1
|
Jin J, Yang H, Xiang H, Lu Y, Ye Y. Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP). Top Curr Chem (Cham) 2025; 383:6. [PMID: 39826019 DOI: 10.1007/s41061-025-00490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed. As a novel building block, BCP could be directly involved in a variety of synthetic methods and widely used in the last-stage modification of drugs, attracting much attention from organic chemists and pharmacists. Radical-type cross-coupling reactions involving BCP enable the simultaneous formation of multiple chemical bonds (e.g., C-C, C-N, C-B, C-S, and C-Si) through metal catalysis, photocatalysis, metal-photo synergistic catalysis, and other catalytic systems. Various radical precursors have been explored, facilitating cross-coupling reactions that directly incorporate BCP. This review highlights these state-of-the-art radical couplings of BCP since 2017, organized by reaction components with emphasis on the scope of substrates, reaction mechanisms, and synthetic applications.
Collapse
Affiliation(s)
- Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yue Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Kato K, Tanaka K, Okada S, Kaneda T, Ohtani S, Ogoshi T. Twist along Central C-C Bonds in a Series of Fully π-Fused Propellanes. Chemistry 2024; 30:e202402828. [PMID: 39168824 DOI: 10.1002/chem.202402828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Without stereogenic carbon centers, organic molecules can be chiral when they have large energy barriers for conformational inversion. In this work, conformational behaviors are investigated for a series of tricyclic propellane skeletons with increasing 6-membered-ring peripheral moieties fused with aromatic rings. According to theoretical calculations, trinaphtho[3.3.3]propellane has three vertical naphthalene rings like triptycene shape without torsion along the central C-C single bond. On the other hand, hexabenzo[4.4.4]propellane shows hexaphenylethane-like ca. 60° twist along the bond with large activation energy of 64 kcal mol-1 for twist inversion because of the high congestion caused by three 6-membered-ring loops. Indeed, the [4.4.4]propellane gives a stable pair of chiroptical enantiomers toward heating at 146 °C. By contrast, a hybrid [4.3.3]propellane exhibits fast interconversion between two twisted conformations even at -80 °C.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kensaku Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Seina Okada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
3
|
Sun Z, Yang L, Li H, Mei M, Ye L, Fan J, Zhu W. Thermal Decomposition of Core-Shell-Structured RDX@AlH 3, HMX@AlH 3, and CL-20@AlH 3 Nanoparticles: Reactive Molecular Dynamics Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1859. [PMID: 39591099 PMCID: PMC11597835 DOI: 10.3390/nano14221859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The reactive molecular dynamics method was employed to examine the thermal decomposition process of aluminized hydride (AlH3) containing explosive nanoparticles with a core-shell structure under high temperature. The core was composed of the explosives RDX, HMX, and CL-20, while the shell was composed of AlH3. It was demonstrated that the CL-20@AlH3 NPs decomposed at a faster rate than the other NPs, and elevated temperatures could accelerate the initial decomposition of the explosive molecules. The incorporation of aluminized hydride shells did not change the initial decomposition mechanism of the three explosives. The yields of the main products (NO, NO2, N2, H2O, H2, and CO2) were investigated. There was a large number of solid aluminized clusters produced during the decomposition, mainly AlmOn and AlmCn clusters, together with AlmNn clusters dispersed in the AlmOn clusters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.S.); (L.Y.); (H.L.); (M.M.); (L.Y.); (J.F.)
| |
Collapse
|
4
|
Bao G, Wang Y, Xu W, Yu Z, Zhou W, Li J, Li L, Jiang X. Photocatalytic Diheteroarylation of [1.1.1]Propellane for the Construction of 1,3-Diheteroaryl Bicyclo[1.1.1]pentanes. Org Lett 2024; 26:9210-9214. [PMID: 39440712 DOI: 10.1021/acs.orglett.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we report a visible light-induced diheteroarylation reaction of [1.1.1]propellane to synthesize 1,3-diheteroaryl bicyclo[1.1.1]pentanes (BCPs). In this approach, heteroaryl radicals are generated from heteroaryl halides via photocatalysis and subsequently added to [1.1.1]propellane. The in situ generated BCP radicals are then trapped by various heterocycles to furnish 1,3-diheteroaryl BCPs. Notably, this strategy features metal-free, mild conditions and utilizes inexpensive catalyst. For the first time, the diheteroarylation of [1.1.1]propellane could be achieved via a radical strategy, allowing for the efficient synthesis of 1,3-diheteroaryl BCPs with various applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Guoxiang Bao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yue Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenhao Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhihao Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiacheng Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Longyi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
5
|
Li F, Dong J, Wang C, Liao H, Dang J, Zhou J, Li G, Xue D. Benzyl Alcohol Functionalization of [1.1.1]Propellane with Alkanes and Aldehydes. Org Lett 2024; 26:9276-9281. [PMID: 39432247 DOI: 10.1021/acs.orglett.4c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) play a crucial role in drug discovery research as C(sp3)-rich bioisosteres of benzene rings. However, the preparation of BCPs with strong alkane C(sp3)-H bonds has not been reported to date. In this study, we reported a method for light-induced benzyl alcohol functionalization of [1.1.1]propellane with aliphatic hydrocarbons (which have not previously been explored for this purpose) and aldehydes under metal- and photocatalyst-free conditions. The BCP products could be transformed into various useful derivatives, demonstrating the utility of the method. Notably, we achieved the synthesis of functionalized BCPs with simple alkanes.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
- Department of Scientific Research, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou China
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chenya Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Huijuan Liao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jiayi Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
6
|
Liu L, Guo S, Chen C, Shen X, Chen X, Yu H, Han Y, Sun Q, Zhu S, Hou H. Visible-light photoredox-catalyzed three-component radical alkyl-acylation of [1.1.1]propellane. Org Biomol Chem 2024. [PMID: 39466663 DOI: 10.1039/d4ob01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We described herein a three-component radical alkyl-acylation of [1.1.1]propellane via a visible-light photoredox single electron transfer process, demonstrating an efficient approach for accessing a diverse array of 1,3-disubstituted BCP ketone derivatives. The synthetic utility of the present radical protocol was further demonstrated by the Baeyer-Villiger oxidation of the BCP ketone for BCP ester formation.
