1
|
Bian X, Chen Z, Li F, Xie Y, Li Y, Luo Y, Zou X, Wang H, Zhang J, Wang X, Zhang J, Guan D. Single Amine or Guanidine Modification on Norvancomycin and Vancomycin to Overcome Multidrug-Resistance through Augmented Lipid II Binding and Increased Membrane Activity. J Med Chem 2024. [PMID: 39504470 DOI: 10.1021/acs.jmedchem.4c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Vancomycin and norvancomycin have diminished antibacterial efficacy due to acquired or intrinsic resistance from mutations in the terminal dipeptide of lipid II in Gram-positive bacteria or failure to penetrate into the periplasm in Gram-negative bacteria. Herein, we rationally designed and synthesized a series of vancomycin analogues bearing single amine or guanidine functionality, altering various linkers and modification sites, to combat the resistance. Extensive antibacterial screening was performed to delineate a comprehensive SAR. Many derivatives revitalized the activity in vitro, exhibiting a 4-128-fold or 2-16-fold enhancement against the acquired or intrinsic resistance with lower toxicity. Significantly, the optimal compound 4g demonstrated greater pharmacokinetic and pharmacodynamic profiles. Further studies uncovered additional independent and synergistic mechanisms for 4g, including the enhanced membrane activity and augmented inhibition of peptidoglycan biosynthesis via increased lipid II binding, highlighting its potential as a future lead candidate to replenish the glycopeptide antibiotic arsenal.
Collapse
Affiliation(s)
- Xiaolei Bian
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Fang Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Yuanyuan Xie
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Yi Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China
| | - Xiangman Zou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Hui Wang
- Nanjing Cantech Microbial Technology Co. Ltd., No. 18, Zhilan Rd, Jiangning, Nanjing 211100, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China
| | - Xiaowen Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Dongliang Guan
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
Sarkar P, Xu W, Vázquez-Hernández M, Dhanda G, Tripathi S, Basak D, Xie H, Schipp L, Dietze P, Bandow JE, Nair NN, Haldar J. Enhancing the antibacterial efficacy of vancomycin analogues: targeting metallo-β-lactamases and cell wall biosynthesis. Chem Sci 2024:d4sc03577a. [PMID: 39309102 PMCID: PMC11409854 DOI: 10.1039/d4sc03577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Vancomycin is a crucial last-resort antibiotic for tackling Gram-positive bacterial infections. However, its potency fails against the more difficult-to-treat Gram-negative bacteria (GNB). Vancomycin derivatives have shown promise as broad-spectrum antibacterials, but are still underexplored. Toward this, we present a novel strategy wherein we substitute the sugar moiety of vancomycin with a dipicolyl amine group, yielding VanNHdipi. This novel glycopeptide enhances its efficacy against vancomycin-resistant bacteria by up to 100-fold. A comprehensive approach involving microbiological assays, biochemical analyses, proteomics, and computational studies unraveled the impact of this design on biological activity. Our investigations reveal that VanNHdipi, like vancomycin, disrupts membrane-bound steps of cell wall synthesis inducing envelope stress, while also interfering with the structural integrity of the cytoplasmic membrane, setting it apart from vancomycin. Most noteworthy is its potency against critical GNB producing metallo-β-lactamases (MBLs). VanNHdipi effectively inactivates various MBLs with IC50 in the range of 0.2-10 μM resulting in resensitization of MBL-producing bacteria to carbapenems. Molecular docking and molecular dynamics (MD) studies indicate that H-bonding interactions between the sugar moiety of the vancomycin derivative with the amino acids on the surface of NDM-1 facilitate enhanced binding affinity for the enzyme. This work expands the scope of vancomycin derivatives and offers a promising new avenue for combating antibiotic resistance.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Weipan Xu
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Melissa Vázquez-Hernández
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Hexin Xie
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Lea Schipp
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Nishanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
3
|
Dutta A, Sharma P, Dass D, Yarlagadda V. Exploring the Darobactin Class of Antibiotics: A Comprehensive Review from Discovery to Recent Advancements. ACS Infect Dis 2024; 10:2584-2599. [PMID: 39028949 DOI: 10.1021/acsinfecdis.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The prevalence of antimicrobial resistance in Gram-negative bacteria poses a greater challenge due to their intrinsic resistance to many antibiotics. Recently, darobactins have emerged as a novel class of antibiotics originating from previously unexplored Gram-negative bacterial species such as Photorhabdus, Vibrio, Pseudoalteromonas and Yersinia. Darobactins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) class of antibiotics, exhibiting selective activity against Gram-negative bacteria. They target the β-barrel assembly machinery (BAM), which is crucial for the maturation and insertion of outer membrane proteins in Gram-negative bacteria. The dar operon in the producer's genome encodes for the synthesis of darobactins, which are characterized by a fused ring system connected via an alkyl-aryl ether linkage (C-O-C) and a C-C cross-link. The enzyme DarE, using the radical S-adenosyl-l-methionine (rSAM), facilitates the formation of these bonds. Biosynthetic manipulation of the darobactin gene cluster, along with its expression in a surrogate host, has enabled access to diverse darobactin analogues with variable antibiotic activities. Recently, two independent research groups successfully achieved the total synthesis of darobactin, employing Larock heteroannulation to construct the bicyclic structure. This paper presents a comprehensive review of darobactins, encompassing their discovery through to the most recent advancements.
Collapse
Affiliation(s)
- Akash Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Peehu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dharam Dass
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
4
|
Chaudhary K, Agrahari B, Biswas B, Chatterjee N, Chaudhary A, Kumar A, Sonker H, Dewan S, Saxena D, Akhir A, Malhotra N, Chopra S, Misra S, Matheswaran S, Singh RG. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm. Adv Healthc Mater 2024; 13:e2400378. [PMID: 38621382 DOI: 10.1002/adhm.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Indexed: 04/17/2024]
Abstract
In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.
