1
|
Hu QQ, Chen QF, Zhang HT, Chen JY, Liao RZ, Zhang MT. Selective hydroxylation of benzene to phenol via Cu II(μ-O˙)Cu II intermediate using a nonsymmetric dicopper catalyst. Dalton Trans 2025; 54:1896-1904. [PMID: 39688361 DOI: 10.1039/d4dt02872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The one-step oxidation of benzene to phenol represents a significant and promising advancement in modern industries focused on the production of high-value-added chemical products. Nevertheless, challenges persist in achieving sufficient catalytic selectivity and preventing over-oxidation. Inspired by copper enzymes, we present a nonsymmetric dicopper complex ([CuII2(TPMAN)(μ-OH)(H2O)]3+, 1) for the selective oxidation of benzene to phenol. Utilizing H2O2 as the oxidant, complex 1 demonstrates remarkable catalytic activity (a TON of 14 000 within 29 hours) and selectivity exceeding 97%, comparable to the finest homogeneous catalyst derived from first-row transition metals. It is noteworthy that the significant substituent effect, alongside a negligible kinetic isotope effect (KIE = 1.05), radical trapping experiments, and an inconsistent standard selectivity test of the ˙OH radicals, all contradict the conventional Fenton mechanism and rebound pathway. Theoretical investigations indicate that the active CuII(μ-O˙)CuII-OH species generated through the cleavage of the O-O bond in the CuII(μ-1,1-OOH)CuI intermediate facilitates the hydroxylation of benzene via an electrophilic attack mechanism. The nonsymmetric coordination geometry is crucial in activating H2O2 and in the process of O-O bond cleavage.
Collapse
Affiliation(s)
- Qin-Qin Hu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Large TAG, Keown W, Gary JB, Chiang L, Stack TDP. Imidazolate-Stabilized Cu(III): Dioxygen to Oxides at Type 3 Copper Sites. Angew Chem Int Ed Engl 2025; 64:e202416967. [PMID: 39420537 DOI: 10.1002/anie.202416967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Imidazole ligation of metals through histidine is extensive among metalloproteins, yet the role of the imidazolate conjugate base is often neglected, despite its potential accessibility when bonded to an oxidized metal center. Using synthetic models of oxygenated tyrosinase enzymes ligated exclusively by monodentate imidazoles, we find that deprotonation of the μ2-η2:η2-peroxidodicopper(II) species triggers redox isomerization to an imidazolate-ligated bis(μ2-oxido)dicopper(III) species. Formal two-electron oxidation to Cu(III) remains biologically unprecedented, yet is effected readily by addition of base. Spectrophotometric titrations by UV/Visible/near-IR and copper K-edge X-ray absorption spectroscopies are interpreted most simply as two cooperative, 2H+ transformations in which the peroxide O-O is cleaved in the first step. Elaboration from simple imidazoles to a protected histidine extends this isomerization into an amino acid environment. The role of phenolate as a base suggests this four-electron reduction of O2 is energetically viable in a biological context and requires only two copper centers, which act as two-electron shuttles when imidazole deprotonation assists. This existential precedent of viable imidazolate intermediates invites speculation into an alternative mechanism for phenol hydroxylation not previously considered at Type 3 copper sites such as tyrosinases. Structural biological evidence suggests imidazolate ligation of copper may be more widespread than generally understood.