Collapse
Affiliation(s)
- Lanqin Liu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Chengjun Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyu Shen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Qiu Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Zong Z, Yang J, Yuan L, Wang X, Chen JQ, Wu J. Conversion of Carboxylic Acids to Sulfonamide Bioisosteres via Energy Transfer Photocatalysis. Org Lett 2024; 26:8626-8631. [PMID: 39351982 DOI: 10.1021/acs.orglett.4c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
More than 450 drugs containing a carboxylic acid functional group have been marketed worldwide. Herein, we report a concise and environmentally friendly organic photoinduced protocol for the interconversion of carboxylic acids into their bioisosteres. With this strategy, a variety of substrates, including alkyl, (hetero)aryl, and alkenyl acids, as well as various biologically relevant acids are successfully converted into primary sulfonamides.
Collapse
Affiliation(s)
- Zhipeng Zong
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jingjing Yang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Lulu Yuan
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiaojie Wang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Nan H, Cheng B, Zhang D, Wang K, Wang S, Xu B, Zhang S, König B, Zhang G. Direct Diazoarylation of [1.1.1]Propellane with Arenediazonium Salts: A Modular Assembly of Arylated Diazo Bicyclo[1.1.1]pentanes. Org Lett 2024; 26:8424-8429. [PMID: 39311486 DOI: 10.1021/acs.orglett.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A mild and concise diazoarylation of [1.1.1]propellane is described, which provides a modular approach to arylated diazo bicyclopentanes (BCPs). This reaction proceeds smoothly under basic conditions without requiring other additives or catalysts. The substrate scope shows that various electron-withdrawing and electron-donating groups are tolerated, and the subsequent modifications provide a novel avenue for assembling arylamino-BCP analogs.
Collapse
Affiliation(s)
- Hailing Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
9
|
Zhu Y, Yi F, Zhou N, Zhang Y, Zhang Y, Zhao X, Lu K. Photochemical tandem reaction of nitrogen containing heterocycles, bicyclo[1.1.1]pentane, and difluoroiodane(III) reagents. Org Biomol Chem 2024; 22:7024-7034. [PMID: 39143911 DOI: 10.1039/d4ob01020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A visible light-induced difluoroalkylation/heteroarylation of [1.1.1]propellane with nitrogen containing heterocycles and difluoroiodane(III) reagents was achieved. Various heteroarenes and difluoroiodane(III) reagents exhibited good compatibility, yielding the desired products in moderate to good yields. The accessibility of the reagents and the mild reaction conditions establish this method as an alternative and practical strategy for accessing diverse 1-difluoroalkyl-3-heteroaryl bicyclo[1.1.1]pentanes (BCPs).
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
10
|
Wang K, Cheng B, König B, Zhang D, Xu B, Wang S, Zhang G. Photocatalyzed 1,3-Bromodifluoroallylation of [1.1.1]Propellane with α-Trifluoromethylalkenes and KBr Salts. Org Lett 2024; 26:6889-6893. [PMID: 39106520 DOI: 10.1021/acs.orglett.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Herein we unveil a visible-light-driven transition-metal-free 1,3-bromodifluoroallylation of [1.1.1]propellane. This reactivity is harnessed through organophotocatalysis, providing practical synthetic pathways to 1-brominated-3-gem-difluoroallylic bicyclo[1.1.1]pentane derivatives, particularly derived from readily available α-trifluoromethylalkenes and inexpensive KBr salts utilized as precursors for bromine radicals. Mechanistic investigations reveal that bromide anions quench the excited state of the photocatalyst, leading to the formation of bromine radicals, which react in a strain-release radical addition process rather than hydrogen atom abstraction with [1.1.1]propellane.