Collapse
Affiliation(s)
| | | | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | | | | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur, 208016, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nidhi Malhotra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Budh Nagar, 201314, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Santosh Misra
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | |
Collapse
|
5
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
6
|
Zhou M, Liu L, Cong Z, Jiang W, Xiao X, Xie J, Luo Z, Chen S, Wu Y, Xue X, Shao N, Liu R. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat Microbiol 2024; 9:1325-1339. [PMID: 38589468 DOI: 10.1038/s41564-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Longqiang Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zihao Cong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Weinan Jiang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Ximian Xiao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayang Xie
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhengjie Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sheng Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yueming Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Ning Shao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Patel A, Goswami S, Hazarika G, Sivaprakasam S, Bhattacharjee S, Manna D. Sulfonium-Cross-Linked Hyaluronic Acid-Based Self-Healing Hydrogel: Stimuli-Responsive Drug Carrier with Inherent Antibacterial Activity to Counteract Antibiotic-Resistant Bacteria. Adv Healthc Mater 2024; 13:e2302790. [PMID: 37909063 DOI: 10.1002/adhm.202302790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Augmentation of the activity of Food and Drug Administration-approved antibiotics by an adjuvant or antibiotic carrier is considered one of the promising strategies to fight against antibiotic-resistant bacteria. This study reports the development of sulfonium-cross-linked hyaluronic acid (HA)-based polymer (HA-SS-HA) as an inherent antimicrobial agent and antibiotic carrier. The HA-SS-HA polymer offers the potential for encapsulating various classes of antibiotics and accomplishing a stimuli-responsive release profile in the presence of hyaluronidase produced by bacterial cells within their extracellular environment. Systematic antibacterial studies reveal that the HA-SS-HA-encapsulated antibiotics (vancomycin, amoxicillin, and tetracycline) restore its activity against the antibiotic-resistant bacterial cells methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), and Pseudomonas aeruginosa. The HA-SS-HA gel shows robust efficacy in eradicating the mature biofilm of Staphylococcus aureus (S. aureus). The membrane-disrupting activity reveals that HA-SS-HA can also counteract the antibiotic resistance mechanism of the bacterial cells. The in vivo studies reveal excellent wound-healing activity of HA-SS-HA in albino laboratory-bred (BALB/c) mice. The outcome of additional antibacterial studies reveals that antibiotics-encapsulated HA-SS-HA hydrogel can effectively combat Gram-negative, Gram-positive, and antibiotic-resistant bacterial strains. Therefore, revitalizing the activity of commercial antibiotics by HA-SS-HA can be considered a valuable and economically effective strategy to fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Anjali Patel
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sanghamitra Goswami
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura, 799022, India
| | - Gunanka Hazarika
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Senthilkumar Sivaprakasam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura, 799022, India
| | - Debasis Manna
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
8
|
Chosy MB, Sun J, Rahn HP, Liu X, Brčić J, Wender PA, Cegelski L. Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS Infect Dis 2024; 10:384-397. [PMID: 38252999 DOI: 10.1021/acsinfecdis.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.
Collapse
Affiliation(s)
- Madeline B Chosy
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Harrison P Rahn
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Li T, He X, Tao W, Zhang R, He Q, Gong H, Liu Y, Luo D, Zhang M, Zou C, Zhang SL, He Y. Development of membrane-targeting TPP +-chloramphenicol conjugates to combat methicillin-resistant staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 264:115973. [PMID: 38096652 DOI: 10.1016/j.ejmech.2023.115973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Infections caused by drug-resistant bacteria have become a new challenge in infection treatment, gravely endangering public health. Chloramphenicol (CL) is a well-known antibiotic which has lost its efficacy due to bacterial resistance. To address this issue, herein we report the design, synthesis and biological evaluations of novel triphenylphosphonium chloramphenicol conjugates (TPP+-CL). Study results indicated that compounds 39 and 42 possessed remarkable antibacterial effects against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 2 μg/mL, while CL was inactive to the tested MRSA strains. In addition, these conjugates exhibited rapid bactericidal properties and low toxicity, and did not readily induced bacterial resistance, obviously outperforming the parent drug CL. In a mouse model infected with a clinically isolated MRSA strain, compound 39 at a dose of 20 mg/kg exhibited a comparable or even better in vivo anti-MRSA efficacy than the golden standard drug vancomycin, while no toxicity was observed.
Collapse
Affiliation(s)
- Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Xiaoli He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China
| | - Wenlan Tao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Qiaolin He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Ye Liu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Cheng Zou
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China; State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei, Chongqing, 400714, PR China.
| |
Collapse
|
10
|
Wang X, Li H, Yang J, Wu C, Chen M, Wang J, Yang T. Chemical Nose Strategy with Metabolic Labeling and "Antibiotic-Responsive Spectrum" Enables Accurate and Rapid Pathogen Identification. Anal Chem 2024; 96:427-436. [PMID: 38102083 DOI: 10.1021/acs.analchem.3c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The worldwide antimicrobial resistance (AMR) dilemma urgently requires rapid and accurate pathogen phenotype discrimination and antibiotic resistance identification. The conventional protocols are either time-consuming or depend on expensive instrumentations. Herein, we demonstrate a metabolic-labeling-assisted chemical nose strategy for phenotyping classification and antibiotic resistance identification of pathogens based on the "antibiotic-responsive spectrum" of different pathogens. d-Amino acids with click handles were metabolically incorporated into the cell wall of pathogens for further clicking with dibenzocyclooctyne-functionalized upconversion nanoparticles (DBCO-UCNPs) in the presence/absence of six types of antibiotics, which generates seven-channel sensing responses. With the assistance of machine learning algorithms, eight types of pathogens, including three types of antibiotic-resistant bacteria, can be well classified and discriminated in terms of microbial taxonomies, Gram phenotypes, and antibiotic resistance. The present metabolic-labeling-assisted strategy exhibits good anti-interference capability and improved discrimination ability rooted in the unique sensing mechanism. Sensitive identification of pathogens with 100% accuracy from artificial urinary tract infection samples at a concentration as low as 105 CFU/mL was achieved. Pathogens outside of the training set can also be discriminated well. This clearly demonstrated the potential of the present strategy in the identification of unknown pathogens in clinical samples.
