycans can be isolated from natural sources, such as egg yolks and soy bean flour. Enzymatic transformations of these materials, in concert with DMC-mediated oxazoline formation as a final step, allow access to a selection of N-glycan oxazoline structures both in larger quantities and in a more expedient fashion than is achievable by total synthesis.
Collapse
Affiliation(s)
- Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
29
|
Bennett LD, Yang Q, Berquist BR, Giddens JP, Ren Z, Kommineni V, Murray RP, White EL, Holtz BR, Wang LX, Marcel S. Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies. Int J Mol Sci 2018; 19:E421. [PMID: 29385073 PMCID: PMC5855643 DOI: 10.3390/ijms19020421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
N-glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan®, the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.
Collapse
Affiliation(s)
- Lindsay D Bennett
- Metropolitan Nashville Police Department Crime Lab, 400 Myatt Drive, Madison, TN 37115, USA.
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Brian R Berquist
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Zhongjie Ren
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Vally Kommineni
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Ryan P Murray
- Lonza Houston, Inc., 8066 El Rio St., Houston, TX 77054, USA.
| | - Earl L White
- MDx BioAnalytical Laboratory, Inc., 5890 Imperial loop, Suite 12, College Station, TX 77845, USA.
| | - Barry R Holtz
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Sylvain Marcel
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| |
Collapse
|
30
|
Ishii N, Ogiwara K, Sano K, Kumada J, Yamamoto K, Matsuzaki Y, Matsuo I. Specificity of Donor Structures for endo-β-N-Acetylglucosaminidase-Catalyzed Transglycosylation Reactions. Chembiochem 2017; 19:136-141. [PMID: 29125207 DOI: 10.1002/cbic.201700506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/11/2022]
Abstract
To demonstrate the structural specificity of the glycosyl donor for the transglycosylation reaction by using endo-β-N-acetylglucosaminidase from Mucor hiemalis (endo-M), a series of tetrasaccharide oxazoline derivatives was synthesized. These derivatives correspond to the core structure of an asparagine-linked glycoprotein glycan with a β-mannose unit of a non-natural-type monosaccharide, including β-glucose, β-galactose, and β-talose in place of the β-mannose moiety. The transglycosylation activity of wildtype (WT) endo-M and two mutants, N175Q and N175A, was examined by using these tetrasaccharide donors with p-nitrophenyl N-acetylglucosaminide (GlcNAc-pNp). The essential configuration of the hydroxy group for the transglycosylation reaction was determined. On the basis of these results, the transglycosylation reaction was investigated by using chemically modified donors, and transglycosylated products were successfully obtained.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Ken Ogiwara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| | - Jyunichi Kumada
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Kenji Yamamoto
- Research Institute of Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Yuji Matsuzaki
- Tokyo Chemical Industry Co., Ltd., 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kyryu Gunma, 376-8515, Japan
| |
Collapse
|
31
|
Ati J, Lafite P, Daniellou R. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Beilstein J Org Chem 2017; 13:1857-1865. [PMID: 29062404 PMCID: PMC5629408 DOI: 10.3762/bjoc.13.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.
Collapse
Affiliation(s)
- Jihen Ati
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Pierre Lafite
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Richard Daniellou
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
32
|
Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody-drug conjugates. Nat Protoc 2017; 12:1702-1721. [PMID: 28749929 DOI: 10.1038/nprot.2017.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycoengineered therapeutic antibodies and glycosite-specific antibody-drug conjugates (gsADCs) have generated great interest among researchers because of their therapeutic potential. Endoglycosidase-catalyzed in vitro glycoengineering technology is a powerful tool for IgG Fc (fragment cystallizable) N-glycosylation remodeling. In this protocol, native heterogeneously glycosylated IgG N-glycans are first deglycosylated with a wild-type endoglycosidase. Next, a homogeneous N-glycan substrate, presynthesized as described here, is attached to the remaining N-acetylglucosamine (GlcNAc) of IgG, using a mutant endoglycosidase (also called endoglycosynthase) that lacks hydrolytic activity but possesses transglycosylation activity for glycoengineering. Compared with in vivo glycoengineering technologies and the glycosyltransferase-enabled in vitro engineering method, the current approach is robust and features quantitative yield, homogeneous glycoforms of produced antibodies and ADCs, compatibility with diverse natural and non-natural glycan structures, convenient exploitation of native IgG as the starting material, and a well-defined conjugation site for antibody modifications. Potential applications of this method cover a broad scope of antibody-related research, including the development of novel glycoengineered therapeutic antibodies with enhanced efficacy, site-specific antibody-drug conjugation, and site-specific modification of antibodies for fluorescent labeling, PEGylation, protein cross-linking, immunoliposome formation, and so on, without loss of antigen-binding affinity. It takes 5-8 d to prepare the natural or modified N-glycan substrates, 3-4 d to engineer the IgG N-glycosylation, and 2-5 d to synthesize the small-molecule toxins and prepare the gsADCs.
