1
|
Song S, Luo C, Wang G, Guo J, Chen Z, Li J. Photo-induced difluoroalkylation/cyclization of alkyne ketones: a novel strategy to access difluoroalkyl thiofavones. Chem Commun (Camb) 2024; 60:11323-11326. [PMID: 39297505 DOI: 10.1039/d4cc03843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A photo-induced electron donor-acceptor (EDA) complex enabled tandem reaction of alkyne ketones via a radical difluoroalkylation/cyclization cascade sequence is reported. The EDA complex plays a key role, and the C-Br bond homolysis process may also be involved for this transformation. Varieties of difluoroalkyl-substituted thiofavones can be smoothly assembled in moderate to good yields under photocatalyst-, metal- and oxidant-free conditions, thus offering potential applications for pharmaceutical research.
Collapse
Affiliation(s)
- Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Can Luo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Guan Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Jingjing Guo
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Zhi Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
2
|
Chen D, Huang L, Liang M, Chen X, Cao D, Xiao P, Ni C, Hu J. 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me 3SiCF 2H/Me 3SiCF 3 Facilitated by CsF/18-Crown-6. Molecules 2024; 29:2905. [PMID: 38930971 PMCID: PMC11206660 DOI: 10.3390/molecules29122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalkylation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluoromethyl products in good yields. The products can then be further converted into fluoroalkylated para-quinone methides and α-fluoroalkylated diarylmethanes.
Collapse
Affiliation(s)
- Dingben Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ling Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Mingyu Liang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaojing Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Dongdong Cao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Pan Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
3
|
Yang K, Yin D, Sun Y, Yang Z, Li Y, Xu L, Du Y. Synthesis of Fluoromethylated Chromones and Their Heteroatom Analogues via Sodium Fluoromethanesulfinate-Enabled Direct Fluoromethylation. J Org Chem 2024; 89:565-575. [PMID: 38115769 DOI: 10.1021/acs.joc.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An array of biologically interesting tri/difluoromethylated chromones and their heteroatom analogues were conveniently synthesized from the reaction of chromones and their heteroatom analogues with CF3SO2Na or HCF2SO2Na in the presence of tert-butyl hydroperoxide under mild conditions. A mechanistic pathway involving the generation of the electrophilic tri/difluoromethyl radical, followed with the radical substitution of chromones and their heteroatom analogues, was postulated.
Collapse
Affiliation(s)
- Kaiyue Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Dongxue Yin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Zelentsova MV, Sandulenko IV, Ambartsumyan AA, Danshina AA, Moiseev SK. C(21)-Di- and monofluorinated scaffold for thevinol/orvinol-based opioid receptor ligands. Org Biomol Chem 2023; 21:9091-9100. [PMID: 37947030 DOI: 10.1039/d3ob01577g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Defluorination of the readily available 21,21,21-trifluorothevinone (7) with Mg + Me3SiCl allows the preparation of 21,21-difluorothevinone (10) and 21-fluorothevinone (11), which can be used as the starting compounds for syntheses of 21,21-difluoro- and 21-fluoro-substituted relatives of thevinols and orvinols. Taken together, thevinols and orvinols are well known to constitute a family of the highly potent 4,5α-epoxy-18,19-endo-(etheno/ethano)morphinan-type opioid receptor ligands. Alternatively, 10 and 18,19-dihydro-21,21-difluorothevinone (13) have been synthesized by the addition of Me3SiCHF2 to the carbonyl function of thevinal (12) and dihydrothevinal (18) followed by oxidation of the intermediate C(21)-difluorinated secondary alcohols. 21,21-Difluorothevinols were obtained both by the addition of RMgX or RLi to the 21,21-difluoroketones and by the addition of Me3SiCHF2 to the carbonyl function of the non-fluorinated 18,19-endo-(etheno/ethano)morphinan ketones. In general, these addition reactions have been shown to result in mixtures of the C(21)-epimeric alcohols. However, in some cases, the reactions proceeded with high stereoselectivity allowing the isolation of one of the epimeric alcohols by conventional crystallization. Preparations of the 21,21-difluorothevinols bearing an allyl, cyclopropylmethyl, or cyclobutylmethyl group at the N(17) nitrogen are also reported.