Collapse
Affiliation(s)
- Tao A G Large
- Department of Chemistry, Stanford University Stanford, California, 94305, USA
| | - William Keown
- Department of Chemistry, Stanford University Stanford, California, 94305, USA
| | - J Brannon Gary
- Department of Chemistry, Stanford University Stanford, California, 94305, USA
- Department of Chemistry & Biochemistry, Stephen F. Austin State University Nacogdoches, TX, 75962, USA
| | - Linus Chiang
- Department of Chemistry, Stanford University Stanford, California, 94305, USA
- Department of Chemistry, University of the Fraser Valley Abbotsford, BC, Canada
| | - T Daniel P Stack
- Department of Chemistry, Stanford University Stanford, California, 94305, USA
| |
Collapse
|
3
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
4
|
Kang P, Lin BL, Large TAG, Ainsworth J, Wasinger EC, Stack TDP. Phenolate-bonded bis(μ-oxido)-bis-copper(III) intermediates: hydroxylation and dehalogenation reactivities. Faraday Discuss 2022; 234:86-108. [PMID: 35156114 DOI: 10.1039/d1fd00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exogenous phenolate ortho-hydroxylation by copper oxidants formed from dioxygen is generally thought to occur through one of two limiting mechanisms defined by the structure of the active oxidant: an electrophilic μ-η2:η2-peroxo-bis-copper(II) species as found in the oxygenated form of the binuclear copper enzyme tyrosinase (oxyTyr), or an isomeric bis(μ-oxido)-bis-copper(III) species (O) with ligated phenolate(s) as evidenced by most synthetic systems. The characterization of the latter is limited due to their limited thermal stability. This study expands the scope of an O species with ligated phenolate(s) using N,N'-di-tert-butyl-1,3-propanediamine (DBPD), a flexible secondary diamine ligand. Oxygenation of the [(DBPD)Cu(I)]1+ complex at low temperatures (e.g., 153 K) forms a spectroscopically and structurally faithful model to oxyTyr, a side-on peroxide intermediate, which reacts with added phenolates to form a bis(μ-oxido)-bis-copper(III) species with ligated phenolates, designated as an A species. The proposed stoichiometry of A is best understood as possessing 2 rather than 1 bonded phenolate. Thermal decomposition of A results in regiospecific phenolate ortho-hydroxylation with the ortho-substituent as either a C-H or C-X (Cl, Br) group, though the halogen displacement is significantly slower. DFT and experimental studies support an electrophilic attack of an oxide ligand into the π-system of a ligated phenolate. This study supports a hydroxylation mechanism in which O-O bond cleavage of the initially formed peroxide by phenolate ligation, which precedes phenolate aromatic hydroxylation.
Collapse
Affiliation(s)
- Peng Kang
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Bo-Lin Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Tao A G Large
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Jasper Ainsworth
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Erik C Wasinger
- Department of Chemistry and Biochemistry, California State University, Chico, California 95929, USA.
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Chen CY, Tsai ML. Tris(Imidazolyl) Dicopper(I) Complex and its Reactivity to Exert Catalytic Oxidation of Sterically Hindered Phenol Substrates via a [Cu2O]2+ Core. Dalton Trans 2022; 51:2428-2443. [DOI: 10.1039/d1dt04084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu ion ligated with histidine residues is a common active site motif of various Cu-containing metalloenzymes exerting versatile catalytic oxidation reactions. Due to the scarce of structurally characterized biomimetic...
Collapse
|
6
|
Sun Y, Lin T, Zeng C, Jiang G, Zhang X, Ye F, Zhao S. A self-correcting fluorescent assay of tyrosinase based on Fe-MIL-88B-NH 2 nanozyme. Mikrochim Acta 2021; 188:158. [PMID: 33825048 DOI: 10.1007/s00604-021-04808-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A self-correcting fluorescent assay of tyrosinase (TYR) was developed by utilization of Fe-MIL-88B-NH2 as a peroxidase-like nanozyme and a capture probe. Fe-MIL-88B-NH2 nanozyme was selected as an electron donor, and the oxidization product (dopamine-o-quinone) acts as an energy acceptor. First, TYR catalyzes the oxidation of tyramine hydrochloride to dopamine and then to dopamine-o-quinone. Second, Fe-MIL-88B-NH2 with intrinsic peroxidase-like activity decomposes H2O2 to produce ·OH radicals, which further accelerate the oxidation of dopamine to dopamine-o-quinone. Excessive H2O2 and ·OH radicals reduce the interferences from ascorbic acid at the same time providing a self-correcting ability. Dopamine-o-quinone reacts with -NH2 groups on the ligand of Fe-MIL-88B-NH2 through Michael reaction which results in fluorescence quenching. Under 365-nm excitation, the fluorescence emission intensity at 452 nm gradually decreased with increasing TYR concentration varying from 0 to 10 U mL-1. The linear range is from 1 to 5 U mL-1 and the detection limit is 0.05679 U mL-1. This self-correcting fluorescent assay of tyrosinase exhibits good sensitivity and selectivity which is also successfully applied for tyrosinase inhibitor detection. Schematic representation of fluorescent assay for tyrosinase determination based on Fe-MIL-88B-NH2 nanozyme. A self-correcting fluorescent assay for tyrosinase was developed based on the Fe-MIL-88B-NH2 nanozyme.