Collapse
|
33
|
Downey AM, Hocek M. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J Org Chem 2017; 13:1239-1279. [PMID: 28694870 PMCID: PMC5496566 DOI: 10.3762/bjoc.13.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.
Collapse
Affiliation(s)
- A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 12843 Prague 2, Czech Republic
| |
Collapse
|
34
|
Kytidou K, Beenakker TJM, Westerhof LB, Hokke CH, Moolenaar GF, Goosen N, Mirzaian M, Ferraz MJ, de Geus M, Kallemeijn WW, Overkleeft HS, Boot RG, Schots A, Bosch D, Aerts JMFG. Human Alpha Galactosidases Transiently Produced in Nicotiana benthamiana Leaves: New Insights in Substrate Specificities with Relevance for Fabry Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:1026. [PMID: 28680430 PMCID: PMC5478728 DOI: 10.3389/fpls.2017.01026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 05/25/2023]
Abstract
Deficiency of α-galactosidase A (α-GAL) causes Fabry disease (FD), an X-linked storage disease of the glycosphingolipid globtriaosylcerammide (Gb3) in lysosomes of various cells and elevated plasma globotriaosylsphingosine (Lyso-Gb3) toxic for podocytes and nociceptive neurons. Enzyme replacement therapy is used to treat the disease, but clinical efficacy is limited in many male FD patients due to development of neutralizing antibodies (Ab). Therapeutic use of modified lysosomal α-N-acetyl-galactosaminidase (α-NAGAL) with increased α-galactosidase activity (α-NAGALEL) has therefore been suggested. We transiently produced in Nicotiana benthamiana leaves functional α-GAL, α-NAGAL, and α-NAGALEL enzymes for research purposes. All enzymes could be visualized with activity-based probes covalently binding in their catalytic pocket. Characterization of purified proteins indicated that α-NAGALEL is improved in activity toward artificial 4MU-α-galactopyranoside. Recombinant α-NAGALEL and α-NAGAL are not neutralized by Ab-positive FD serum tested and are more stable in human plasma than α-GAL. Both enzymes hydrolyze the lipid substrates Gb3 and Lyso-Gb3 accumulating in Fabry patients. The addition to FD sera of α-NAGALEL, and to a lesser extent that of α-NAGAL, results in a reduction of the toxic Lyso-Gb3. In conclusion, our study suggests that modified α-NAGALEL might reduce excessive Lyso-Gb3 in FD serum. This neo-enzyme can be produced in Nicotiana benthamiana and might be further developed for the treatment of FD aiming at reduction of circulating Lyso-Gb3.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | | | - Lotte B. Westerhof
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical CenterLeiden, Netherlands
| | - Geri F. Moolenaar
- Cloning and Protein Purification Facility of Leiden Institute of ChemistryLeiden, Netherlands
| | - Nora Goosen
- Cloning and Protein Purification Facility of Leiden Institute of ChemistryLeiden, Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Maria J. Ferraz
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Mark de Geus
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of ChemistryLeiden, Netherlands
| | - Rolf G. Boot
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden, Netherlands
| | - Arjen Schots
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Plant Sciences GroupWageningen, Netherlands
| | | |
Collapse
|
35
|
Guo W, Tang F, Qin K, Zhou M, Le Z, Huang W. Glycoengineering and glycosite-specific labeling of serum IgGs from various species. Carbohydr Res 2017; 446-447:32-39. [DOI: 10.1016/j.carres.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
|
36
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
37
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
38
|
Alexander SR, Lim D, Amso Z, Brimble MA, Fairbanks AJ. Protecting group free synthesis of glycosyl thiols from reducing sugars in water; application to the production of N-glycan glycoconjugates. Org Biomol Chem 2017; 15:2152-2156. [DOI: 10.1039/c7ob00112f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Un-protected 2-acetamido terminated reducing sugars may be converted into the corresponding glycosyl thiols in water, and conjugated to peptides using the thiol–ene click reaction without recourse to any protecting groups.