Collapse
Affiliation(s)
- Maria V Zelentsova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Irina V Sandulenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Asmik A Ambartsumyan
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| | - Anastasia A Danshina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Sergey K Moiseev
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, bld. 1, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
6
|
Yang J, Gui J, Mu M, Liu S, Li J, Ren J, Wang Z. Synthesis of Difluoromethylated Carbinols via a HFIP-Promoted Hydroxydifluoromethylation of Aniline, Indole, and Pyrrole Derivatives with Difluoroacetaldehyde Ethyl Hemiacetal. J Org Chem 2023; 88:4790-4798. [PMID: 36989386 DOI: 10.1021/acs.joc.2c02812] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A hexafluoroisopropanol (HFIP)-promoted hydroxydifluoromethylation of aniline, indole, and pyrrole derivatives with difluoroacetaldehyde ethyl hemiacetal has been developed. This protocol provides a facile and straightforward approach to access diverse difluoromethylated carbinols in good to excellent yields under mild conditions. Furthermore, gram-scale and synthetic derivatization experiments have also been demonstrated.
Collapse
Affiliation(s)
- Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Miaomiao Mu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Saimei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| |
Collapse
|
7
|
Chang W, Lei Z, Yang Y, Dai S, Feng J, Yang J, Zhang Z. Tandem Reaction of Azide with Isonitrile and TMSC nF m(H): Access to N-Functionalized C-Fluoroalkyl Amidine. Org Lett 2023; 25:1392-1396. [PMID: 36861965 DOI: 10.1021/acs.orglett.3c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
N-Functionalized C-fluoroalkyl amidines are attracting great attention due to their potential in pharmaceuticals. Herein, we report a Pd-catalyzed tandem reaction of azide with isonitrile and fluoroalkylsilane via a carbodiimide intermediate, providing facile access to N-functionalized C-fluoroalkyl amidines. This protocol offers an approach toward not only N-sulphonyl, N-phosphoryl, N-acyl, and N-aryl but also C-CF3, C2F5, and CF2H amidines with a broad substrate scope. The accomplishment of further transformations and Celebrex derivatization in gram scale and biological evaluation reveals the important utility of this strategy.
Collapse
Affiliation(s)
- Wenxu Chang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zizhen Lei
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Yi Yang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Sibo Dai
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jiyao Feng
- College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Jun Yang
- College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenhua Zhang
- College of Science, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
8
|
Sun M, Wei L, Li C. Regio- and Enantioselective Allylic Cyanomethylation by Synergistic Rhodium and Silane Catalysis. J Am Chem Soc 2023; 145:3897-3902. [PMID: 36752690 DOI: 10.1021/jacs.3c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Rh/silane-cocatalyzed regio- and enantioselctive allylic cyanomethylation with inert acetonitrile directly has been developed. Addition of a catalytic amount neutral silane reagent as an acetonitrile anion carrier is essential for the success of this reaction. The synthesis of mono- and bis-allylation products can be switched by adjusting the size of substituents on the silane, ligands, and temperature. Chiral homoallylic nitriles could be synthesized in above 20:1 branch/linear ratio, up to 98% yield and >99% ee.
Collapse
Affiliation(s)
- Minghe Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Linsheng Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Zhang FX, Lin JH, Xiao JC. Difluoromethylsulfonyl Imidazolium Salt for Difluoromethylation of Alkenes. Org Lett 2022; 24:7611-7616. [PMID: 36201292 DOI: 10.1021/acs.orglett.2c03073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe the design and synthesis of a difluoromethylsulfonyl imidazolium salt, which can act as a radical difluoromethylation reagent to achieve the challenging amino- and oxy-difluoromethylation of alkenes. Notably, the three steps for the synthesis of the imidazolium salt do not require any tedious distillation or column chromatography purification process, and the amino- and oxy-difluoromethylation paths are simply determined by the selection of reaction solvents.
Collapse
Affiliation(s)
- Feng-Xu Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
10
|
Wang H, Huang Y, Wu Q, Lu J, Xu YL, Chen YY. Visible-Light-Promoted bis(Difluoromethylation)/Cyclization of 2-Vinyloxy Arylalkynes to Prepare Benzofuran Derivatives. J Org Chem 2022; 87:13288-13299. [PMID: 36166821 DOI: 10.1021/acs.joc.2c01938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-promoted difluoromethylation/cyclization of 2-vinyloxy arylalkynes was developed, providing a variety of bis(difluoromethyl)-substituted benzofurans in moderate to good yields. A plausible mechanism involving difluoromethyl radical cascade cyclization and solvent-promoted ionic addition was proposed. This protocol has the advantages of having mild reaction conditions, simple operation, and good functional group tolerance.