Collapse
Affiliation(s)
- Ying Sun
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China.
| | - Cuihong Zeng
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China
| | - Gaoyan Jiang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China
| | - Xuanhan Zhang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China
| | - Fanggui Ye
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China.
| | - Shulin Zhao
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Chalkley MJ, Garrido-Barros P, Peters JC. A molecular mediator for reductive concerted proton-electron transfers
via electrocatalysis. Science 2020; 369:850-854. [DOI: 10.1126/science.abc1607] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Electrocatalytic approaches to the activation of unsaturated substrates
via reductive concerted proton-electron transfer (CPET) must overcome
competing, often kinetically dominant hydrogen evolution. We introduce the
design of a molecular mediator for electrochemically triggered reductive
CPET through the synthetic integration of a Brønsted acid and a redox
mediator. Cathodic reduction at the cobaltocenium redox mediator
substantially weakens the homolytic nitrogen-hydrogen bond strength of a
Brønsted acidic anilinium tethered to one of the cyclopentadienyl rings. The
electrochemically generated molecular mediator is demonstrated to transform
a model substrate, acetophenone, to its corresponding neutral α-radical via
a rate-determining CPET.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
8
|
Paul M, Teubner M, Grimm‐Lebsanft B, Golchert C, Meiners Y, Senft L, Keisers K, Liebhäuser P, Rösener T, Biebl F, Buchenau S, Naumova M, Murzin V, Krug R, Hoffmann A, Pietruszka J, Ivanović‐Burmazović I, Rübhausen M, Herres‐Pawlis S. Exceptional Substrate Diversity in Oxygenation Reactions Catalyzed by a Bis(μ-oxo) Copper Complex. Chemistry 2020; 26:7556-7562. [PMID: 32104930 PMCID: PMC7317579 DOI: 10.1002/chem.202000664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/26/2020] [Indexed: 12/18/2022]
Abstract
The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(μ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(μ-oxo) dicopper(III) species [Cu2 (μ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.
Collapse
Affiliation(s)
- Melanie Paul
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Melissa Teubner
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | | | - Christiane Golchert
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yannick Meiners
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Laura Senft
- Department of Chemistry and PharmacyFriedrich-Alexander-University of Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Kristina Keisers
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Patricia Liebhäuser
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Thomas Rösener
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Florian Biebl
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Sören Buchenau
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Maria Naumova
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Vadim Murzin
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Roxanne Krug
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich52425JülichGermany
| | - Alexander Hoffmann
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich52425JülichGermany
- Institute of Bio- and Geoscience (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyFriedrich-Alexander-University of Erlangen-NürnbergEgerlandstrasse 191058ErlangenGermany
| | - Michael Rübhausen
- Department of PhysicsUniversity of HamburgLuruper Chaussee 14922761HamburgGermany
| | - Sonja Herres‐Pawlis
- Department of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
9
|
|
10
|
Zhang S, Zhao L. A merged copper(I/II) cluster isolated from Glaser coupling. Nat Commun 2019; 10:4848. [PMID: 31649254 PMCID: PMC6813345 DOI: 10.1038/s41467-019-12889-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/08/2019] [Indexed: 12/04/2022] Open
Abstract
Ubiquitous copper-oxygen species are pivotal in enabling multifarious oxidation reactions in biological and chemical transformations. We herein construct a macrocycle-protected mixed-valence cluster [(tBuC≡CCuI3)-(μ2-OH)-CuII] by merging a copper acetylide cluster with a copper-oxygen moiety formed in Glaser coupling. This merged Cu(I/II) cluster shows remarkably strong oxidation capacity, whose reduction potential is among the most positive for Cu(II) and even comparable with some Cu(III) species. Consequently, the cluster exhibits high hydrogen atom transfer (HAT) reactivity with inert hydrocarbons. In contrast, the degraded [CuII-(μ2-OH)-CuII] embedded in a small macrocyclic homologue shows no HAT reactivity. Theoretical calculations indicate that the strong oxidation ability of Cu(II) in [(tBuC≡CCuI3)-(μ2-OH)-CuII] is mainly ascribed to the uneven charge distribution of Cu(I) ions in the tBuC≡CCuI3 unit because of significant [dCu(I) → π*(C≡C)] back donation. The present study on in situ formed metal clusters opens a broad prospect for mechanistic studies of Cu-based catalytic reactions. Copper-oxygen species in organometallic complexes and enzymes are involved in many oxidation reactions. Here, the authors synthesize a macrocycle-protected mixed valence Cu(I/II) cluster with an unusually strong oxidation capacity and apply it to hydrogen atom transfer reactions with inert hydrocarbons.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-Promoted Functionalization of Organic Molecules: from Biologically Relevant Cu/O 2 Model Systems to Organometallic Transformations. Chem Rev 2019; 119:2954-3031. [PMID: 30698952 DOI: 10.1021/acs.chemrev.8b00368] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is one of the most abundant and less toxic transition metals. Nature takes advantage of the bioavailability and rich redox chemistry of Cu to carry out oxygenase and oxidase organic transformations using O2 (or H2O2) as oxidant. Inspired by the reactivity of these Cu-dependent metalloenzymes, chemists have developed synthetic protocols to functionalize organic molecules under enviormentally benign conditions. Copper also promotes other transformations usually catalyzed by 4d and 5d transition metals (Pd, Pt, Rh, etc.) such as nitrene insertions or C-C and C-heteroatom coupling reactions. In this review, we summarized the most relevant research in which copper promotes or catalyzes the functionalization of organic molecules, including biological catalysis, bioinspired model systems, and organometallic reactivity. The reaction mechanisms by which these processes take place are discussed in detail.