Collapse
Affiliation(s)
- Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Huida Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chengxin Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
11
|
Lei XL, Cheng K, Hu YG, Li Y, Hou XL, Zhang F, Tan LF, Zhong ZT, Wang JH, Fan JX, Zhao YD. Gelatinase-responsive biodegradable targeted microneedle patch for abscess wound treatment of S. aureus infection. Int J Biol Macromol 2023; 253:127548. [PMID: 37865374 DOI: 10.1016/j.ijbiomac.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Abscess wound caused by bacterial infection is usually difficult to heal, thus greatly affect people's quality of life. In this study, a biodegradable drug-loaded microneedle patch (MN) is designed for targeted eradication of S. aureus infection and repair of abscess wound. Firstly, the bacterial responsive composite nanoparticle (Ce6@GNP-Van) with a size of about 182.6 nm is constructed by loading the photosensitizer Ce6 into gelatin nanoparticle (GNP) and coupling vancomycin (Van), which can specifically target S. aureus and effectively shield the phototoxicity of photosensitizer during delivery. When Ce6@GNP-Van is targeted and enriched in the infected regions, the gelatinase secreted by the bacteria can degrade GNP in situ and release Ce6, which can kill the bacteria by generating ROS under laser irradiation. In vivo experiments show that the microneedle is basically degraded in 10 min after inserting into skin, and the abscess wound is completely healed within 13 d after applying Ce6@GNP-Van-loaded MN patch to the abscess wound of the bacterial infected mice with laser irradiation, which can simultaneously achieve the eradication of biofilm and subsequent wound healing cascade activation, showing excellent synergistic antibacterial effect. In conclusion, this work establishes a synergistic treatment strategy to facilitate the repair of chronic abscess wound.
Collapse
Affiliation(s)
- Xiao-Ling Lei
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Lin-Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jian-Hao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
12
|
Weng C, Tan YLK, Koh WG, Ang WH. Harnessing Transition Metal Scaffolds for Targeted Antibacterial Therapy. Angew Chem Int Ed Engl 2023; 62:e202310040. [PMID: 37621226 DOI: 10.1002/anie.202310040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Antimicrobial resistance, caused by persistent adaptation and growing resistance of pathogenic bacteria to overprescribed antibiotics, poses one of the most serious and urgent threats to global public health. The limited pipeline of experimental antibiotics in development further exacerbates this looming crisis and new drugs with alternative modes of action are needed to tackle evolving pathogenic adaptation. Transition metal complexes can replenish this diminishing stockpile of drug candidates by providing compounds with unique properties that are not easily accessible using pure organic scaffolds. We spotlight four emerging strategies to harness these unique properties to develop new targeted antibacterial agents.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Wayne Gareth Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
13
|
Wang YF, Wang SM, Zhang X, Nian H, Zheng LS, Wang X, Schreckenbach G, Jiang W, Yang LP, Wang LL. Precise Recognition in Water by an Endo-Functionalized Cavity: Tuning the Complementarity of Binding Sites. Angew Chem Int Ed Engl 2023; 62:e202310115. [PMID: 37814589 DOI: 10.1002/anie.202310115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Precise binding towards structurally similar substrates is a common feature of biomolecular recognition. However, achieving such selectivity-especially in distinguishing subtle differences in substrates-with synthetic hosts can be quite challenging. Herein, we report a novel design strategy involving the combination of different rigid skeletons to adjust the distance between recognition sites within the cavity, which allows for the highly selective recognition of hydrogen-bonding complementary substrates, such as 4-chromanone. X-ray single-crystal structures and density functional theory calculations confirmed that the distance of endo-functionalized groups within the rigid cavity is crucial for achieving high binding selectivity through hydrogen bonding. The thermodynamic data and molecular dynamics simulations revealed a significant influence of the hydrophobic cavity on the binding affinity. The new receptor possesses both high selectivity and high affinity, which provide valuable insights for the design of customized receptors.
Collapse
Affiliation(s)
- Yan-Fang Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xiaobin Zhang
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Hao Nian
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Li-Shuo Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xiaoping Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Li-Li Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
14
|
Dey S, Patel A, Haloi N, Srimayee S, Paul S, Barik GK, Akhtar N, Shaw D, Hazarika G, Prusty BM, Kumar M, Santra MK, Tajkhorshid E, Bhattacharjee S, Manna D. Quinoline Thiourea-Based Zinc Ionophores with Antibacterial Activity. J Med Chem 2023; 66:11078-11093. [PMID: 37466499 DOI: 10.1021/acs.jmedchem.3c00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The increasing resistance of bacteria to commercially available antibiotics threatens patient safety in healthcare settings. Perturbation of ion homeostasis has emerged as a potential therapeutic strategy to fight against antibacterial resistance and other channelopathies. This study reports the development of 8-aminoquinoline (QN) derivatives and their transmembrane Zn2+ transport activities. Our findings showed that a potent QN-based Zn2+ transporter exhibits promising antibacterial properties against Gram-positive bacteria with reduced hemolytic activity and cytotoxicity to mammalian cells. Furthermore, this combination showed excellent in vivo efficacy against Staphylococcus aureus. Interestingly, this combination prevented bacterial resistance and restored susceptibility of gentamicin and methicillin-resistant S. aureus to commercially available β-lactam and other antibiotics that had lost their activity against the drug-resistant bacterial strain. Our findings suggest that the transmembrane transport of Zn2+ by QN derivatives could be a promising strategy to combat bacterial infections and restore the activity of other antibiotics.
Collapse
Affiliation(s)
- Subhasis Dey
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Patel
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nandan Haloi
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Soumya Srimayee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suman Paul
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India
| | | | - Nasim Akhtar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipanjan Shaw
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Gunanka Hazarika
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Biswa Mohan Prusty
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohit Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Sarkar P, De K, Modi M, Dhanda G, Priyadarshini R, Bandow JE, Haldar J. Next-generation membrane-active glycopeptide antibiotics that also inhibit bacterial cell division. Chem Sci 2023; 14:2386-2398. [PMID: 36873852 PMCID: PMC9977398 DOI: 10.1039/d2sc05600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Resistance to vancomycin, a life-saving drug against Gram-positive bacterial infections necessitates developing alternative therapeutics. Herein, we report vancomycin derivatives that assimilate mechanisms beyond d-Ala-d-Ala binding. The role of hydrophobicity towards the structure and function of the membrane-active vancomycin showed that alkyl-cationic substitutions favored broad-spectrum activity. The lead molecule, VanQAmC10 delocalized the cell division protein MinD in Bacillus subtilis, implying an impact on bacterial cell division. Further examination of wild-type, GFP-FtsZ, or GFP-FtsI producing- and ΔamiAC mutants of Escherichia coli revealed filamentous phenotypes and delocalization of the FtsI protein. The findings indicate that VanQAmC10 also inhibits bacterial cell division, a property previously unknown for glycopeptide antibiotics. The conjunction of multiple mechanisms contributes to its superior efficacy against metabolically active and inactive bacteria, wherein vancomycin is ineffective. Additionally, VanQAmC10 exhibits high efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii in mouse models of infection.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Kathakali De
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University Dadri 201314 UP India
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University Dadri 201314 UP India
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150 44780 Bochum Germany
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| |
Collapse
|
16
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
18
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
19
|
Jiang F, Cai C, Gao L, Su X, Han S. Peptidoglycan-Directed Chemical Ligation for Selective Inhibition on Gram-Positive Bacteria. ACS OMEGA 2023; 8:2485-2490. [PMID: 36687063 PMCID: PMC9850734 DOI: 10.1021/acsomega.2c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Microbicides with distinct antibacterial mechanisms show potential to combat multi-drug resistance bacteria. We herein report peptidoglycan-directed chemical ligation (PGCL) between alkyne-bearing vancomycin and an azide-tagged cationic polymer. The former binds peptidoglycan and inhibits peptidoglycan crosslinking, while the latter interferes the integrity of the bacterial membrane. PGCL results in enhanced bactericidal activity against Gram-positive Staphylococcus aureus (S. aureus) over Gram-negative Escherichia coli (E. coli). These data indicate the potential of PGCL to selectively and synergistically inhibit Gram-positive pathogens via dual modality antibacterial mechanisms of peptidoglycan-inhibiting antibiotics and bacterial membrane-disrupting polycations.