Collapse
Affiliation(s)
- Huan Wang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yao Huang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Qiaoyan Wu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Jun Lu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Li Xu
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan-Yan Chen
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
11
|
Kim S, Hwang KH, Park HG, Kwak J, Lee H, Kim H. Radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Commun Chem 2022; 5:96. [PMID: 36697867 PMCID: PMC9814520 DOI: 10.1038/s42004-022-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023] Open
Abstract
Due to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C-C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.
Collapse
Affiliation(s)
- Seonyoung Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Keon Ha Hwang
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Hyeong Gyu Park
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Jaesung Kwak
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyuk Lee
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyunwoo Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
12
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202203947. [PMID: 35438836 PMCID: PMC9325378 DOI: 10.1002/anie.202203947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Anionic hypercoordinated silicates with weak donors were proposed as key intermediates in numerous silicon-based reactions. However, their short-lived nature rendered even spectroscopic observations highly challenging. Here, we characterize hypercoordinated silicon anions, including the first bromido-, iodido-, formato-, acetato-, triflato- and sulfato-silicates. This is enabled by a new, donor-free polymeric form of Lewis superacidic bis(perchlorocatecholato)silane 1. Spectroscopic, structural, and computational insights allow a reassessment of Gutmann's empirical rules for the role of silicon hypercoordination in synthesis and catalysis. The electronic perturbations of 1 exerted on the bound anions indicate pronounced substrate activation.
Collapse
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Deborah Hartmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sonja Sailer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Rezisha Maskey
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Marcel Schorpp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
13
|
Sheldon DJ, Crimmin MR. Repurposing of F-gases: challenges and opportunities in fluorine chemistry. Chem Soc Rev 2022; 51:4977-4995. [PMID: 35616085 PMCID: PMC9207706 DOI: 10.1039/d1cs01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/24/2022]
Abstract
Fluorinated gases (F-gases) are routinely employed as refrigerants, blowing agents, and electrical insulators. These volatile compounds are potent greenhouse gases and consequently their release to the environment creates a significant contribution to global warming. This review article seeks to summarise: (i) the current applications of F-gases, (ii) the environmental issues caused by F-gases, (iii) current methods of destruction of F-gases and (iv) recent work in the field towards the chemical repurposing of F-gases. There is a great opportunity to tackle the environmental and sustainability issues created by F-gases by developing reactions that repurpose these molecules.
Collapse
Affiliation(s)
- Daniel J Sheldon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | - Mark R Crimmin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| |
Collapse
|
14
|
Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Synthesis and Characterization of Hypercoordinated Silicon Anions: Catching Intermediates of Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Ansmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sonja Sailer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Rezisha Maskey
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcel Schorpp
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
15
|
Allylic substitution reactions with fluorinated nucleophiles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Indium-mediated 1,2-addition of iododifluoromethyl ketones with α, β-unsaturated ketones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Tiessen N, Keßler M, Neumann B, Stammler HG, Hoge B. Oxidative Additions of C-F Bonds to the Silanide Anion [Si(C 2 F 5 ) 3 ] . Angew Chem Int Ed Engl 2022; 61:e202116468. [PMID: 35107847 PMCID: PMC9310575 DOI: 10.1002/anie.202116468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/07/2023]
Abstract
Compounds exhibiting main group elements in low oxidation states were found to mimic the reactivity of transition metal complexes. Like the latter, such main group species show a proclivity of changing their oxidation state as well as their coordination number by +2, therefore fulfilling the requirements for oxidative additions. Prominent examples of such main group compounds that undergo oxidative additions with organohalides R-X (R=alkyl, aryl, X=F, Cl, Br, I) are carbenes and their higher congeners. Aluminyl anions, which like carbenes and silylenes oxidatively add to strong σ-bonds in R-X species, have been recently discovered. We present the first anion based upon a Group 14 element, namely the tris(pentafluoroethyl)silanide anion, [Si(C2 F5 )3 ]- , which is capable of oxidative additions towards C-F bonds. This enables the isolation of non-chelated tetraorganofluorosilicate salts, which to the best of our knowledge had only been observed as reactive intermediates before.
