1
|
Montua N, Sewald N. Perfect Partners: Biocatalytic Halogenation and Metal Catalysis for Protein Bioconjugation. Chembiochem 2024:e202400496. [PMID: 39225774 DOI: 10.1002/cbic.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Flavin-dependent halogenases (FDHs) are the most extensively researched halogenases and show great potential for biotransformation applications. These enzymes use chloride, bromide, or iodide ions as halogen donors to catalyze the oxygen-dependent halogenation of electron-rich aryl moieties, requiring stochiometric amounts of FADH2 in the process. This makes FDH-catalyzed aryl halogenation a highly selective and environmentally friendly tool for the synthesis of aryl halides. The latter in turn serve as valuable intermediates for transition metal catalyzed cross coupling reactions for C-C bond formation. Previous research made extensive use of this approach to halogenate small molecules as building blocks for late-stage functionalization by transition-metal catalyzed cross-coupling reactions. Based on these results, several groups have managed to expand this research to protein targets over the past two years. Their work indicates an emerging methodology for bioconjugation using late-stage biocatalytic halogenation in conjunction with biorthogonal Suzuki-Miyaura cross-coupling. This strategy could present an attractive alternative to existing approaches due to the stability of the C-C bond bridging the generated biaryl moiety and the ease of late-stage enzymatic modification while maintaining excellent selectivity under mild conditions.
Collapse
Affiliation(s)
- Nicolai Montua
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Reed KB, d'Oelsnitz S, Brooks SM, Wells J, Zhao M, Trivedi A, Eshraghi S, Alper HS. Fluorescence-Based Screens for Engineering Enzymes Linked to Halogenated Tryptophan. ACS Synth Biol 2024; 13:1373-1381. [PMID: 38533851 DOI: 10.1021/acssynbio.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Directed evolution is often limited by the throughput of accurate screening methods. Here we demonstrate the feasibility of utilizing a singular transcription factor (TF)-system that can be refactored in two ways (both as an activator and repressor). Specifically, we showcase the use of previously evolved 5-halo- or 6-halo-tryptophan-specific TF biosensors suitable for the detection of a halogenated tryptophan molecule in vivo. We subsequently validate the biosensor's utility for two halogenase-specific halo-tryptophan accumulation screens. First, we isolated 5-tryptophan-halogenase, XsHal, from a mixed pool of halogenases with 100% efficiency. Thereafter, we generated a targeted library of the catalytic residue of 6-tryptophan halogenase, Th-Hal, and isolated functioning halogenases with 100% efficiency. Lastly, we refactor the TF circuit to respond to the depletion of halogenated tryptophan and prototype a high-throughput biosensor-directed evolution scheme to screen for downstream enzyme variants capable of promiscuously converting halogenated tryptophan. Altogether, this work takes a significant step toward the rapid and higher throughput screening of halogenases and halo-tryptophan converting enzymes to further reinforce efforts to enable high-level bioproduction of halogenated chemicals.
Collapse
Affiliation(s)
- Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Simon d'Oelsnitz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| | | | - Jordan Wells
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Minye Zhao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Selina Eshraghi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Besse C, Niemann HH, Sewald N. Increasing the Stability of Flavin-Dependent Halogenases by Disulfide Engineering. Chembiochem 2024; 25:e202300700. [PMID: 37917145 DOI: 10.1002/cbic.202300700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Flavin-dependent halogenases allow halogenation of electron-rich aromatic compounds under mild reaction conditions even at electronically unfavored positions with high regioselectivity. In order to expand the application of halogenases, the enzymes need to be improved in terms of stability and efficiency. A previous study with the tryptophan 6-halogenase Thal demonstrated that thermostable Thal variants tend to form dimers in solution while the wild type is present as a monomer. Based on this a dimeric Thal variant was generated that is covalently linked by disulfide bonds. Introducing two cysteine residues at the dimer interface resulted in the variant Thal CC with significantly increased thermostability (▵T50 =15.7 K) and stability over time at elevated temperature compared to the wild type. By introducing the homologous mutations into the tryptophan 5-halogenase PyrH, we were able to show that the stabilization by covalent dimerization can also be transferred to other halogenases. Moreover, it was possible to further increase the thermostability of PyrH by inserting cysteine mutations at alternative sites of the dimer interface.