Collapse
Affiliation(s)
- Feng Jiang
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Chengteng Cai
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Lei Gao
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Xinhui Su
- PET
center, Department of Nuclear Medicine, The First Affiliated Hospital,
College of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Shoufa Han
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
21
|
Enzymatic Synthesis of Vancomycin-Modified DNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248927. [PMID: 36558056 PMCID: PMC9782525 DOI: 10.3390/molecules27248927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Many potent antibiotics fail to treat bacterial infections due to emergence of drug-resistant strains. This surge of antimicrobial resistance (AMR) calls in for the development of alternative strategies and methods for the development of drugs with restored bactericidal activities. In this context, we surmised that identifying aptamers using nucleotides connected to antibiotics will lead to chemically modified aptameric species capable of restoring the original binding activity of the drugs and hence produce active antibiotic species that could be used to combat AMR. Here, we report the synthesis of a modified nucleoside triphosphate equipped with a vancomycin moiety on the nucleobase. We demonstrate that this nucleotide analogue is suitable for polymerase-mediated synthesis of modified DNA and, importantly, highlight its compatibility with the SELEX methodology. These results pave the way for bacterial-SELEX for the identification of vancomycin-modified aptamers.
Collapse
|
22
|
A Modified Vancomycin Molecule Confers Potent Inhibitory Efficacy against Resistant Bacteria Mediated by Metallo-β-Lactamases. Molecules 2022; 27:molecules27227685. [PMID: 36431786 PMCID: PMC9693118 DOI: 10.3390/molecules27227685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Multidrug-resistant bacterial infections mediated by metallo-β-lactamases (MβLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of β-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 μg/mL. This work offers a promising scaffold for the development of MβLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.
Collapse
|
23
|
Repac Antić D, Parčina M, Gobin I, Petković Didović M. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Antibiotics (Basel) 2022; 11:1105. [PMID: 36009974 PMCID: PMC9405089 DOI: 10.3390/antibiotics11081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of escalating antimicrobial resistance, the need for antibacterial drugs with novel or improved modes of action (MOAs) is a health concern of utmost importance. Adding or improving the chelating abilities of existing drugs or finding new, nature-inspired chelating agents seems to be one of the major ways to ensure progress. This review article provides insight into the modes of action of antibacterial agents, class by class, through the perspective of chelation. We covered a wide scope of antibacterials, from a century-old quintessential chelating agent nitroxoline, currently unearthed due to its newly discovered anticancer and antibiofilm activities, over the commonly used antibacterial classes, to new cephalosporin cefiderocol and a potential future class of tetramates. We show the impressive spectrum of roles that chelation plays in antibacterial MOAs. This, by itself, demonstrates the importance of understanding the fundamental chemistry behind such complex processes.
Collapse
Affiliation(s)
- Davorka Repac Antić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Clinical Microbiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, Bonn University Hospital, 53127 Bonn, Germany
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mirna Petković Didović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
24
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
25
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
26
|
Xu C, Yu M, Xie Y, Zhong J, Chen W, Lin M, Hu X, Shen Y. Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library. Immunol Lett 2022; 246:1-9. [DOI: 10.1016/j.imlet.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
27
|
Acharya Y, Dhanda G, Sarkar P, Haldar J. Pursuit of next-generation glycopeptides: a journey with vancomycin. Chem Commun (Camb) 2022; 58:1881-1897. [PMID: 35043130 DOI: 10.1039/d1cc06635h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vancomycin, a blockbuster antibiotic of the glycopeptide class, has been a life-saving therapeutic against multidrug-resistant Gram-positive infections. The emergence of glycopeptide resistance has however enunciated the need to develop credible alternatives with potent activity against vancomycin-resistant bacteria. Medicinal chemistry has responded to this challenge through various strategies, one of them being the development of semisynthetic analogues. Many groups, including ours, have been contributing towards the development of semisynthetic vancomycin analogues to tackle vancomycin-resistant bacteria. In this feature article, we have discussed our research contribution to the field of glycopeptides, which includes our strategies and designs of vancomycin analogues incorporating multimodal mechanisms of action. The strategies discussed here, such as conferring membrane activity, enhanced binding to target, multivalency, etc. involve semisynthetic modifications to vancomycin at the carboxy terminal and the amino group of the vancosamine sugar of vancomycin, to develop novel analogues. These analogues have demonstrated their superior efficacy in tackling the inherited forms of vancomycin resistance in Gram-positive and Gram-negative bacteria, including highly drug-resistant strains. More importantly, these analogues also possess the ability to tackle various non-inherited forms of bacterial resistance, such as metabolically dormant stationary-phase and persister cells, bacterial biofilms, and intracellular pathogens. Our derivatives also display superior pharmacokinetics, and less propensity for resistance development, owing to their different modes of action. Through this feature article, we present to the reader a concise picture of the multitude of approaches that can be used to tackle different types of resistance through semisynthetic modifications to vancomycin. We have also highlighted the challenges and lacunae in the field, and potential directions which future research can explore.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India. .,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
28
|
Deng B, Li W, Lu H, Zhu L. Film mulching reduces antibiotic resistance genes in the phyllosphere of lettuce. J Environ Sci (China) 2022; 112:121-128. [PMID: 34955195 DOI: 10.1016/j.jes.2021.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/14/2023]
Abstract
Phyllosphere is an important reservoir of antibiotic resistance genes (ARGs), but the transfer mechanism of ARGs from soil and air to phyllosphere remains unclear. This study demonstrated that soil-air-phyllosphere was the dominant ARG transfer pathway, and blocking it by film mulching can reduce typical phyllosphere ARGs in lettuce by 80.7% - 98.7% (89.5% on average). To further eliminate phyllosphere ARGs in lettuce grown with film mulching, the internal soil-endosphere-phyllosphere transfer pathway deserves more attention. We analyzed the ARG hosts and the resistome in lettuce rhizosphere and phyllosphere with film mulching via hybrid Illumina-Nanopore sequencing. Pseudomonas sp. 7SR1 was more abundant than other ARG hosts, accounting for 1.0% and 47.1% of the total bacteria in rhizosphere and phyllosphere, respectively. The species has flagella that can promote mobility and can excrete extracellular polymeric substances and/or surfactant-like microbial products, which benefits its colonization in the phyllosphere. Impeding the migration of Pseudomonas sp. 7SR1 via the soil-endosphere-phyllosphere pathway would be effective to further reduce ARGs in phyllosphere. Multidrug resistant genes were predominant in phyllosphere (40.3% of the total), and 87.6% of the phyllosphere ARGs were located on chromosomes, indicating relatively low horizontal gene transfer (HGT) potentials. This study provides insights into the transfer mechanism, hosts, and control strategies of phyllosphere ARGs in typical plants.