Collapse
Affiliation(s)
- Natalia Tiessen
- Universität Bielefeld, Fakultät für Chemie, Centrum für Molekulare Materialien, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Mira Keßler
- Universität Bielefeld, Fakultät für Chemie, Centrum für Molekulare Materialien, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Universität Bielefeld, Fakultät für Chemie, Centrum für Molekulare Materialien, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Universität Bielefeld, Fakultät für Chemie, Centrum für Molekulare Materialien, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Berthold Hoge
- Universität Bielefeld, Fakultät für Chemie, Centrum für Molekulare Materialien, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
18
|
Tiessen N, Keßler M, Neumann B, Stammler H, Hoge B. Oxidative Addition von C−F‐Bindungen an das Silanid‐Anion [Si(C
2
F
5
)
3
]
−. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Natalia Tiessen
- Universität Bielefeld Fakultät für Chemie Centrum für Molekulare Materialien Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Mira Keßler
- Universität Bielefeld Fakultät für Chemie Centrum für Molekulare Materialien Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Universität Bielefeld Fakultät für Chemie Centrum für Molekulare Materialien Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Universität Bielefeld Fakultät für Chemie Centrum für Molekulare Materialien Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Berthold Hoge
- Universität Bielefeld Fakultät für Chemie Centrum für Molekulare Materialien Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
19
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
20
|
Wu Z, Xu X, Wang J, Dong G. Carbonyl 1,2-transposition through triflate-mediated α-amination. Science 2021; 374:734-740. [PMID: 34735246 DOI: 10.1126/science.abl7854] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhao Wu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xiaolong Xu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Wang X, Ye W, Kong T, Wang C, Ni C, Hu J. Divergent S- and C-Difluoromethylation of 2-Substituted Benzothiazoles. Org Lett 2021; 23:8554-8558. [PMID: 34669403 DOI: 10.1021/acs.orglett.1c03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two unprecedented and complementary synthetic strategies for S- and C-difluoromethylation of 2-substituted benzothiazoles have been developed by taking advantage of the remarkably different reactivity of CF2H- and 2-PySO2CF2- nucleophiles. A variety of structurally diverse difluoromethyl 2-isocyanophenyl sulfides and 2-difluoromethylated benzothiazoles were synthesized with these two new synthetic protocols.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wenchao Ye
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Taige Kong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chenlu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
22
|
Zhao H, Lu C, Herbert S, Zhang W, Shen Q. Difluoromethylation of Alkyl Bromides and Iodides with TMSCF 2H. J Org Chem 2021; 86:2854-2865. [PMID: 33464896 DOI: 10.1021/acs.joc.0c02783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe, for the first time, two protocols for direct difluoromethylation of unactivated alkyl bromides and iodides. Reactions of alkyl iodides with TMSCF2H were mediated by a copper catalyst using CsF as the activator, while reactions of less reactive alkyl bromides required a combination of palladium and a stoichiometric amount of CuI as the catalysts. Preliminary mechanistic studies of the synergistic Pd/Cu-catalyzed difluoromethylation of alkyl bromides suggest that it proceeds likely via a Pd(I)/Pd(III) catalytic cycle.
Collapse
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Changhui Lu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Simon Herbert
- Bayer AG, Research & Development, Pharmaceuticals, 178 Müllerstraße, Berlin 13342, Germany
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
24
|
Miele M, Pace V. (Difluoromethyl)trimethylsilane (TMSCHF2): A Useful Difluoromethylating Nucleophilic Source. Aust J Chem 2021. [DOI: 10.1071/ch21045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020; 60:4300-4306. [DOI: 10.1002/anie.202014587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
26
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
27
|
Difluoroalkylation of alkenes promoted by noncovalent interaction: A general method for the synthesis of difluoro-contained dihydrobenzofurans and indolins. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Yokawa A, Ito S. Convenient Preparation and Structure Determination of Air- and Moisture-Tolerant Difluoromethylborates. Chem Asian J 2020; 15:3432-3436. [PMID: 32761767 DOI: 10.1002/asia.202000854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022]
Abstract
Convenient and reliable synthetic methods for difluoromethylborates have been established. The intermediary generated difluoromethylsilicate species from TMSCF2 H (TMS=trimethylsilyl) and potassium tert-butoxide were allowed to react with pinBPh (Me4 C2 O2 BPh) in the presence of 18-crown-6 to give the corresponding borate compound [pinB(Ph)CF2 H]- K+ (18-crown-6) as an air- and moisture-tolerant solid. The unambiguously determined crystal structure of [pinB(Ph)CF2 H]- K+ (18-crown-6) revealed that the difluoromethylborate unit partially coordinated on the potassium ion. Reaction of [pinB(Ph)CF2 H]- K+ (18-crown-6) with potassium difluoride (KHF2 ) in acetic acid enabled substitution of the pinacol unit and phenyl group with fluorides, and gave (difluoromethyl)trifluoroborate [F3 BCF2 H]- K+ (18-crown-6) in a good yield. The crystal structure of air- and moisture-tolerant [F3 BCF2 H]- K+ (18-crown-6), which would be a promising reagent for synthesis of various difluoromethylboron species, showed a polyrotaxane-like polymeric structure based on the K⋅⋅⋅F interactions between the K+ (18-crown-6), CF2 H, and BF3 units.