Collapse
Affiliation(s)
- Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| |
Collapse
|
11
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Yan J, Dong L, Yang Y, Zhang D. DFT Insight into a Strain-Release Mechanism in Bicyclo[1.1.0]butanes via Concerted Activation of Central and Lateral C-C Bonds with Rh(III) Catalysis. Inorg Chem 2024; 63:8879-8888. [PMID: 38676642 DOI: 10.1021/acs.inorgchem.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Transition-metal-catalyzed, strain-release-driven transformations of "spring-loaded" bicyclo[1.1.0]butanes (BCBs) are considered potent tools in synthetic organic chemistry. Previously proposed strain-release mechanisms involve either the insertion of the central C-C bond of BCBs into a metal-carbon bond, followed by β-C elimination, or the oxidative addition of the central or lateral C-C bond on the transition metal center, followed by reductive elimination. This study, employing DFT calculations on a Rh(III)-catalyzed model system in a three-component protocol involving oxime ether, BCB ester, and ethyl glyoxylate for constructing diastereoselective quaternary carbon centers, introduces an unusual strain-release mechanism for BCBs. In this mechanism, the catalytic reaction is initiated by the simultaneous cleavage of two C-C bonds (the central and lateral C-C bonds), resulting in the formation of a Rh-carbene intermediate. The new mechanism exhibits a barrier of 21.0 kcal/mol, making it energetically more favorable by 11.1 kcal/mol compared to the previously suggested most favorable pathway. This unusual reaction mode rationalizes experimental observation of the construction of quaternary carbon centers, including the excellent E-selectivity and diastereoselectivity. The newly proposed strain-release mechanism holds promise in advancing our understanding of transition-metal-catalyzed C-C bond activation mechanisms and facilitating the synthesis of transition metal carbene complexes.
Collapse
Affiliation(s)
- Jing Yan
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Kotha S, Mehta G, Jena K. Synthetic Approach toward Diverse Oxa-Cages via Olefin Metathesis. J Org Chem 2024; 89:5952-5965. [PMID: 38652151 DOI: 10.1021/acs.joc.3c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This article demonstrates a late-stage modification of the cage propellanes that are transformed into intricate oxa-cycles via ring-rearrangement metathesis (RRM) and regioselective ring-closing metathesis (RCM) as crucial steps. In addition, we also report the extended pentacycloundecane (PCUD)-based oxa-cages involving the domino cycloetherification followed by olefin metathesis. These oxa-cages involve a domino sequence in which the PCUD core unit remains intact. [Ru]-based Grubbs catalysts are used to execute the metathesis step to assemble these higher-order oxa-cage systems. Spectroscopic data assigned structures of various products and were further supported by single-crystal X-ray diffraction analysis. The synthetic approach to these cage polycycles involves high complexity generating processes such as Diels-Alder reaction, [2 + 2] photocycloaddition, and RRM as well as RCM.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Gulazarahind Mehta
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400076, India
| | - Kunkumita Jena
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400076, India
| |
Collapse
|
14
|
Kato K, Uchida Y, Kaneda T, Tachibana T, Ohtani S, Ogoshi T. Alkoxylated Fluoranthene-Fused [3.3.3]Propellanes: Facile Film Formation against High π-Core Content. Chem Asian J 2024; 19:e202400080. [PMID: 38380847 DOI: 10.1002/asia.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Solid-state assembling modes are as crucial as the chemical structures of single molecules for real applications. In this work, solid-state structures and phase-transition temperatures are investigated for a series of fluoranthene-fused [3.3.3]propellanes consisting of a rigid three-dimensional (3D) π-core and varying lengths of alkoxy groups. Compounds in this series with n-butoxy or longer alkoxy groups take an amorphous state at room temperature. In these molecules, rotatable biaryl-type bonds are not incorporated and high D3h molecular symmetry is retained. Therefore, π-fused [3.3.3]propellanes present a unique platform for amorphous molecular materials with low ratios of flexible alkoxy atoms to rigid π-core ones.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Uchida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoya Kaneda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
15
|
Bai D, Guo X, Wang X, Xu W, Cheng R, Wei D, Lan Y, Chang J. Umpolung reactivity of strained C-C σ-bonds without transition-metal catalysis. Nat Commun 2024; 15:2833. [PMID: 38565533 PMCID: PMC10987681 DOI: 10.1038/s41467-024-47169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Umpolung is an old and important concept in organic chemistry, which significantly expands the chemical space and provides unique structures. While, previous research focused on carbonyls or imine derivatives, the umpolung reactivity of polarized C-C σ-bonds still needs to explore. Herein, we report an umpolung reaction of bicyclo[1.1.0]butanes (BCBs) with electron-deficient alkenes to construct the C(sp3)-C(sp3) bond at the electrophilic position of C-C σ-bonds in BCBs without any transition-metal catalysis. Specifically, this transformation relies on the strain-release driven bridging σ-bonds in bicyclo[1.1.0]butanes (BCBs), which are emerged as ene components, providing an efficient and straightforward synthesis route of various functionalized cyclobutenes and conjugated dienes, respectively. The synthetic utilities of this protocol are performed by several transformations. Preliminary mechanistic studies including density functional theory (DFT) calculation support the concerted Alder-ene type process of C-C σ-bond cleavage with hydrogen transfer. This work extends the umpolung reaction to C-C σ-bonds and provides high-value structural motifs.
Collapse
Affiliation(s)
- Dachang Bai
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiuli Guo
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Xinghua Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Xu
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Ruoshi Cheng
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Donghui Wei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Lan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
16
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
17
|
Sánchez-Sordo I, Barbeira-Arán S, Fañanás-Mastral M. Enantioselective synthesis of chiral BCPs. Org Chem Front 2024; 11:916-928. [PMID: 38298565 PMCID: PMC10825854 DOI: 10.1039/d3qo01631e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have emerged as an interesting scaffold in drug design. These strained molecules can act as bioisosteres of para-substituted phenyl rings, tert-butyl groups or internal alkynes, leading to drug analogues with enhanced pharmacokinetic and physicochemical properties. Thus, catalytic methodologies for the synthesis of BCPs represent a major goal in modern organic synthesis. In particular, asymmetric transformations that provide chiral BCPs bearing an adjacent stereocenter are particularly valuable to expand the chemical space of this important scaffold. In this article, we discuss the available methodologies for the asymmetric synthesis of α-chiral BCPs, their key mechanistic features and their application in bioisosteric replacements in drug design.