Collapse
Affiliation(s)
- S. R. Alexander
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - D. Lim
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - Z. Amso
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - M. A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1142
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - A. J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
39
|
Li C, Wang LX. Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates. Adv Carbohydr Chem Biochem 2016; 73:73-116. [PMID: 27816108 DOI: 10.1016/bs.accb.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances in glycobiology have implicated essential roles of oligosaccharides and glycoconjugates in many important biological recognition processes, including intracellular signaling, cell adhesion, cell differentiation, cancer progression, host-pathogen interactions, and immune responses. A detailed understanding of the biological functions, as well as the development of carbohydrate-based therapeutics, often requires structurally well-defined oligosaccharides and glycoconjugates, which are usually difficult to isolate in pure form from natural sources. To meet with this urgent need, chemical and chemoenzymatic synthesis has become increasingly important as the major means to provide homogeneous compounds for functional glycocomics studies and for drug/vaccine development. Chemoenzymatic synthesis, an approach that combines chemical synthesis and enzymatic manipulations, is often the method of choice for constructing complex oligosaccharides and glycoconjugates that are otherwise difficult to achieve by purely chemical synthesis. Among these, endoglycosidases, a class of glycosidases that hydrolyze internal glycosidic bonds in glycoconjugates and polysaccharides, are emerging as a very attractive class of enzymes for synthetic purposes, due to their transglycosylation activity and their capability of transferring oligosaccharide units en bloc in a single step, in contrast to the limitation of monosaccharide transfers by common glycosyltransferases. In this chapter, we provide an overview on the application of endoglycosidases for the synthesis of complex carbohydrates, including oligosaccharides, polysaccharides, glycoproteins, glycolipids, proteoglycans, and other biologically relevant polysaccharides. The scope, limitation, and future directions of endoglycosidase-catalyzed synthesis are discussed.
Collapse
Affiliation(s)
- Chao Li
- University of Maryland, College Park, MD, United States
| | - Lai-Xi Wang
- University of Maryland, College Park, MD, United States
| |
Collapse
|
40
|
Yamaguchi T, Amin MN, Toonstra C, Wang LX. Chemoenzymatic Synthesis and Receptor Binding of Mannose-6-Phosphate (M6P)-Containing Glycoprotein Ligands Reveal Unusual Structural Requirements for M6P Receptor Recognition. J Am Chem Soc 2016; 138:12472-85. [PMID: 27500601 DOI: 10.1021/jacs.6b05762] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mannose-6-phosphate (M6P)-terminated oligosaccharides are important signals for M6P-receptor-mediated targeting of newly synthesized hydrolases from Golgi to lysosomes, but the precise structural requirement for the M6P ligand-receptor recognition has not been fully understood due to the difficulties in obtaining homogeneous M6P-containing glycoproteins. We describe here a chemoenzymatic synthesis of homogeneous phosphoglycoproteins carrying natural M6P-containing N-glycans. The method includes the chemical synthesis of glycan oxazolines with varied number and location of the M6P moieties and their transfer to the GlcNAc-protein by an endoglycosynthase to provide homogeneous M6P-containing glycoproteins. Simultaneous attachment of two M6P-oligosaccahrides to a cyclic polypeptide was also accomplished to yield bivalent M6P-glycopeptides. Surface plasmon resonance binding studies reveal that a single M6P moiety located at the low α-1,3-branch of the oligomannose context is sufficient for a high-affinity binding to receptor CI-MPR, while the presence of a M6P moiety at the α-1,6-branch is dispensable. In addition, a binding study with the bivalent cyclic and linear polypeptides reveals that a close proximity of two M6P-oligosaccharide ligands is critical to achieve high affinity for the CI-MPR receptor. Taken together, the present study indicates that the location and valency of the M6P moieties and the right oligosaccharide context are all critical for high-affinity binding with the major M6P receptor. The chemoenzymatic method described here provides a new avenue for glycosylation remodeling of recombinant enzymes to enhance the uptake and delivery of enzymes to lysosomes in enzyme replacement therapy for the treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Mohammed N Amin
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|