Collapse
Affiliation(s)
- Beiqi Deng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process andControl, Hangzhou, 310058, China
| | - Wen Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process andControl, Hangzhou, 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process andControl, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics. Pharmaceuticals (Basel) 2022; 15:ph15020159. [PMID: 35215272 PMCID: PMC8880691 DOI: 10.3390/ph15020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.
Collapse
|
30
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
31
|
Shchelik IS, Gademann K. Thiol- and Disulfide-Containing Vancomycin Derivatives Against Bacterial Resistance and Biofilm Formation. ACS Med Chem Lett 2021; 12:1898-1904. [PMID: 34917252 DOI: 10.1021/acsmedchemlett.1c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Antibiotic-resistant and biofilm-associated infections constitute a rapidly growing issue. Use of the last-resort antibiotic vancomycin is under threat due to the increasing appearance of vancomycin-resistant bacteria as well as the formation of biofilms. Herein, we report a series of novel vancomycin derivatives carrying thiol- and disulfide-containing moieties. The new compounds exhibited enhanced antibacterial activity against a broad range of bacterial strains, including vancomycin-resistant microbes and Gram-negative bacteria. Moreover, all obtained derivatives demonstrated improved antibiofilm formation activity against VanB-resistant Enterococcus compared to vancomycin. This work establishes a promising strategy for combating drug-resistant bacterial infections or disrupting biofilm formation and advances the knowledge on the structural optimization of antibiotics with sulfur-containing modifications.
Collapse
Affiliation(s)
- Inga S. Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021; 98:762-778. [PMID: 34315189 DOI: 10.1111/cbdd.13930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell-penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic-cell-penetrating peptide strategy in combatting sensitive and drug-resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad-spectrum drugs. Through the addition and conjugation of cell-penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
33
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
34
|
Liu J, Li H, Li H, Fang S, Shi J, Chen Y, Zhong R, Liu S, Lin S. Rational Design of Dipicolylamine-Containing Carbazole Amphiphiles Combined with Zn 2+ as Potent Broad-Spectrum Antibacterial Agents with a Membrane-Disruptive Mechanism. J Med Chem 2021; 64:10429-10444. [PMID: 34235929 DOI: 10.1021/acs.jmedchem.1c00858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance has become one of the most urgently important problems facing healthcare providers. A novel series of dipicolylamine-containing carbazole amphiphiles with strong Zn2+ chelating ability were synthesized, biomimicking cationic antimicrobial peptides. Effective broad-spectrum 16 combined with 12.5 μg/mL Zn2+ was identified as the most promising antimicrobial candidate. 16 combined with 12.5 μg/mL Zn2+ exhibited excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria (MICs = 0.78-3.125 μg/mL), weak hemolytic activity, and low cytotoxicity. Time-kill kinetics and mechanism studies revealed 16 combined with 12.5 μg/mL Zn2+ had rapid bacterial killing properties, as evidenced by disruption of the integrity of bacterial cell membranes, effectively preventing bacterial resistance development. Importantly, 16 combined with 12.5 μg/mL Zn2+ showed excellent in vivo efficacy in a murine keratitis model caused by Staphylococcus aureus ATCC29213 or Pseudomonas aeruginosa ATCC9027. Therefore, 16 combined with 12.5 μg/mL Zn2+ could be a promising candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Haizhou Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shanfang Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rongcui Zhong
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
35
|
Sarkar P, Basak D, Mukherjee R, Bandow JE, Haldar J. Alkyl-Aryl-Vancomycins: Multimodal Glycopeptides with Weak Dependence on the Bacterial Metabolic State. J Med Chem 2021; 64:10185-10202. [PMID: 34233118 DOI: 10.1021/acs.jmedchem.1c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to last-resort antibiotics such as vancomycin for Gram-positive bacterial infections necessitates the development of new therapeutics. Furthermore, the ability of bacteria to survive antibiotic therapy through formation of biofilms and persister cells complicates treatment. Toward this, we report alkyl-aryl-vancomycins (AAVs), with high potency against vancomycin-resistant enterococci and staphylococci. Unlike vancomycin, the lead compound AAV-qC10 was bactericidal and weakly dependent on bacterial metabolism. This resulted in complete eradication of non-growing cells of MRSA and disruption of its biofilms. In addition to inhibiting cell wall biosynthesis like vancomycin, AAV-qC10 also depolarizes and permeabilizes the membrane. More importantly, the compound delocalized the cell division protein MinD, thereby impairing bacterial growth through multiple pathways. The potential of AAV-qC10 is exemplified by its superior efficacy against MRSA in a murine thigh infection model as compared to vancomycin. This work paves the way for structural optimization and drug development for combating drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
36
|
Hu Y, Zou X, Shi W, Ma C, Chen F, Li J, Jiao S, Pan G, Lan L, Huang W, Tang F, Zhang F. A facile method for vancomycin C-terminus functionalization and derivatization through hydrazide. Bioorg Med Chem Lett 2021; 42:128027. [PMID: 33839255 DOI: 10.1016/j.bmcl.2021.128027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 11/28/2022]
Abstract
Over 60-year clinical use of vancomycin led to the emergence of vancomycin-resistant bacteria and threatened our health. To combat vancomycin-resistant strains, numerous vancomycin analogues were developed, such as Telavancin, Oritavancin and Dalbavancin. Extra structures embedded on C-terminus has been proved to be an effective strategy to promote antibacterial activity of vancomycin against vancomycin-resistant strains. Here, we reported a facile strategy, inspired by native chemical ligation, for vancomycin C-terminus functionalization and derivatization. The introduction of C-terminal hydrazide on vancomycin not only provided us an accessible method for C-terminus functionalization through carbonyl azide and thioester, also acted as an efficient site for vancomycin structure modifications. Based on hydrazide-vancomycin, we effectively conjugated cysteine and cysteine containing peptides onto vancomycin C-terminus, and two fluorescent FITC-vancomycin were prepared through Cys-Maleimide conjugation. Meanwhile, we introduced lipophilic structures onto vancomycin C-terminus via the hydrazide moiety. The obtained vancomycin derivatives were evaluated against both Gram-positive and negative bacteria strains.