Collapse
Affiliation(s)
- Irene Sánchez-Sordo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Sergio Barbeira-Arán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
18
|
Abstract
Tosyl cyanide is a commonly used reagent for cyanation and sulfonylation in organic synthesis and pharmaceutical chemistry. The photocatalytic transformations of tosyl cyanide are generally conducted under mild conditions. This minireview summarizes the recent progress of radical-involved transformations of tosyl cyanide via photo-induced cyanation or sulfonylcyanation.
Collapse
Affiliation(s)
- Ya Liu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Ya Lee V, Gapurenko OA. Heavy Tetrel Clusters Based on the Bicyclobutane Framework: Bicyclo[1.1.0]butanes, [1.1.1]Propellanes, and Tricyclo[2.1.0.0 2,5 ]pentanes. Chem Asian J 2024; 19:e202300903. [PMID: 38015001 DOI: 10.1002/asia.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this review, the current state of affairs in the novel field of the group 14 element clusters based on the bicyclo[1.1.0]butane framework, namely, bicyclo[1.1.0]butane, [1.1.1]propellane, and tricyclo[2.1.0.02,5 ]pentane derivatives, are overviewed. Structural similarities and differences between these three classes of highly strained polycyclic compounds are considered from the viewpoint of the critically important nature of their bridgehead bonds. Synthetic strategies towards bicyclo[1.1.0]butanes, [1.1.1]propellanes, and tricyclo[2.1.0.02,5 ]pentanes, as well as their peculiar structural and bonding features, and specific reactivity, are also presented and discussed in this review.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Ibaraki, Japan
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki avenue 194/2, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
20
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
21
|
Mandler MD, Mignone J, Jurica EA, Palkowitz MD, Aulakh D, Cauley AN, Farley CA, Zhang S, Traeger SC, Sarjeant A, Paiva A, Perez HL, Ellsworth BA, Regueiro-Ren A. Synthesis of Bicyclo[1.1.0]butanes from Iodo-Bicyclo[1.1.1]pentanes. Org Lett 2023; 25:7947-7952. [PMID: 37284784 DOI: 10.1021/acs.orglett.3c01417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.
Collapse
Affiliation(s)
- Michael D Mandler
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James Mignone
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth A Jurica
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Maximilian D Palkowitz
- Bristol Myers Squibb, Research & Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Darpandeep Aulakh
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Anthony N Cauley
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Christopher A Farley
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Shasha Zhang
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Sarah C Traeger
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Amy Sarjeant
- Bristol Myers Squibb, Chemical & Synthetic Development, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Anthony Paiva
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Heidi L Perez
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Bruce A Ellsworth
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alicia Regueiro-Ren
- Bristol Myers Squibb, Research & Early Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
22
|
Tang L, Huang QN, Wu F, Xiao Y, Zhou JL, Xu TT, Wu WB, Qu S, Feng JJ. C(sp 2)-H cyclobutylation of hydroxyarenes enabled by silver-π-acid catalysis: diastereocontrolled synthesis of 1,3-difunctionalized cyclobutanes. Chem Sci 2023; 14:9696-9703. [PMID: 37736637 PMCID: PMC10510764 DOI: 10.1039/d3sc03258b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Qi-Nan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
23
|
Tu HF, Jeandin A, Bon C, Brocklehurst C, Lima F, Suero MG. Late-Stage Aryl C-H Bond Cyclopropenylation with Cyclopropenium Cations. Angew Chem Int Ed Engl 2023; 62:e202308379. [PMID: 37459194 DOI: 10.1002/anie.202308379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Herein, we disclose the first regio-, site- and chemoselective late-stage (hetero)aryl C-H bond cyclopropenylation with cyclopropenium cations (CPCs). The process is fast, operationally simple and shows an excellent functional group tolerance in densely-functionalized drug molecules, natural products, agrochemicals and fluorescent dyes. Moreover, we discovered that the installation of the cyclopropene ring in drug molecules could not only be used to shield against metabolic instability but also as a synthetic tool to reach medicinally-relevant sp3 -rich scaffolds exploiting the highly-strained nature of the cyclopropene ring with known transformations.
Collapse
Affiliation(s)
- Hang-Fei Tu
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| | - Aliénor Jeandin
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Cara Brocklehurst
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Institutes of BioMedical Research, 4056, Basel, Switzerland
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain
| |
Collapse
|
24
|
Ding H, Lyu J, Zhang XL, Xiao X, Liu XW. Efficient and versatile formation of glycosidic bonds via catalytic strain-release glycosylation with glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoate donors. Nat Commun 2023; 14:4010. [PMID: 37419914 PMCID: PMC10329021 DOI: 10.1038/s41467-023-39619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Catalytic glycosylation is a vital transformation in synthetic carbohydrate chemistry due to its ability to expediate the large-scale oligosaccharide synthesis for glycobiology studies with the consumption of minimal amounts of promoters. Herein we introduce a facile and efficient catalytic glycosylation employing glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoates (CCBz) promoted by a readily accessible and non-toxic Sc(III) catalyst system. The glycosylation reaction involves a novel activation mode of glycosyl esters driven by the ring-strain release of an intramolecularly incorporated donor-acceptor cyclopropane (DAC). The versatile glycosyl CCBz donor enables highly efficient construction of O-, S-, and N-glycosidic bonds under mild conditions, as exemplified by the convenient preparation of the synthetically challenging chitooligosaccharide derivatives. Of note, a gram-scale synthesis of tetrasaccharide corresponding to Lipid IV with modifiable handles is achieved using the catalytic strain-release glycosylation. These attractive features promise this donor to be the prototype for developing next generation of catalytic glycosylation.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jian Lyu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, P.R. China.