Collapse
Affiliation(s)
- Caroline Besse
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
4
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
6
|
Schnepel C, Moritzer A, Gäfe S, Montua N, Minges H, Nieß A, Niemann HH, Sewald N. Enzymatic Late-Stage Halogenation of Peptides. Chembiochem 2023; 24:e202200569. [PMID: 36259362 PMCID: PMC10099709 DOI: 10.1002/cbic.202200569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Indexed: 01/05/2023]
Abstract
The late-stage site-selective derivatisation of peptides has many potential applications in structure-activity relationship studies and postsynthetic modification or conjugation of bioactive compounds. The development of orthogonal methods for C-H functionalisation is crucial for such peptide derivatisation. Among them, biocatalytic methods are increasingly attracting attention. Tryptophan halogenases emerged as valuable catalysts to functionalise tryptophan (Trp), while direct enzyme-catalysed halogenation of synthetic peptides is yet unprecedented. Here, it is reported that the Trp 6-halogenase Thal accepts a wide range of amides and peptides containing a Trp moiety. Increasing the sequence length and reaction optimisation made bromination of pentapeptides feasible with good turnovers and a broad sequence scope, while regioselectivity turned out to be sequence dependent. Comparison of X-ray single crystal structures of Thal in complex with d-Trp and a dipeptide revealed a significantly altered binding mode for the peptide. The viability of this bioorthogonal approach was exemplified by halogenation of a cyclic RGD peptide.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: Department of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ann‐Christin Moritzer
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Simon Gäfe
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Nicolai Montua
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hannah Minges
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Anke Nieß
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hartmut H. Niemann
- StrukturbiochemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
7
|
Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase. Nat Catal 2022. [DOI: 10.1038/s41929-022-00800-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
9
|
Bering L, Thompson J, Micklefield J. New reaction pathways by integrating chemo- and biocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Sabadasch V, Dachwitz S, Hellweg T, Sewald N, Hannappel Y. Acrylamide-Based Pd-Nanoparticle Carriers as Smart Catalysts for the Suzuki–Miyaura Cross-Coupling of Amino Acids. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1782-4224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractPolyacrylamide-based waterborne microgels were prepared with copolymerized carboxylic acid and tertiary amine moieties. The colloidal gels were loaded with palladium nanoparticles and utilized for the Suzuki–Miyaura cross-coupling of amino acids and peptides. The thermoresponsive properties of the prepared microgels were characterized by means of photon correlation spectroscopy (PCS) at solvent conditions of the catalytic reaction. The localization and morphology of the incorporated nanoparticles were characterized with transmission electron microscopy (TEM). Palladium-catalyzed Suzuki–Miyaura cross-coupling of N
α-Boc-4-iodophenylalanine and N
α-Boc-7-bromotryptophan with phenylboronic acid was carried out under ambient atmosphere in water at 20, 37, and 60 °C, respectively. The properties of the thermoresponsive microgel showed a strong influence on the reactivity and selectivity towards the respective substrate. For the amine containing microgels, a recyclability for up to four cycles without loss in activity could be realized. Furthermore, the systems showed good catalytic activity regarding Suzuki–Miyaura cross-coupling of halogenated amino acids in selected tri- and tetrapeptides.