Collapse
Affiliation(s)
- Akitaka Yokawa
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Shigekazu Ito
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
29
|
Chen H, Yang Y, Wang L, Niu Y, Guo M, Ren X, Zhao W, Tang X, Wang G. Slicing and Splicing of Bromodifluoro- N-arylacetamides: Dearomatization and Difunctionalization of Pyridines. Org Lett 2020; 22:6610-6616. [PMID: 32806214 DOI: 10.1021/acs.orglett.0c02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper-catalyzed dearomatization and difunctionalization of pyridines have been disclosed, in which bromodifluoro-N-arylacetamide was sliced into five fragments and three or four of them were transferred to pyridine partners. Through this reaction, novel N-difluoromethyl-2-imine dihydropyridine derivatives can be conveniently accessed from commercially available 4-amino substituted pyridines. This strategy demonstrates a novel fluorination method featuring high atom economy, environmental friendliness, an easily available catalyst, and simple operation.
Collapse
Affiliation(s)
- Hongtai Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Lianxin Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuxiang Niu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangwei Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
30
|
Caron S. Where Does the Fluorine Come From? A Review on the Challenges Associated with the Synthesis of Organofluorine Compounds. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00030] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Stéphane Caron
- Chemical Research & Development, Pfizer Worldwide Research & Development, MS 8220-2432, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
31
|
Trifonov AL, Panferova LI, Levin VV, Kokorekin VA, Dilman AD. Visible-Light-Promoted Iododifluoromethylation of Alkenes via (Phosphonio)difluoromethyl Radical Cation. Org Lett 2020; 22:2409-2413. [DOI: 10.1021/acs.orglett.0c00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexey L. Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
32
|
Liu S, Zeng X, Xu B. Practical fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides. Org Chem Front 2020. [DOI: 10.1039/c9qo01228a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides.
Collapse
Affiliation(s)
- Shiwen Liu
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
- Key Laboratory of Science and Technology of Eco-Textiles
| | - Xiaojun Zeng
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
33
|
Zeng X, Yan W, Zacate SB, Chao TH, Sun X, Cao Z, Bradford KGE, Paeth M, Tyndall SB, Yang K, Kuo TC, Cheng MJ, Liu W. Copper-Catalyzed Decarboxylative Difluoromethylation. J Am Chem Soc 2019; 141:11398-11403. [DOI: 10.1021/jacs.9b05363] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Wenhao Yan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Samson B. Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tzu-Hsuan Chao
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Xiaodong Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd., Beijing, 101400, P. R. China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd., Beijing, 101400, P. R. China
| | - Kate G. E. Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Paeth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Sam B. Tyndall
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tung-Chun Kuo
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
34
|
Politanskaya LV, Selivanova GA, Panteleeva EV, Tretyakov EV, Platonov VE, Nikul’shin PV, Vinogradov AS, Zonov YV, Karpov VM, Mezhenkova TV, Vasilyev AV, Koldobskii AB, Shilova OS, Morozova SM, Burgart YV, Shchegolkov EV, Saloutin VI, Sokolov VB, Aksinenko AY, Nenajdenko VG, Moskalik MY, Astakhova VV, Shainyan BA, Tabolin AA, Ioffe SL, Muzalevskiy VM, Balenkova ES, Shastin AV, Tyutyunov AA, Boiko VE, Igumnov SM, Dilman AD, Adonin NY, Bardin VV, Masoud SM, Vorobyeva DV, Osipov SN, Nosova EV, Lipunova GN, Charushin VN, Prima DO, Makarov AG, Zibarev AV, Trofimov BA, Sobenina LN, Belyaeva KV, Sosnovskikh VY, Obydennov DL, Usachev SA. Organofluorine chemistry: promising growth areas and challenges. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4871] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Geri JB, Aguilera EY, Szymczak NK. Difluoromethane as a precursor to difluoromethyl borates. Chem Commun (Camb) 2019; 55:5119-5122. [PMID: 30969308 DOI: 10.1039/c9cc01565e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difluoromethane (CF2H2) is an ecologically-friendly refrigerant which holds promise as a source of CF2H-. However, the weak acidity (pKa = 35-41) and low stability of the conjugate base have prevented its utilization as a chemical feedstock. In this manuscript, we use a Lewis pair approach to deprotonate CF2H2 and capture CF2H- as R3B-CF2H- adducts. One reagent can be used as a base-free Suzuki reagent in palladium-mediated difluoromethylation, where CF2H- transfer is templated by precoordination to an azaborine derived R3B-CF2H- reagent.