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
25
|
Xu W, Zheng Z, Bao G, Wang Y, Gao Y, Zhu H, Xu G, Zhu Y, Yu C, Jiang X. Photocatalytic Three-Component Synthesis of 3-Heteroarylbicyclo[1.1.1]pentane-1-acetates. Org Lett 2023. [PMID: 37235701 DOI: 10.1021/acs.orglett.3c01213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Herein, we report a visible-light-induced three-component reaction involving [1.1.1]propellane, diazoates, and various heterocycles for the synthesis of 3-heteroarylbicyclo[1.1.1]pentane-1-acetates. Throughout this reaction, the radicals generated from diazoate species react with [1.1.1]propellane in an addition reaction to form bicyclo[1.1.1]pentane (BCP) radicals that subsequently react with heterocycles, leading to the formation of 1,3-disubstituted BCP acetates. Notably, this methodology exhibits excellent functional group compatibility, high atom economy, and mild reaction conditions, thus facilitating suitable synthetic access to 1,3-disubstituted BCP acetates.
Collapse
Affiliation(s)
- Wenhao Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zicong Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guoxiang Bao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yue Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan Gao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Gongcheng Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
26
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
27
|
Li Z, Lan D, Zhou W, Li J, Zhu H, Yu C, Jiang X. Synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines via halosulfoamidation of [1.1.1]propellane with sodium hypohalites and sulfonamides. Chem Commun (Camb) 2023; 59:6056-6059. [PMID: 37114292 DOI: 10.1039/d3cc01262j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Herein, we report a catalyst-free synthesis of C3-halo substituted bicyclo[1.1.1]pentylamines under mild conditions. The reaction involves the use of sodium hypohalites and sulfonamides to generate N-halosulfonamides in situ, which subsequently undergo radical addition with [1.1.1]propellane to yield the desired products with suitable functional group tolerance.
Collapse
Affiliation(s)
- Zhi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Deyou Lan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Wei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Jiacheng Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Hui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P. R. China.
| |
Collapse
|
28
|
Cheng XY, Feng QK, Dang ZM, Du FS, Li ZC. Alternating [1.1.1]Propellane-(Meth)Acrylate Copolymers: A New Class of Dielectrics with High Energy Density for Film Capacitors. Macromol Rapid Commun 2023; 44:e2200888. [PMID: 36583944 DOI: 10.1002/marc.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Polymer dielectrics with high energy density are of urgent demand in electric and electronic devices, but the tradeoff between dielectric constant and breakdown strength is still unsolved. Herein, the synthesis and molar mass control of three alternating [1.1.1]propellane-(meth)acrylate copolymers, denoted as P-MA, P-MMA, and P-EA, respectively, are reported. These copolymers exhibit high thermal stability and are semi-crystalline with varied glass transition temperatures and melting temperatures. The rigid bicyclo[1.1.1]pentane units in the polymer backbone promote the orientational polarization of the polar ester groups, thus enhancing the dielectric constants of these polymers, which are 4.50 for P-EA, 4.55 for P-MA, and 5.11 for P-MMA at 10 Hz and room temperature, respectively. Moreover, the high breakdown strength is ensured by the non-conjugated nature of bicyclo[1.1.1]pentane unit. As a result, these copolymers show extraordinary energy storage performance; P-MA exhibits a discharge energy density of 9.73 J cm-3 at 750 MV m-1 and ambient temperature. This work provides a new type of promising candidates as polymer dielectrics for film capacitors, and offers an efficient strategy to improve the dielectric and energy storage properties by introducing rigid non-conjugated bicyclo[1.1.1]pentane unit into the polymer backbone.