Collapse
Affiliation(s)
- Rachel Trammell
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| | | | - Isaac Garcia-Bosch
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
12
|
Quist DA, Ehudin MA, Karlin KD. Unprecedented direct cupric-superoxo conversion to a bis- μ-oxo dicopper(III) complex and resulting oxidative activity. Inorganica Chim Acta 2019; 485:155-161. [PMID: 30988551 PMCID: PMC6461407 DOI: 10.1016/j.ica.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Investigations of small molecule copper-dioxygen chemistry can and have provided fundamental insights into enzymatic processes (e.g., copper metalloenzyme dioxygen binding geometries and their associated spectroscopy and substrate reactivity). Strategically designing copper-binding ligands has allowed for insight into properties that favor specific (di)copper-dioxygen species. Herein, the tetradentate tripodal TMPA-based ligand (TMPA = tris((2-pyridyl)methyl)amine) possessing a methoxy moiety in the 6-pyridyl position on one arm (OCH3TMPA) was investigated. This system allows for a trigonal bipyramidal copper(II) geometry as shown by the UV-vis and EPR spectra of the cupric complex [(OCH3TMPA)CuII(OH2)](ClO4)2. Cyclic voltammetry experiments determined the reduction potential of this copper(II) species to be -0.35 V vs. Fc+/0 in acetonitrile, similar to other TMPA-derivatives bearing sterically bulky 6-pyridyl substituents. The copper-dioxygen reactivity is also analogous to these TMPA-derivatives, affording a bis-μ-oxo dicopper(III) complex, [{(OCH3TMPA)CuIII}2(O2-)2]2+, upon oxygenation of the copper(I) complex [(OCH3TMPA)CuI](B(C6F5)4) at cryogenic temperatures in 2-methyltetrahydrofuran. This highly reactive intermediate is capable of oxidizing phenolic substrates through a net hydrogen atom abstraction. However, after bubbling of the precursor copper(I) complex with dioxygen at very low temperatures (-135 °C), a cupric superoxide species, [(OCH3TMPA)CuII(O2 •-)]+, is initially formed before slowly converting to [{(OCH3TMPA)CuIII}2(O2-)2]2+. This appears to be the first instance of the direct conversion of a cupric superoxide to a bis-μ-oxo dicopper(III) species in copper(I)-dioxygen chemistry.
Collapse
Affiliation(s)
- David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
13
|
Keown W, Large TAG, Chiang L, Wasinger EC, Stack TDP. Exclusive imidazole ligation to CuIII2O 2 and Cu IIICuII2O 2 cores. Chem Commun (Camb) 2019; 55:7390-7393. [DOI: 10.1039/c9cc02982f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Direct oxygenation of imidazole-ligated Cu(i) generates dinuclear and trinuclear Cu(iii) species with exclusive imidazole ligation.