Collapse
Affiliation(s)
- Viktor Sabadasch
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University
| | - Steffen Dachwitz
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University
- BINAS - Bielefeld Institute for Biophysics and Nanoscience, Bielefeld University
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University
| | - Yvonne Hannappel
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University
| |
Collapse
|
11
|
Gruß H, Feiner RC, Mseya R, Schröder DC, Jewgiński M, Müller KM, Latajka R, Marion A, Sewald N. Peptide stapling by late-stage Suzuki–Miyaura cross-coupling. Beilstein J Org Chem 2022; 18:1-12. [PMID: 35047078 PMCID: PMC8744458 DOI: 10.3762/bjoc.18.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
The development of peptide stapling techniques to stabilise α-helical secondary structure motifs of peptides led to the design of modulators of protein–protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki–Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both sufficient linker rigidity and flexibility resulted in a peptide with an increased α-helicity and enhanced binding affinity to its native binding partner β-catenin. An increased proteolytic stability against proteinase K has been demonstrated.
Collapse
Affiliation(s)
- Hendrik Gruß
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Rebecca C Feiner
- Department of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Ridhiwan Mseya
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - David C Schröder
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Kristian M Müller
- Department of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Norbert Sewald
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Dachwitz S, Scharkowski B, Sewald N. Negishi Cross-Coupling Provides Alkylated Tryptophans and Tryptophan Regioisomers. Chemistry 2021; 27:18043-18046. [PMID: 34713938 PMCID: PMC9299634 DOI: 10.1002/chem.202103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Mild transition-metal catalysed cross-couplings enable direct functionalisation of biocatalytically halogenated tryptophans with alkyl iodides, representing a new alternative for late-stage derivatisations of halogenated aromatic amino acids. Moreover, this strategy enables preparation of (homo)tryptophan regioisomers in a simple two-step synthesis using a Pd-catalysed Negishi cross coupling. This method provides access to non-canonical constitutional surrogates of tryptophan, ready for use in peptide synthesis.
Collapse
Affiliation(s)
- Steffen Dachwitz
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Bjarne Scharkowski
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Department of ChemistryOrganic and Bioorganic ChemistryBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
13
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
14
|
Kolling D, Stierhof M, Lasch C, Myronovskyi M, Luzhetskyy A. A Promiscuous Halogenase for the Derivatization of Flavonoids. Molecules 2021; 26:molecules26206220. [PMID: 34684801 PMCID: PMC8539768 DOI: 10.3390/molecules26206220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Halogenation often improves the bioactive properties of natural products and is used in pharmaceutical research for the generation of new potential drug leads. High regio- and stereospecificity, simple reaction conditions and straightforward downstream processing are the main advantages of halogenation using enzymatic biocatalysts compared to chemical synthetic approaches. The identification of new promiscuous halogenases for the modification of various natural products is of great interest in modern drug discovery. In this paper, we report the identification of a new promiscuous FAD-dependent halogenase, DklH, from Frankia alni ACN14a. The identified halogenase readily modifies various flavonoid compounds, including those with well-studied biological activities. This halogenase has been demonstrated to modify not only flavones and isoflavones, but also flavonols, flavanones and flavanonols. The structural requirements for DklH substrate recognition were determined using a feeding approach. The homology model of DklH and the mechanism of substrate recognition are also proposed in this paper.
Collapse
Affiliation(s)
- Dominik Kolling
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Constanze Lasch
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany; (D.K.); (M.S.); (C.L.); (M.M.)