Collapse
Affiliation(s)
- Xiang-Yue Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| | - Qi-Kun Feng
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhi-Min Dang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Cheng X, Du F, Li Z. Synthesis of precision poly(1,3‐bicyclo[1.1.1]pentane alkylene)s via acyclic diene metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiang‐Yue Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Fu‐Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| |
Collapse
|
30
|
Kheilkordi Z, Mohammadi Ziarani G, Badiei A, Mohajer F, Luque R. Fe3O4@SiO2@Pr-Oxime-(BuSO3H)3 synthesis and its application as magnetic nanocatalyst in the synthesis of heterocyclic [3.3.3]propellanes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Frank N, Nugent J, Shire BR, Pickford HD, Rabe P, Sterling AJ, Zarganes-Tzitzikas T, Grimes T, Thompson AL, Smith RC, Schofield CJ, Brennan PE, Duarte F, Anderson EA. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 2022; 611:721-726. [PMID: 36108675 DOI: 10.1038/s41586-022-05290-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for commonly found para-substituted benzene rings in drug design1. The utility of these cage structures derives from their superior pharmacokinetic properties compared with their parent aromatics, including improved solubility and reduced susceptibility to metabolism2,3. A prime example is the bicyclo[1.1.1]pentane motif, which is mainly synthesized by ring-opening of the interbridgehead bond of the strained hydrocarbon [1.1.1]propellane with radicals or anions4. By contrast, scaffolds mimicking meta-substituted arenes are lacking because of the challenge of synthesizing saturated isosteres that accurately reproduce substituent vectors5. Here we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the bridgehead substituents map precisely onto the geometry of meta-substituted benzenes, can be conveniently accessed from [3.1.1]propellane. We found that [3.1.1]propellane can be synthesized on a multigram scale, and readily undergoes a range of radical-based transformations to generate medicinally relevant carbon- and heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison of the absorption, distribution, metabolism and excretion (ADME) properties of these analogues reveals enhanced metabolic stability relative to their parent arene-containing drugs, validating the potential of this meta-arene analogue as an sp3-rich motif in drug design. Collectively, our results show that BCHeps can be prepared on useful scales using a variety of methods, offering a new surrogate for meta-substituted benzene rings for implementation in drug discovery programmes.
Collapse
Affiliation(s)
- Nils Frank
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeremy Nugent
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Bethany R Shire
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Helena D Pickford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tryfon Zarganes-Tzitzikas
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Thomas Grimes
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Russell C Smith
- Abbvie Drug Discovery Science & Technology (DDST), North Chicago, IL, USA
| | | | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Pang Q, Li Y, Xie X, Tang J, Liu Q, Peng C, Li X, Han B. The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Front Chem 2022; 10:997944. [PMID: 36339044 PMCID: PMC9634170 DOI: 10.3389/fchem.2022.997944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline and its derivatives, demonstrate unique structural features and physicochemical profiles in medicinal and synthetic chemistry. In recent years, compared with conventional synthetic approaches, the rapid development of radical chemistry enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly through the amination transformation of highly strained [1.1.1]propellane. In this review, we concisely summarize the emerging role of radical chemistry in the construction of BCPAs motif, highlighting two different and powerful radical-involved strategies including C-centered and N-centered radical pathways under appropriate conditions. The future direction concerning BCPAs is also discussed at the end of this review, which aims to provide some inspiration for the research of this promising project.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Rentería-Gómez A, Lee W, Yin S, Davis M, Gogoi AR, Gutierrez O. General and Practical Route to Diverse 1-(Difluoro)alkyl-3-aryl Bicyclo[1.1.1]pentanes Enabled by an Fe-Catalyzed Multicomponent Radical Cross-Coupling Reaction. ACS Catal 2022; 12:11547-11556. [PMID: 39524306 PMCID: PMC11546105 DOI: 10.1021/acscatal.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are of great interest to the agrochemical, materials, and pharmaceutical industries. In particular, synthetic methods to access 1,3-dicarbosubsituted BCP-aryls have recently been developed, but most protocols rely on the stepwise C-C bond formation via the initial manipulation of BCP core to make the BCP electrophile or nucleophile followed by a second step (e.g., transition-metal-mediated cross-coupling step) to form the second key BCP-aryl bond. Moreover, despite the prevalence of C-F bonds in bioactive compounds, one-pot, multicomponent cross-coupling methods to directly functionalize [1.1.1]propellane to the corresponding fluoroalkyl BCP-aryl scaffolds are lacking. In this work, we describe a conceptually different approach to access diverse (fluoro)alkyl BCP-aryls at low temperatures and fast reaction times enabled by an iron-catalyzed multicomponent radical cross-coupling reaction from readily available (fluoro)alkyl halides, [1.1.1]propellane, and Grignard reagents. Further, experimental and computational mechanistic studies provide insights into the mechanism and ligand effects on the nature of C-C bond formation. Finally, these studies are used to develop a method to rapidly access synthetic versatile (difluoro)alkyl BCP halides via bisphosphine-iron catalysis.
Collapse
Affiliation(s)
- Angel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuai Yin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
34
|
George GM, Wolczanski PT, Cundari TR, MacMillan SN. Reactivity of 1.1.1-Propellane with (silox) 3M (M = Ti, V, Cr): Structures of (silox) 3V═( cC 4H 4)═CH 2 and [(silox) 3Cr–(1.1.1-C 5H 6)−] 2. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory M. George
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca, New York 14853, United States
| | - Peter T. Wolczanski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca, New York 14853, United States
| | - Thomas R. Cundari
- Department of Chemistry, CasCam University of North Texas Denton, Texas 76201, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Kato K, Seto N, Chida K, Yoshii T, Mizuno M, Nishihara H, Ohtani S, Ogoshi T. Synthesis of hexa-aminated trinaphtho[3.3.3]propellane and its porous polymer solids with alkane adsorption properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Nobuyoshi Seto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Koki Chida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
36
|
Lal S, Bhattacharjee A, Chowdhury A, Kumbhakarna N, Namboothiri INN. Approaches to 1,4-Disubstituted Cubane Derivatives as Energetic Materials: Design, Theoretical Studies and Synthesis. Chem Asian J 2022; 17:e202200489. [PMID: 35767352 DOI: 10.1002/asia.202200489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Indexed: 11/10/2022]
Abstract
Novel 1,4-disubstituted cubane derivatives have been designed and selected ones have been successfully synthesized and characterized by various analytical and spectroscopic techniques, including single-crystal X-ray analysis. A detailed computational study at B3LYP/6-311++G(d,p) level of theory revealed that all newly designed 1,4-disubstituted cubane derivatives possess higher densities, higher density-specific impulse and superior ballistic properties when compared to conventional fuels, for example, RP-1. These compounds also exhibit acceptable kinetic and thermodynamic stabilities which were evaluated in terms of their HOMO-LUMO energy gap and bond dissociation energies, respectively, and are superior to TEX and many other compounds containing explosophoric groups. These results provide novel insights into the possible application of cubane-based energetic materials.