Collapse
Affiliation(s)
- William Keown
- Department of Chemistry
- Stanford University
- Stanford
- USA
| | | | - Linus Chiang
- Department of Chemistry
- Stanford University
- Stanford
- USA
- Department of Chemistry
| | - Erik C. Wasinger
- Department of Chemistry and Biochemistry
- California State University
- Chico
- USA
| | | |
Collapse
|
14
|
Brazeau SEN, Norwine EE, Hannigan SF, Orth N, Ivanović-Burmazović I, Rukser D, Biebl F, Grimm-Lebsanft B, Praedel G, Teubner M, Rübhausen M, Liebhäuser P, Rösener T, Stanek J, Hoffmann A, Herres-Pawlis S, Doerrer LH. Dual oxidase/oxygenase reactivity and resonance Raman spectra of {Cu3O2} moiety with perfluoro-t-butoxide ligands. Dalton Trans 2019; 48:6899-6909. [DOI: 10.1039/c9dt00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mechanism for the formation of O-donor trinuclear {Cu3O2} moiety is reported.
Collapse
Affiliation(s)
| | | | | | - Nicole Orth
- Department Chemie und Pharmazie
- Lehrstuhl für Bioanorganische Chemie
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie
- Lehrstuhl für Bioanorganische Chemie
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Dieter Rukser
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Florian Biebl
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Gregor Praedel
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Melissa Teubner
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Thomas Rösener
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Julia Stanek
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | | |
Collapse
|
15
|
Matoba Y, Kihara S, Bando N, Yoshitsu H, Sakaguchi M, Kayama K, Yanagisawa S, Ogura T, Sugiyama M. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. PLoS Biol 2018; 16:e3000077. [PMID: 30596633 PMCID: PMC6312201 DOI: 10.1371/journal.pbio.3000077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Tyrosinase (EC 1.14.18.1), a copper-containing monooxygenase, catalyzes the conversion of phenol to the corresponding ortho-quinone. The Streptomyces tyrosinase is generated as a complex with a “caddie” protein that facilitates the transport of two copper ions into the active center. In our previous study, the Tyr98 residue in the caddie protein, which is accommodated in the pocket of active center of tyrosinase, has been found to be converted to a reactive quinone through the formations of the μ-η2:η2-peroxo-dicopper(II) and Cu(II)-dopasemiquinone intermediates. Until now—despite extensive studies for the tyrosinase reaction based on the crystallographic analysis, low-molecular-weight models, and computer simulations—the catalytic mechanism has been unable to be made clear at an atomic level. To make the catalytic mechanism of tyrosinase clear, in the present study, the cryo-trapped crystal structures were determined at very high resolutions (1.16–1.70 Å). The structures suggest the existence of an important step for the tyrosinase reaction that has not yet been found: that is, the hydroxylation reaction is triggered by the movement of CuA, which induces the syn-to-anti rearrangement of the copper ligands after the formation of μ-η2:η2-peroxo-dicopper(II) core. By the rearrangement, the hydroxyl group of the substrate is placed in an equatorial position, allowing the electrophilic attack to the aromatic ring by the Cu2O2 oxidant. The cryo-trapped crystal structures of tyrosinase in a complex with its “caddie” protein reveal structural insight into the catalytic mechanism of tyrosinase, the rate-limiting enzyme in the production of melanin. Tyrosinase is an enzyme that controls a rate-limiting reaction of melanogenesis: it catalyzes the conversion of a phenol to the corresponding ortho-quinone. Streptomyces tyrosinase is formed as a complex, with a “caddie” protein that assists with the transport of the two copper ions into the enzyme’s active center. In our previous study, we showed that the Tyr98 residue in the caddie protein, which is accommodated in the pocket of active center of tyrosinase, is converted to a reactive quinone through the formations of the μ-η2:η2-peroxo-dicopper(II) and Cu(II)-dopasemiquinone intermediates. Until now—despite extensive studies of the tyrosinase reaction based on the crystallographic analysis, low-molecular-weight model systems, and computer simulations—the catalytic mechanism was unclear at an atomic level. To understand the catalytic mechanism of tyrosinase in detail, we determined the cryo-trapped crystal structures at very high resolutions, which suggest an important new step for the tyrosinase reaction: the hydroxylation reaction triggered by the movement of CuA, which induces the syn-to-anti rearrangement of the copper ligands after the formation of μ-η2:η2-peroxo-dicopper(II) core.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (YM); (MS)
| | - Shogo Kihara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohiko Bando
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironari Yoshitsu
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Sakaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Kure’e Kayama
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Sachiko Yanagisawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (YM); (MS)
| |
Collapse
|
16
|
Magallón C, Serrano-Plana J, Roldán-Gómez S, Ribas X, Costas M, Company A. Preparation of a coordinatively saturated μ-η2:η2-peroxodicopper(II) compound. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Shen Y, Zhou Y, Jiang L, Ding G, Luo L, Zhang Z, Xie X. Selective aerobic oxidation of benzylic amines to aryl nitriles catalyzed by CuBr2/N-methyl imidazole. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Moegling J, Hoffmann A, Thomas F, Orth N, Liebhäuser P, Herber U, Rampmaier R, Stanek J, Fink G, Ivanović-Burmazović I, Herres-Pawlis S. Designed To React: Terminal Copper Nitrenes and Their Application in Catalytic C-H Aminations. Angew Chem Int Ed Engl 2018; 57:9154-9159. [PMID: 29734490 DOI: 10.1002/anie.201713171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/10/2018] [Indexed: 12/11/2022]
Abstract
Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper-catalysed direct C-H amination and nitrene transfer. Novel perfluoroalkyl-pyrazolyl- and pyridinyl-containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO2 tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo-UHR-ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C-H amination of cyclohexane and toluene and the aziridination of styrenes.