- AMEG Department, Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
15
|
Sharma SV, Pubill-Ulldemolins C, Marelli E, Goss RJM. An expedient, mild and aqueous method for Suzuki-Miyaura diversification of (hetero)aryl halides or (poly)chlorinated pharmaceuticals. Org Chem Front 2021; 8:5722-5727. [PMID: 34745636 PMCID: PMC8506956 DOI: 10.1039/d1qo00919b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022]
Abstract
The development of mild, aqueous conditions for the cross-coupling of highly functionalized (hetero)aryl chlorides or bromides is attractive, enabling their functionalization and diversification. Herein, we report a general method for Suzuki–Miyaura cross-coupling at 37 °C in aqueous media in the presence of air. We demonstrate application of this general methodology for derivatisation of (poly)chlorinated, medicinally active compounds and halogenated amino acids. The approach holds the potential to be a useful tool for late-stage functionalization or analogue generation. Simple, aqueous and direct cross-coupling of diverse and complex (hetero)aromatic halides and active pharmaceutical agents.![]()
Collapse
Affiliation(s)
- Sunil V Sharma
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| | | | - Enrico Marelli
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| | - Rebecca J M Goss
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
16
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
17
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
18
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
19
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
20
|
De Silva AJ, Sehgal R, Kim J, Bellizzi JJ. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms. Arch Biochem Biophys 2021; 704:108874. [PMID: 33862020 DOI: 10.1016/j.abb.2021.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
The short-chain flavin reductases BorF and AbeF reduce FAD to FADH2, which is then used by flavin-dependent halogenases (BorH and AbeH respectively) to regioselectively chlorinate tryptophan in the biosynthesis of indolotryptoline natural products. Recombinant AbeF and BorF were overexpressed and purified as homodimers from E. coli, and copurified with substoichiometric amounts of FAD, which could be easily removed. AbeF and BorF can reduce FAD, FMN, and riboflavin in vitro and are selective for NADH over NADPH. Initial velocity studies in the presence and absence of inhibitors showed that BorF proceeds by a sequential ordered kinetic mechanism in which FAD binds first, while AbeF follows a random-ordered sequence of substrate binding. Fluorescence quenching experiments verified that NADH does not bind BorF in the absence of FAD, and that both AbeF and BorF bind FAD with higher affinity than FADH2. pH-rate profiles of BorF and AbeF were bell-shaped with maximum kcat at pH 7.5, and site-directed mutagenesis of BorF implicated His160 and Arg38 as contributing to the catalytic activity and the pH dependence.
Collapse
Affiliation(s)
- Aravinda J De Silva
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Rippa Sehgal
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Jennifer Kim
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA.
| |
Collapse
|
21
|
Michikita R, Usuki Y, Satoh T. Synthesis of 7‐Phenylindole Derivatives through Rhodium‐Catalyzed Dehydrogenative Coupling of 2‐(Acetylamino)‐1,1’‐biphenyls with Alkynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ryudai Michikita
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yoshinosuke Usuki
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Tetsuya Satoh
- Department of Chemistry Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
22
|
Schnepel C, Dodero VI, Sewald N. Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo. Chemistry 2021; 27:5404-5411. [PMID: 33496351 PMCID: PMC8048522 DOI: 10.1002/chem.202005191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C-H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6'-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Veronica I. Dodero
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
23
|
Kemker I, Schröder DC, Feiner RC, Müller KM, Marion A, Sewald N. Tuning the Biological Activity of RGD Peptides with Halotryptophans†. J Med Chem 2020; 64:586-601. [PMID: 33356253 DOI: 10.1021/acs.jmedchem.0c01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An array of l- and d-halotryptophans with different substituents at the indole moiety was synthesized employing either enzymatic halogenation by halogenases or incorporation of haloindoles using tryptophan synthase. Introduction of these Trp derivatives into RGD peptides as a benchmark system was performed to investigate their influence on bioactivity. Halotryptophan-containing RGD peptides display increased affinity toward integrin αvβ3 and enhanced selectivity over integrin α5β1. In addition, bromotryptophan was exploited as a platform for late-stage diversification by Suzuki-Miyaura cross-coupling (SMC), resulting in new-to-nature biaryl motifs. These peptides show enhanced affinity toward αvβ3, good affinity to αvβ8, and remarkable selectivity over α5β1 and αIIbβ3 while featuring fluorogenic properties. Their feasibility as a probe was demonstrated in vitro. Extensive molecular dynamics simulations were undertaken to elucidate NMR and high-performance liquid chromatography (HPLC) data for these late-stage diversified cyclic RGD peptides and to further characterize their conformational preferences.