Collapse
Affiliation(s)
- Yu Hu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China
| | - Xiangman Zou
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan 421001, China
| | - Weiwei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Chenhui Ma
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Feifei Chen
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Shang Jiao
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Guoyu Pan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Lefu Lan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China; School of Pharmaceutical Science and Technology, Hangzhou, Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| | - Fan Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China.
| |
Collapse
|
37
|
Du Q, Wu X, Bi W, Xing B, Yeow EKL. Increasing antibiotic activity by rapid bioorthogonal conjugation of drug to resistant bacteria using an upconverted light-activated photocatalyst. J Mater Chem B 2021; 9:3136-3142. [PMID: 33656045 DOI: 10.1039/d0tb02568b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic vancomycin (Van) is often used as the drug of last resort to treat methicillin resistant Staphylococcus aureus. Due to the emergence of Van-resistant microbes, it is necessary to continuously design strategies to increase the efficacy of Van against resistant cells. In this study, an efficient method of bio-conjugating Van to bacteria is proposed using near-infrared (NIR)-light activation. A Nd3+-sensitized upconversion nanocrystal (UCNC) decorated with toluidine blue O (TB) on its surface undergoes upconverted energy transfer from the UCNC to TB when excited by 808 nm light. The photoexcited TB then catalyses the conversion of the dihydrotetrazine (dHTz) moiety in a Van-dHTz conjugate system to tetrazine which undergoes an efficient inverse electron demand Diels-Alder reaction with prior attached norbornene molecules on bacterial cell walls. The enhanced affinity of Van to bacteria by covalent bonding improves the activity of the drug against drug-resistant Enterococci, and the MIC is reduced by 6- to 7-fold as compared to neat Van. We demonstrate that the mode of action is due to increased inhibition of peptidoglycan cell wall biosynthesis. The findings in this study demonstrate that on-demand NIR-light activated bioorthogonal conjugation of Van to microbes is a viable alternative treatment in combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Quanchao Du
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | | | |
Collapse
|
38
|
Lee H, Hwang JS, Lee DG. Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli. J Microbiol Biotechnol 2021; 31:189-196. [PMID: 33263335 PMCID: PMC9705878 DOI: 10.4014/jmb.2010.10058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosislike death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK2 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK2 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 4566, Republic of Korea,Corresponding author Phone: +82-53-950-5373 Fax: +82-53-955-5522 E-mail:
| |
Collapse
|
39
|
Wu ZC, Boger DL. Maxamycins: Durable Antibiotics Derived by Rational Redesign of Vancomycin. Acc Chem Res 2020; 53:2587-2599. [PMID: 33138354 DOI: 10.1021/acs.accounts.0c00569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since its discovery, vancomycin has been used in the clinic for >60 years. Because of their durability, vancomycin and related glycopeptides serve as the antibiotics of last resort for the treatment of protracted bacterial infections of resistant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Streptococcus pneumoniae. After 30 years of use, vancomycin resistance was first observed and is now widespread in enterococci and more recently in S. aureus. The widespread prevalence of vancomycin-resistant enterococci (VRE) and the emergence of vancomycin-resistant S. aureus (VRSA) represent a call to focus on the challenge of resistance, highlight the need for new therapeutics, and provide the inspiration for the design of more durable antibiotics less prone to bacterial resistance than even vancomycin.Herein we summarize progress on efforts to overcome vancomycin resistance, first addressing recovery of its original durable mechanism of action and then introducing additional independent mechanisms of action intended to increase the potency and durability beyond that of vancomycin itself. The knowledge of the origin of vancomycin resistance and an understanding of the molecular basis of the loss of binding affinity between vancomycin and the altered target ligand d-Ala-d-Lac provided the basis for the subtle and rational redesign of the vancomycin binding pocket to remove the destabilizing lone-pair repulsion or reintroduce a lost H-bond while not impeding binding to the unaltered ligand d-Ala-d-Ala. Preparation of the modified glycopeptide core structure was conducted by total synthesis, providing binding pocket-modified vancomycin aglycons with dual d-Ala-d-Ala/d-Lac binding properties that directly address the intrinsic mechanism of resistance to vancomycin. Fully glycosylated pocket-modified vancomycin analogues were generated through a subsequent two-step enzymatic glycosylation, providing a starting point for peripheral modifications used to introduce additional mechanisms of action. A well-established vancosamine N-(4-chlorobiphenyl)methyl (CBP) modification as well as newly discovered C-terminal trimethylammonium cation (C1) or guanidine modifications were introduced, providing two additional synergistic mechanisms of action independent of d-Ala-d-Ala/d-Lac binding. The CBP modification provides an additional stage for inhibition of cell wall synthesis that results from direct competitive inhibition of transglycosylase, whereas the C1/guanidine modification induces bacteria cell permeablization. The synergistic behavior of the three independent mechanisms of action combined in a single molecule provides ultrapotent antibiotics (MIC = 0.01-0.005 μg/mL against VanA VRE). Beyond the remarkable antimicrobial activity, the multiple mechanisms of action suppress the rate at which resistance may be selected, where any single mechanism of action is protected by the action of others. The results detailed herein show that rational targeting of durable vancomycin-derived antibiotics has generated compounds with a "resistance against resistance", provided new candidate antibiotics, and may serve as a generalizable strategy to combat antibacterial resistance.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Abstract
BACKGROUND Vancomycin is effective against Gram-positive bacteria and considered as a last resort in the case of ineffective use of other antigens. While due to the occurrence of adverse reactions, the application of vancomycin is strictly limited. We will conduct a meta-analysis to summarize adverse reactions of vancomycin in humans. METHODS To collect comprehensive randomized controlled trials (RCTs), the following electronic databases will be searched: PubMed, Embase, Web of Science, Cochrane Library, the China National Knowledge Infrastructure, Chinese Biomedical Literature Database, and China Science and Technology Journal Database. The range of publication time will be from the inception of the database to August 2020 without language limitation. Two reviewers will independently conduct selection of studies, data extraction and management, and assessment of risk of bias. Any disagreement will be resolved by discussion with the third reviewer. Review Manager 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration) will be used for meta-analysis. The Cochrane risk of bias tool will be used to assess the risk of bias. RESULTS This study will synthesize the data from the present eligible high quality RCTs to explore the incidence of adverse reactions such as hypersensitivity reactions, nephrotoxicity, ototoxicity, phlebitis, and agranulocytosis. CONCLUSION This meta-analysis will provide systematic evidence for adverse reactions of vancomycin in humans. STUDY REGISTRATION NUMBER INPLASY202080094.