Collapse
Affiliation(s)
- Julian Moegling
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Fabian Thomas
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Nicole Orth
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ulrich Herber
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Robert Rampmaier
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Julia Stanek
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Gerhard Fink
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
19
|
Moegling J, Hoffmann A, Thomas F, Orth N, Liebhäuser P, Herber U, Rampmaier R, Stanek J, Fink G, Ivanović-Burmazović I, Herres-Pawlis S. Maßgeschneiderte terminale Kupfernitrene für katalytische C-H-Aminierungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Julian Moegling
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Alexander Hoffmann
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Fabian Thomas
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Nicole Orth
- Department Chemie und Pharmazie; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 1 91058 Erlangen Deutschland
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Ulrich Herber
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Robert Rampmaier
- Department für Chemie und Pharmazie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 München Deutschland
| | - Julia Stanek
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Gerhard Fink
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 1 91058 Erlangen Deutschland
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
20
|
Yu X, Chau MC, Tang WK, Siu CK, Yao ZP. Self-Assembled Binuclear Cu(II)–Histidine Complex for Absolute Configuration and Enantiomeric Excess Determination of Naproxen by Tandem Mass Spectrometry. Anal Chem 2018; 90:4089-4097. [DOI: 10.1021/acs.analchem.7b05407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangying Yu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Man-Chu Chau
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin, China
| |
Collapse
|
21
|
Liebhäuser P, Keisers K, Hoffmann A, Schnappinger T, Sommer I, Thoma A, Wilfer C, Schoch R, Stührenberg K, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S. Record Broken: A Copper Peroxide Complex with Enhanced Stability and Faster Hydroxylation Catalysis. Chemistry 2017; 23:12171-12183. [PMID: 28425134 DOI: 10.1002/chem.201700887] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 11/08/2022]
Abstract
Tyrosinase model systems pinpoint pathways to translating Nature's synthetic abilities for useful synthetic catalysts. Mostly, they use N-donor ligands which mimic the histidine residues coordinating the two copper centres. Copper complexes with bis(pyrazolyl)methanes with pyridinyl or imidazolyl moieties are already reported as excellent tyrosinase models. Substitution of the pyridinyl donor results in the new ligand HC(3-tBuPz)2 (4-CO2 MePy) which stabilises a room-temperature stable μ-η2 :η2 -peroxide dicopper(II) species upon oxygenation. It reveals highly efficient catalytic activity as it hydroxylates 8-hydroxyquinoline in high yields (TONs of up to 20) and much faster than all other model systems (max. conversion within 7.5 min). Stoichiometric reactions with para-substituted sodium phenolates show saturation kinetics which are nearly linear for electron-rich substrates. The resulting Hammett correlation proves the electrophilic aromatic substitution mechanism. Furthermore, density functional theory (DFT) calculations elucidate the influence of the substituent at the pyridinyl donor: the carboxymethyl group adjusts the basicity and nucleophilicity without additional steric demand. This substitution opens up new pathways in reactivity tuning.