Collapse
Affiliation(s)
- Jacob B Geri
- Department of Chemistry, University of Michigan Ann Arbor, 930 N. University, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
36
|
Wang J, Tanaka J, Tokunaga E, Shibata N. Catalytic Desymmetrization of 1,3‐Difluoropropan‐2‐ols via C−F Bond Activation Using a Phosphazene Base Affords Monofluoromethyl‐Substituted Epoxides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiandong Wang
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Junki Tanaka
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 688 Yingbin Avenue 321004 Jinhua, China
| |
Collapse
|
37
|
Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJD, Sharpless KB, Moses JE. Bifluoride Ion Mediated SuFEx Trifluoromethylation of Sulfonyl Fluorides and Iminosulfur Oxydifluorides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher J. Smedley
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- School of Chemistry Sun Yat-Sen University 135 Xingang Xi Road Guangzhou 510275 P. R. China
| | - Andrew Molino
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | | | - Belinda S. Parker
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - David J. D. Wilson
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
38
|
Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJD, Sharpless KB, Moses JE. Bifluoride Ion Mediated SuFEx Trifluoromethylation of Sulfonyl Fluorides and Iminosulfur Oxydifluorides. Angew Chem Int Ed Engl 2019; 58:4552-4556. [DOI: 10.1002/anie.201813761] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/03/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Christopher J. Smedley
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- School of Chemistry Sun Yat-Sen University 135 Xingang Xi Road Guangzhou 510275 P. R. China
| | - Andrew Molino
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | | | - Belinda S. Parker
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - David J. D. Wilson
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia
| |
Collapse
|
39
|
Mitobe K, Kawasaki-Takasuka T, Agou T, Kubota T, Yamazaki T. Divergent pathways for reactions of CF3-containing Isobenzofuran-1-ones and amines. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Yamamoto Y, Ishida Y, Kurohara T, Shibuya M, Yasui T. Synthesis of γ-Difluoromethylated Tetronate Derivatives from Squarates Using Difluoromethylphosphonate. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Yu J, Lin JH, Cao YC, Xiao JC. Visible-light-induced radical hydrodifluoromethylation of alkenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00919a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible-light-induced radical hydrodifluoromethylation of alkenes with the phosphonium salt [Ph3P+CF2H Br−] under transition-metal-free conditions is described.
Collapse
Affiliation(s)
- Jiao Yu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| | - Yu-Cai Cao
- State Key Laboratory of Polyolefins and Catalysis
- Shanghai Key Laboratory of Catalysis Technology for Polyolefins
- Shanghai Research Institute of Chemical Industry Co. Ltd
- China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| |
Collapse
|
42
|
Johnston C, West TH, Dooley RE, Reid M, Jones AB, King EJ, Leach AG, Lloyd-Jones GC. Anion-Initiated Trifluoromethylation by TMSCF 3: Deconvolution of the Siliconate-Carbanion Dichotomy by Stopped-Flow NMR/IR. J Am Chem Soc 2018; 140:11112-11124. [PMID: 30080973 PMCID: PMC6133236 DOI: 10.1021/jacs.8b06777] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/25/2022]
Abstract
The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X- (<0.004 to 10 mol %), has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, LFER, addition of ligands (18-c-6, crypt-222), and density functional theory calculations. The kinetics, reaction orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X-). Traces of exogenous inhibitors present in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also affect the kinetics. Some reactions are complete in milliseconds, others take hours, and others stall before completion. Despite these differences, a general mechanism has been elucidated in which the product alkoxide and CF3- anion act as chain carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of CF3- by the α-C-H of the ketone and the OH of the enol. The overarching mechanism for trifluoromethylation by R3SiCF3, in which pentacoordinate siliconate intermediates are unable to directly transfer CF3- as a nucleophile or base, rationalizes why the turnover rate (per M+X- initiator) depends on the initial concentration (but not identity) of X-, the identity (but not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl/R3SiCF3 ratio. It also rationalizes which R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X- initiator.