Collapse
Affiliation(s)
- Yang Peng
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| | - Chen-yang Li
- Xinjiang Institute of Materia Medica, Xinjiang, China
| | - Zhi-ling Yang
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| | - Wei Shi
- Department of Pharmacy, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha
| |
Collapse
|
41
|
Wu ZC, Cameron MD, Boger DL. Vancomycin C-Terminus Guanidine Modifications and Further Insights into an Added Mechanism of Action Imparted by a Peripheral Structural Modification. ACS Infect Dis 2020; 6:2169-2180. [PMID: 32598127 DOI: 10.1021/acsinfecdis.0c00258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of vancomycin C-terminus guanidine modifications is disclosed that improves antimicrobial activity, enhances the durability of antimicrobial action against selection or induction of resistance, and introduces a synergistic mechanism of action independent of d-Ala-d-Ala binding and inhibition of cell wall biosynthesis. The added mechanism of action results in induced bacterial cell permeability, which we show may involve interaction with cell envelope teichoic acid. Significantly, the compounds examined that contain two combined peripheral modifications, a (4-chlorobiphenyl)methyl (CBP) and C-terminus guanidinium modification, offer opportunities for new treatments against not only vancomycin-sensitive but especially vancomycin-resistant bacteria where they act by two synergistic and now durable mechanisms of action independent of d-Ala-d-Ala/d-Lac binding and display superb antimicrobial potencies (MIC 0.6-0.15 μg/mL, VanA VRE). For the first time, we demonstrate that the synergistic behavior of the peripheral modifications examined requires the presence of both the CBP and guanidine modifications in a single molecule versus their combined use as an equimolar mixture of singly modified compounds. Finally, we show that a prototypical member of the series, G3-CBP-vancomycin (15), exhibits no hemolytic activity, displays no mammalian cell growth inhibition, possesses improved and especially attractive in vivo pharmacokinetic (PK) properties, and displays excellent in vivo efficacy and potency against an especially challenging multidrug-resistant (MRSA) and VanA vancomycin-resistant (VRSA) Staphylococcus aureus bacterial strain.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
42
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides. Angew Chem Int Ed Engl 2020; 59:8823-8827. [PMID: 32190958 PMCID: PMC7323874 DOI: 10.1002/anie.202002727] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.
Collapse
Affiliation(s)
- Florian Umstätter
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityGermany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Eric Mühlberg
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Christian Kleist
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Stefan Zimmermann
- Medical Microbiology and HygieneHeidelberg University HospitalGermany
| | - Barbro Beijer
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Karel D. Klika
- German Cancer Research Center (DKFZ)NMR Spectroscopy Analysis UnitGermany
| | - Uwe Haberkorn
- Department of Nuclear MedicineHeidelberg University HospitalGermany
- Clinical Cooperation Unit Nuclear MedicineGerman Cancer Research Center (DKFZ)Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)Germany
| | - Walter Mier
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Philipp Uhl
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| |
Collapse
|
43
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Überwindung von Vancomycinresistenzen durch Modifikation mit polykationischen Peptiden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Umstätter
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Cornelius Domhan
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Deutschland
| | - Tobias Hertlein
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Knut Ohlsen
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Eric Mühlberg
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Christian Kleist
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Stefan Zimmermann
- Zentrum für Infektiologie Universitätsklinikum Heidelberg Deutschland
| | - Barbro Beijer
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Karel D. Klika
- Deutsches Krebsforschungszentrum (DKFZ) NMR-Analytik Deutschland
| | - Uwe Haberkorn
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Deutschland
- Klinische Kooperationseinheit Nuklearmedizin Deutsches Krebsforschungszentrum Deutschland
- Translational Lung Research Center Heidelberg (TLRC) Deutsches Zentrum für Lungenforschung (DZL) Deutschland
| | - Walter Mier
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Philipp Uhl
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| |
Collapse
|
44
|
Mühlberg E, Umstätter F, Domhan C, Hertlein T, Ohlsen K, Krause A, Kleist C, Beijer B, Zimmermann S, Haberkorn U, Mier W, Uhl P. Vancomycin-Lipopeptide Conjugates with High Antimicrobial Activity on Vancomycin-Resistant Enterococci. Pharmaceuticals (Basel) 2020; 13:ph13060110. [PMID: 32485876 PMCID: PMC7345083 DOI: 10.3390/ph13060110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany; (T.H.); (K.O.)
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany; (T.H.); (K.O.)
| | - Andreas Krause
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Stefan Zimmermann
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg Germany;
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 260, 69120 Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; (E.M.); (F.U.); (A.K.); (C.K.); (B.B.); (U.H.); (W.M.)