Collapse
Affiliation(s)
- Patricia Liebhäuser
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Kristina Keisers
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Schnappinger
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Isabella Sommer
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Anne Thoma
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Claudia Wilfer
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| | - Roland Schoch
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Kai Stührenberg
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Matthias Bauer
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany
| | - Maximilian Dürr
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Sonja Herres-Pawlis
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
22
|
Strassl F, Grimm-Lebsanft B, Rukser D, Biebl F, Biednov M, Brett C, Timmermann R, Metz F, Hoffmann A, Rübhausen M, Herres-Pawlis S. Oxygen Activation by Copper Complexes with an Aromatic Bis(guanidine) Ligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Strassl
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Benjamin Grimm-Lebsanft
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Dieter Rukser
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Florian Biebl
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Mykola Biednov
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Calvin Brett
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Riccardo Timmermann
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Fabian Metz
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik; Universität Hamburg und Center for Free Electron Laser Science; Notkestraße 85 22607 Hamburg Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
23
|
Yang J, Zhang X, Zhu Y, Lenczowski E, Tian Y, Yang J, Zhang C, Hardt M, Qiao C, Tanzi RE, Moore A, Ye H, Ran C. The double-edged role of copper in the fate of amyloid beta in the presence of anti-oxidants. Chem Sci 2017; 8:6155-6164. [PMID: 28989646 PMCID: PMC5627602 DOI: 10.1039/c7sc01787a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
The biological fate of amyloid beta (Aβ) species is a fundamental question in Alzheimer's disease (AD) pathogenesis. The competition between clearance and aggregation of Aβs is critical for the onset of AD. Copper has been widely considered to be an inducer of harmful crosslinking of Aβs, and an important triggering factor for the onset of AD. In this report, however, we present data to show that copper can also be an inducer of Aβ degradation in the presence of a large excess of well-known intrinsic (such as dopamine) or extrinsic (such as vitamin C) anti-oxidants. The degraded fragments were identified using SDS-Page gels, and validated via nanoLC-MS/MS. A tentative mechanism for the degradation was proposed and validated with model peptides. In addition, we performed electrophysiological analysis to investigate the synaptic functions in brain slices, and found that in the presence of a significant excess of vitamin C, Cu(ii) could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Collectively, our evidence strongly indicated that a proper combination of copper and anti-oxidants might have a positive effect on the prevention of AD. This double-edged function of copper in AD has been largely overlooked in the past. We believe that our report is very important for fully understanding the function of copper in AD pathology.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Xueli Zhang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Yiying Zhu
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Emily Lenczowski
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Yanli Tian
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Department of Parasitology , Zhongshan School of Medicine , Sun Yat-Sen University , Guangzhou , 510080 , China
| | - Jian Yang
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA . .,Center for Drug Discovery , School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , China
| | - Can Zhang
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Markus Hardt
- Department of Applied Oral Sciences , The Forsyth Institute , Cambridge , MA 02142 , USA
| | - Chunhua Qiao
- College of Pharmaceutical Sciences , Soochow University , Suzhou , 215006 , China
| | - Rudolph E Tanzi
- Alzheimer's Disease Research Unit , Department of Neurology , Massachusetts General Hospital , Building 114 , Charlestown , Massachusetts 02129 , USA
| | - Anna Moore
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| | - Hui Ye
- Department of Biology , Loyola University Chicago , Chicago , IL 60660 , USA .
| | - Chongzhao Ran
- Molecular Imaging Laboratory , MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging , Department of Radiology , Massachusetts General Hospital , Harvard Medical School , Room 2301, Building 149, Charlestown , Boston , Massachusetts 02129 , USA .