Collapse
Affiliation(s)
- Craig
P. Johnston
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| | - Thomas H. West
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| | - Ruth E. Dooley
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| | - Marc Reid
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| | - Ariana B. Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| | - Edward J. King
- TgK
Scientific Limited, 7
Long’s Yard, St Margaret’s Street, Bradford-on-Avon, BA15 1DH, U.K.
| | - Andrew G. Leach
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool, L3 3AF, U.K.
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K.
| |
Collapse
|
43
|
Dong T, Nie J, Zhang CP. A convenient, transition metal-free synthesis of difluoromethyl selenoethers from organic selenocyanates and TMSCF2H. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Schotten C, Howard JL, Jenkins RL, Codina A, Browne DL. A continuous flow-batch hybrid reactor for commodity chemical synthesis enabled by inline NMR and temperature monitoring. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Chen J, Lin JH, Xiao JC. Decarboxylative nucleophilic difluoromethylation of aldehydes and imines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Duan Y, Lin JH, Xiao JC, Gu YC. Difluoromethylcarbene for iron-catalyzed cyclopropanation. Chem Commun (Camb) 2018; 53:3870-3873. [PMID: 28317978 DOI: 10.1039/c7cc01636k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Difluoroethylsulfonium salt, Ph2S+CH2CF2H OTf-, was developed into a convenient difluoromethylcarbene reagent for the iron-catalyzed cyclopropanation of terminal olefins, giving various difluoromethyl-cyclopropanes with excellent diastereoselectivities and in high yields.
Collapse
Affiliation(s)
- Yaya Duan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chmistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| |
Collapse
|
47
|
Affiliation(s)
- Damian E. Yerien
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| | - Sebastian Barata-Vallejo
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| | - Al Postigo
- Departamento de Química Orgánica; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 954, CP 1113 Buenos Aires Argentina
| |
Collapse
|
48
|
Honraedt A, Van Der Lee A, Campagne JM, Leclerc E. α,α-Difluoro-α-(trimethylsilyl)acetamides as Versatile Reagents for the Preparation of Difluorinated Aldol and Mannich Adducts. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aurélien Honraedt
- Institut Charles Gerhardt - UMR 5253 CNRS-UM2-UM1-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8, rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Arie Van Der Lee
- Institut Européen des Membranes; ENSCM/UMII/UMR-CNRS 5635; Pl. Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt - UMR 5253 CNRS-UM2-UM1-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8, rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Eric Leclerc
- Institut Charles Gerhardt - UMR 5253 CNRS-UM2-UM1-ENSCM; Ecole Nationale Supérieure de Chimie de Montpellier; 8, rue de l'Ecole Normale 34296 Montpellier Cedex 5 France
| |
Collapse
|
49
|
Liu Q, Ni C, Hu J. China's flourishing synthetic organofluorine chemistry: innovations in the new millennium. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx058] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The new millennium has witnessed the rapid development of synthetic organofluorine chemistry all over the world, and chemists in China have made significant contributions in this field. This review aims to provide a brief introduction to China's primary innovations from 2000 to early 2017, covering fluorination, fluoroalkylation, fluoromethylthiolation, fluoroolefination and polyfluoroarylation, as well as synthesis with fluorinated building blocks. Recent advances in the chemistry of difluorocarbene and the chemistry of carbon–fluorine bond activation are also discussed. As a conclusion, the review ends with some personal perspectives on the future development of China's synthetic organofluorine chemistry.
Collapse
|
50
|
Efficient nucleophilic difluoromethylation of aldehydes with (phenylsulfonyl)difluoromethylzinc and (phenylsulfonyl)difluoromethylcadmium reagents. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|