Collapse
Affiliation(s)
- Sohan Lal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Argha Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
37
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium-Catalyzed Stagewise Strain-Release-Driven C-C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200052. [PMID: 35332648 DOI: 10.1002/anie.202200052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/20/2022]
Abstract
A palladium-catalyzed chemoselective coupling of readily available bicyclo[1.1.1]pentanyl alcohols (BCP-OH) with various halides is reported, which offers expedient approaches to a wide range of cyclobutanone and β,γ-enone skeletons via single or double C-C activation. The chemistry shows a broad substrate scope in terms of both the range of BCP-OH and halides including a series of natural product derivatives. Moreover, dependency of reaction chemodivergence on base additive has been investigated through experimental and density functional theory (DFT) studies, which is expected to significantly enrich the reaction modes and increase the synthetic potential of BCP-OH in preparing more complex molecules.
Collapse
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yinan Ai
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Chunying Duan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yue Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
38
|
Krajewski B, Rajput SS, Chołuj M, Wojaczyńska E, Miniewicz A, Alam MM, Zaleśny R. First-order hyperpolarizabilities of propellanes: elucidating structure-property relationships. Phys Chem Chem Phys 2022; 24:13534-13541. [PMID: 35612526 DOI: 10.1039/d2cp00381c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following recent experimental work demonstrating strong nonlinear optical properties, namely second harmonic generation of light, in crystals composed of 16,20-dinitro-(3,4,8,9)-dibenzo-2,7-dioxa-5,10-diaza[4.4.4]propellane molecules [A. Miniewicz, S. Bartkiewicz, E. Wojaczyńska, T. Galica, R. Zaleśny and R. Jakubas, J. Mater. Chem. C, 2019, 7, 1255-1262] in this paper we aim to investigate "structure-property" relationships for a series of 16 propellanes presenting a wide palette of substituents with varying electron-accepting/donating capabilities. To that end, we use electronic- and vibrational-structure theories and a recently developed generalized few-state model combined with a range-separated CAM-B3LYP functional to analyze electronic and vibrational contributions to the first hyperpolarizability for the whole series of molecules. The variations in computed properties are large among the studied set of substituents and can reach an order of magnitude. It has been demonstrated that the maximum values of frequency-independent first hyperpolarizability are expected for strong electron-accepting NO2 substituents, but only at the preferred position with respect to the electronegative oxygen atom in the 1,4-oxazine moiety. This holds for electronic as well as vibrational counterparts.
Collapse
Affiliation(s)
- Bartosz Krajewski
- Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370, Wrocław, Poland
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India.
| | - Marta Chołuj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370, Wrocław, Poland.
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370, Wrocław, Poland.
| | - Andrzej Miniewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370, Wrocław, Poland.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India.
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370, Wrocław, Poland.
| |
Collapse
|
39
|
Li Q, Li L, Xu QL, Pan F. Radical Acylation of [1.1.1]Propellane with Aldehydes: Synthesis of Bicyclo[1.1.1]pentane Ketones. Org Lett 2022; 24:4292-4297. [PMID: 35658457 DOI: 10.1021/acs.orglett.2c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) are widely utilized in drug design as sp3-rich bioisosteres for tert-butyl, internal alkynes, and aryl groups. A general and mild method for radical acylation of [1.1.1]propellane with aldehydes has been developed. The protocol provides straightforward access to bicyclo[1.1.1]pentane ketones with a broad substrate scope. The synthetic utility of this methodology is demonstrated by the late-stage modification of bioactive molecules and the versatile transformation of bicyclo[1.1.1]pentane ketones, making it useful for drug discovery.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Lin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Qiao-Ling Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
40
|
Guo R, Chang YC, Herter L, Salome C, Braley SE, Fessard TC, Brown MK. Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. J Am Chem Soc 2022; 144:7988-7994. [PMID: 35476547 PMCID: PMC9832330 DOI: 10.1021/jacs.2c02976] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Saturated bicycles are becoming ever more important in the design and development of new pharmaceuticals. Here a new strategy for the synthesis of bicyclo[2.1.1]hexanes is described. These bicycles are significant because they have defined exit vectors, yet many substitution patterns are underexplored as building blocks. The process involves sensitization of a bicyclo[1.1.0]butane followed by cycloaddition with an alkene. The scope and mechanistic details of the method are discussed.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yu-Che Chang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Loic Herter
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Christophe Salome
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas C Fessard
- SpiroChem AG, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Yu S, Ai Y, Hu L, Lu G, Duan C, Ma Y. Palladium‐Catalyzed Stagewise Strain‐Release‐Driven C−C Activation of Bicyclo[1.1.1]pentanyl Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Songjie Yu
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yinan Ai
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry Ministry of Education Shandong University Jinan 250100 China
| | - Chunying Duan
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Yue Ma
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
42
|
Abstract
Sulfone-substituted bicyclo[1.1.0]butanes and housanes have found widespread application in organic synthesis due to their bench stability and high reactivity in strain-releasing processes in the presence of nucleophiles or radical species. Despite their increasing utility, their preparation typically requires multiple steps in low overall yield. In this work, we report an expedient and general one-pot procedure for the synthesis of 1-sulfonylbicyclo[1.1.0]butanes from readily available methyl sulfones and inexpensive epichlorohydrin via the dialkylmagnesium-mediated formation of 3-sulfonylcyclobutanol intermediates. Furthermore, the process was extended to the formation of 1-sulfonylbicyclo[2.1.0]pentane (housane) analogues when 4-chloro-1,2-epoxybutane was used as the electrophile instead of epichlorohydrin. Both procedures could be applied on a gram scale with similar efficiency and are shown to be fully stereospecific in the case of housanes when an enantiopure epoxide was employed, leading to a streamlined access to highly valuable optically active strain-release reagents.