| |
Collapse
|
24
|
Hannigan SF, Arnoff AI, Neville SE, Lum JS, Golen JA, Rheingold AL, Orth N, Ivanović‐Burmazović I, Liebhäuser P, Rösener T, Stanek J, Hoffmann A, Herres‐Pawlis S, Doerrer LH. On the Way to a Trisanionic {Cu
3
O
2
} Core for Oxidase Catalysis: Evidence of an Asymmetric Trinuclear Precursor Stabilized by Perfluoropinacolate Ligands. Chemistry 2017; 23:8212-8224. [DOI: 10.1002/chem.201605926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Steven F. Hannigan
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Amanda I. Arnoff
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - Sarah E. Neville
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - June S. Lum
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| | - James A. Golen
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Orth
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Lehrstuhl für Bioanorganische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Thomas Rösener
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Julia Stanek
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Alexander Hoffmann
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Sonja Herres‐Pawlis
- Institut für Anorganische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Linda H. Doerrer
- Department of Chemistry Boston University 590 Commonwealth Avenue Boston MA 02215 USA
| |
Collapse
|
25
|
Goswami VE, Walli A, Förster M, Dechert S, Demeshko S, Holthausen MC, Meyer F. Acid/base triggered interconversion of μ-η 2:η 2-peroxido and bis(μ-oxido) dicopper intermediates capped by proton-responsive ligands. Chem Sci 2017; 8:3031-3037. [PMID: 28451371 PMCID: PMC5380878 DOI: 10.1039/c6sc04820j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
CuII2(μ-η2:η2-peroxido) and CuIII2(μ-oxido)2 cores represent key intermediates in copper/dioxygen chemistry, and they are mechanistically important for biological hydroxylation and oxidation reactions mediated by dinuclear (type III) copper metalloenzymes. While the exact nature of the active species in different enzymes is still under debate, shifting equilibria between Cu x /O2 species is increasingly recognized as a means of switching between distinct reactivity patterns of these intermediates. Herein we report comprehensive spectroscopic, crystallographic and computational analysis of a family of synthetic CuII2(μ-η2:η2-peroxido) and CuIII2(μ-oxido)2 dicopper complexes with a bis(oxazoline) (BOX) capping ligand. In particular, we demonstrate that a reversible peroxido/bis(μ-oxido) interconversion of the [Cu2O2] core can be triggered by peripheral (de)protonation events on the ligand backbone. As the copper ions in the enzymes are typically supported by histidine imidazoles that offer a backside N atom amenable to potential (de)protonation, it is well conceivable that the shifting of equilibria between the [Cu2O2] species in response to changes in local pH is biologically relevant.
Collapse
Affiliation(s)
- V E Goswami
- Institut für Anorganische Chemie , Georg-August-Universität Göttingen , Tammannstraße 4 , 37077 Göttingen , Germany .
| | - A Walli
- Institut für Anorganische Chemie , Georg-August-Universität Göttingen , Tammannstraße 4 , 37077 Göttingen , Germany .
| | - M Förster
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt am Main , Germany .
| | - S Dechert
- Institut für Anorganische Chemie , Georg-August-Universität Göttingen , Tammannstraße 4 , 37077 Göttingen , Germany .
| | - S Demeshko
- Institut für Anorganische Chemie , Georg-August-Universität Göttingen , Tammannstraße 4 , 37077 Göttingen , Germany .
| | - M C Holthausen
- Institut für Anorganische und Analytische Chemie , Goethe-Universität Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt am Main , Germany .
| | - F Meyer
- Institut für Anorganische Chemie , Georg-August-Universität Göttingen , Tammannstraße 4 , 37077 Göttingen , Germany .
| |
Collapse
|
26
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
27
|
Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem Rev 2017; 117:2059-2107. [PMID: 28103018 PMCID: PMC5963733 DOI: 10.1021/acs.chemrev.6b00636] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A longstanding research goal has been to understand the nature and role of copper-oxygen intermediates within copper-containing enzymes and abiological catalysts. Synthetic chemistry has played a pivotal role in highlighting the viability of proposed intermediates and expanding the library of known copper-oxygen cores. In addition to the number of new complexes that have been synthesized since the previous reviews on this topic in this journal (Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013-1046 and Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076), the field has seen significant expansion in the (1) range of cores synthesized and characterized, (2) amount of mechanistic work performed, particularly in the area of organic substrate oxidation, and (3) use of computational methods for both the corroboration and prediction of proposed intermediates. The scope of this review has been limited to well-characterized examples of copper-oxygen species but seeks to provide a thorough picture of the spectroscopic characteristics and reactivity trends of the copper-oxygen cores discussed.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L Gagnon
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin D Neisen
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andrew D Spaeth
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M Yee
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William B Tolman
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota , 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
High-valent copper in biomimetic and biological oxidations. J Biol Inorg Chem 2016; 22:289-305. [PMID: 27909921 DOI: 10.1007/s00775-016-1420-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.
Collapse
|
29
|
Xu B, Hartigan EM, Feula G, Huang Z, Lumb JP, Arndtsen BA. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Boran Xu
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Elizabeth M. Hartigan
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Giancarlo Feula
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Zheng Huang
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Jean-Philip Lumb
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
30
|
Xu B, Hartigan EM, Feula G, Huang Z, Lumb JP, Arndtsen BA. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion. Angew Chem Int Ed Engl 2016; 55:15802-15806. [PMID: 27873434 DOI: 10.1002/anie.201609255] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Boran Xu
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Elizabeth M. Hartigan
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Giancarlo Feula
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Zheng Huang
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Jean-Philip Lumb
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Bruce A. Arndtsen
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|