- Correspondence: ; Tel.: +49-6221-56-7726
| |
Collapse
|
45
|
Liu Y, Jia Y, Yang K, Li R, Xiao X, Wang Z. Antagonizing Vancomycin Resistance in Enterococcus by Surface Localized Antimicrobial Display-Derived Peptides. ACS Infect Dis 2020; 6:761-767. [PMID: 31505930 DOI: 10.1021/acsinfecdis.9b00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Decreasing the therapeutic pipeline for vancomycin-resistant Enterococci (VRE) calls for novel strategies to enhance our antibacterial arsenal. Herein, we investigated the potential applications of surface localized antimicrobial display (SLAY)-derived cationic peptides in the fight against VanA operon mediated vancomycin-resistant Enterococcus. Through determining their antibacterial spectrum, we found that SLAY peptide 1/2 displayed moderate bactericidal activity against Enterococcus with minimal inhibitory concentration (MIC) values of 2-8 μg/mL. Furthermore, we observed a significant synergistic activity between SLAY-P1 and vancomycin against VRE. Mechanistic studies demonstrated that SLAY-P1 specifically inhibits transcription of the vanRS two-component system, thereby restoring vancomycin activity and resulting in the accumulation of the cell wall precursor. Meaningfully, the combination of SLAY-P1 and vancomycin prevents the emergence of vancomycin resistance. Consistent with in vitro synergistic results, the addition of SLAY-P1 significantly enhanced the survival rates of Galleria mellonella larvae compared with vancomycin monotherapy. Taken together, these results suggested that SLAY-derived cationic peptides not only display antibacterial activity against VRE but also reverse vancomycin resistance in Enterococcus, providing promising candidates for combating vancomycin-resistant pathogens.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Yuqian Jia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Kangni Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Ruichao Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Xia Xiao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| | - Zhiqiang Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 88 University South Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
46
|
Zhou M, Xiao X, Cong Z, Wu Y, Zhang W, Ma P, Chen S, Zhang H, Zhang D, Zhang D, Luan X, Mai Y, Liu R. Water‐Insensitive Synthesis of Poly‐β‐Peptides with Defined Architecture. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Danfeng Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiangfeng Luan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
47
|
Zhou M, Xiao X, Cong Z, Wu Y, Zhang W, Ma P, Chen S, Zhang H, Zhang D, Zhang D, Luan X, Mai Y, Liu R. Water‐Insensitive Synthesis of Poly‐β‐Peptides with Defined Architecture. Angew Chem Int Ed Engl 2020; 59:7240-7244. [DOI: 10.1002/anie.202001697] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Danfeng Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiangfeng Luan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
48
|
Sun Y, Zhao C, Niu J, Ren J, Qu X. Colorimetric Band-aids for Point-of-Care Sensing and Treating Bacterial Infection. ACS CENTRAL SCIENCE 2020; 6:207-212. [PMID: 32123738 PMCID: PMC7047266 DOI: 10.1021/acscentsci.9b01104] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 05/16/2023]
Abstract
Sensing bacterial infections and monitoring drug resistance are very important for the selection of treatment options. However, the common methods of sensing resistance are limited by time-consuming, the requirement for professional personnel, and expensive instruments. Moreover, the abuse of antibiotics causes the accelerated process of bacterial resistance. Herein, we construct a portable paper-based band-aid (PBA) which implements a selective antibacterial strategy after sensing of drug resistance. The colors of PBA indicate bacterial infection (yellow) and drug resistance (red), just like a bacterial resistance colorimetric card. On the basis of color, antibiotic-based chemotherapy and Zr-MOF PCN-224-based photodynamic therapy (PDT) are used on site to treat sensitive and resistant strains, respectively. Eventually, it takes 4 h to sense, and the limit of detection is 104 CFU/mL for drug-resistant E. coli. Compared with traditional PDT-based antibacterial strategies, our design can alleviate off-target side effects, maximize therapeutic efficacy, and track the drug resistance in real time with the naked eye. This work develops a new way for the rational use of antibiotics. Given the low cost and easy operation of this point-of-care device, it can be developed for practical applications.
Collapse
Affiliation(s)
- Yuhuan Sun
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanqi Zhao
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- E-mail:
| | - Jingsheng Niu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- E-mail:
| |
Collapse
|
49
|
Mühlberg E, Umstätter F, Kleist C, Domhan C, Mier W, Uhl P. Renaissance of vancomycin: approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can J Microbiol 2020; 66:11-16. [DOI: 10.1139/cjm-2019-0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The emergence of multidrug-resistant bacteria demands innovations in the development of new antibiotics. For decades, the glycopeptide antibiotic vancomycin has been considered as the “last resort” treatment of severe infections caused by Gram-positive bacteria. Since the discovery of the first vancomycin-resistant enterococci strains in the late 1980s, the number of resistances has been steadily rising, with often life-threatening consequences. As an alternative to the generation of completely new substances, novel approaches focus on structural modifications of established antibiotics such as vancomycin to overcome these resistances. Here, we provide an overview of several promising modifications of vancomycin to restore its efficacy against vancomycin-resistant enterococci.
Collapse
Affiliation(s)
- Eric Mühlberg
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Wu ZC, Isley NA, Okano A, Weiss WJ, Boger DL. C1-CBP-vancomycin: Impact of a Vancomycin C-Terminus Trimethylammonium Cation on Pharmacological Properties and Insights into Its Newly Introduced Mechanism of Action. J Org Chem 2019; 85:1365-1375. [PMID: 31670958 DOI: 10.1021/acs.joc.9b02314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C1-CBP-vancomycin (3) was examined alongside CBP-vancomycin for susceptibility to acquired resistance upon serial exposure against two vancomycin-resistant enterococci strains where its activity proved more durable and remarkably better than many current therapies. Combined with earlier studies, this observation confirmed an added mechanism of action was introduced by incorporation of the trimethylammonium cation and that C1-CBP-vancomycin exhibits activity against vancomycin-resistant organisms through two synergistic mechanisms of action, both independent of d-Ala-d-Ala/d-Lac binding. New insights into this added mechanism of action, induced cell membrane permeabilization, can be inferred from studies that show added exogenous lipoteichoic acid reduces antimicrobial activity, rescues bacteria cell growth inhibition, and blocks induced cell permeabilization properties of C1-CBP-vancomycin, suggesting a direct binding interaction with embedded teichoic acid is responsible for the added mechanism of action and enhanced antimicrobial activity. Further studies indicate that the trimethylammonium cation does not introduce new liabilities in common pharmacological properties of the analogue and established that 3 is well tolerated in mice, displays substantial PK improvements over both vancomycin and CBP-vancomycin, and exhibits in vivo efficacy against a challenging multidrug-resistant and vancomycin-resistant S. aureus strain that is representative of the resistant pathogens all fear will emerge in the general population.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Nicholas A Isley
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Akinori Okano
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - William J Weiss
- University of North Texas System , College of Pharmacy , Fort Worth , Texas 76107 , United States
| | - Dale L Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|