Collapse
Affiliation(s)
- Myunggi Jung
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N G Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
43
|
Lasányi D, Máth D, Tolnai GL. Synthesis and Use of Bicyclo[1.1.1]pentylaldehyde Building Blocks. J Org Chem 2022; 87:2393-2401. [DOI: 10.1021/acs.joc.1c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dániel Lasányi
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Dániel Máth
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| | - Gergely L. Tolnai
- Institute of Chemistry, Eotvos Lorand University, Pazmany P. stny. 1/a, Budapest H1117, Hungary
| |
Collapse
|
44
|
Kheilkordi Z, Ziarani GM, Mohajer F. Application of Multi-component Reaction in the Synthesis of Heterocyclic [3.3.3] Propellane Derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220112161201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Propellanes and derivatives have attractive properties due to their unique structure. Therefore, [3.3.3] propellanes, containing tricyclic structures with one of the carbon-carbon bonds common in three rings, were used in natural products, pharmaceutical compounds, and heterocyclic compounds, which were biologically important. The various multi-component reactions were applied in the synthesis of propellanes, which were highlighted throughout this review
Collapse
Affiliation(s)
- Zohreh Kheilkordi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran,
| | | | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran,
| |
Collapse
|
45
|
Koike T, Honda S, Iwamoto T. An Isolable 2,4-Diaminotetrasilabicyclo[1.1.0]but-1(3)-ene: Effects of Amino Groups at the Bridge Positions. CHEM LETT 2022. [DOI: 10.1246/cl.210595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taichi Koike
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
46
|
George GM, Wolczanski PT, MacMillan SN. Attempts at Generating Metathesis-Active Fe(IV) and Co(IV) Complexes via the Reactions of (silox)2M(THF)2, [(silox)3M][Na(THF)2] (M = Fe, Co), and Related Species with Propellanes and Triphenylboron. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Jiang X, zheng Z, Gao Y, Lan D, Xu W, Wang Z, Chen G. Synthesis of Tetrasubstituted Alkenyl Nitriles via Cyanocarbene Addition of [1.1.1]Propellane. Org Chem Front 2022. [DOI: 10.1039/d2qo00186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the metal-free synthesis of methylenecyclobutane containing tetrasubstituted alkenyl nitriles via a strain-release driven addition reaction of [1.1.1]propellane under mild conditions. Using this strategy, TMSN3 was shown to...
Collapse
|
48
|
Zare M, Moradi L. Modification of magnetic mesoporous N-doped silica nanospheres by CuO NPs: a highly efficient catalyst for the multicomponent synthesis of some propellane indeno indole derivatives. RSC Adv 2022; 12:34822-34830. [DOI: 10.1039/d2ra06221f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, magnetic mesoporous N-doped silica nanospheres decorated by CuO nanoparticles (M-MNS/CuO) were prepared and used for the green and efficient synthesis of some [3.3.3] propellane indeno[1,2-b] indole derivatives.
Collapse
Affiliation(s)
- Mina Zare
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 8731753153, Kashan, Iran
| |
Collapse
|
49
|
Zhong M, Zhang J, Lu Z, Xie Z. Diboration of alkenes and alkynes with a carborane-fused four-membered boracycle bearing an electron-precise B-B bond. Dalton Trans 2021; 50:17150-17155. [PMID: 34780587 DOI: 10.1039/d1dt03665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small ring compounds are fascinating molecules and have been used as valuable compounds in organic synthesis. In this study, a carborane-fused four-membered boracycle bearing an electron precise B-B bond, 1,2-[BBrSMe2]2-o-C2B10H10, was synthesized via the reaction of 1,2-Li2-o-carborane with B2Br4(SMe2)2. This novel boracycle can be used as a "strain-release" compound to achieve diboration of alkenes and alkynes, leading to the generation of ring-expansion products. Interestingly, when bis(trimethylsilyl) acetylene was employed, an allene-functionalized six-membered boracycle was obtained. Moreover, DFT calculations were conducted to shed light on the reaction mechanism.
Collapse
Affiliation(s)
- Minling Zhong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Zhenpin Lu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| |
Collapse
|
50
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|