Collapse
Affiliation(s)
- Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Rebecca C Feiner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, Kimya Bölümü Üniversiteler Mah., Çankaya, 06800 Ankara, Turkey
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.,Department of Chemistry, Middle East Technical University, Kimya Bölümü Üniversiteler Mah., Çankaya, 06800 Ankara, Turkey
| |
Collapse
|
24
|
Neubauer PR, Pienkny S, Wessjohann L, Brandt W, Sewald N. Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. Chembiochem 2020; 21:3282-3288. [PMID: 32645255 PMCID: PMC7754283 DOI: 10.1002/cbic.202000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 01/16/2023]
Abstract
The recently described flavin-dependent halogenase BrvH is able to catalyse both the bromination and chlorination of indole, but shows significantly higher bromination activity. BrvH was annotated as a tryptophan halogenase, but does not accept tryptophan as a substrate. Its native substrate remains unknown. A predictive model with the data available for BrvH was analysed. A training set of compounds tested in vitro was docked into the active site of a complete protein model based on the X-ray structure of BrvH. The atoms not resolved experimentally were modelled by using molecular mechanics force fields to obtain this protein model. Furthermore, docking poses for the substrates and known non-substrates have been calculated. Parameters like distance, partial charge and hybridization state were analysed to derive rules for predicting activity. With this model for activity of the BrvH, a virtual screening suggested several structures for potential substrates. Some of the compounds preselected in this way were tested in vitro, and several could be verified as convertible substrates. Based on information on halogenated natural products, a new dataset was created to specifically search for natural products as substrates/products, and virtual screening in this database yielded further hits.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| | - Silke Pienkny
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Ludger Wessjohann
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Wolfgang Brandt
- Leibniz Institute for Plant Biochemistry (IPB)Weinberg 306120HalleGermany
| | - Norbert Sewald
- Organic and Bioorganic ChemistryDepartment of ChemistryBielefeld UniversityUniversitätsstrasse 2533501BielefeldGermany
| |
Collapse
|
25
|
Dachwitz S, Duwe DH, Wang YH, Gruß H, Hannappel Y, Hellweg T, Sewald N. Suzuki-Miyaura Cross-Coupling of Bromotryptophan Derivatives at Ambient Temperature. Chemistry 2020; 26:16357-16364. [PMID: 32639079 PMCID: PMC7756874 DOI: 10.1002/chem.202002454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Mild reaction conditions are highly desirable for bio‐orthogonal side chain derivatizations of amino acids, peptides or proteins due to the sensitivity of these substrates. Transition metal catalysed cross‐couplings such as Suzuki–Miyaura reactions are highly versatile, but usually require unfavourable reaction conditions, in particular, when applied with aryl bromides. Ligand‐free solvent‐stabilised Pd‐nanoparticles represent an efficient and sustainable alternative to conventional phosphine‐based catalysts, because the cross‐coupling can be performed at considerably lower temperature. We report on the application of such a highly reactive heterogeneous catalyst for the Suzuki–Miyaura cross‐coupling of brominated tryptophan derivatives. The solvent‐stabilised Pd‐nanoparticles are even more efficient than the literature‐known ADHP‐Pd precatalyst. Interestingly, the latter also leads to the formation of quasi‐homogeneous Pd‐nanoparticles as the catalytic species. One advantage of our approach is the compatibility with aqueous and aerobic conditions at near‐ambient temperatures and short reaction times of only 2 h. The influence of different Nα‐protecting groups, boronic acids as well as the impact of different amino acid side chains in bromotryptophan‐containing peptides has been studied. Notably, a surprising acceleration of the catalysis was observed when palladium‐coordinating side chains were present in proximal positions.
Collapse
Affiliation(s)
- Steffen Dachwitz
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Dario H Duwe
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yating Hong Wang
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hendrik Gruß
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yvonne Hannappel
- Department of Chemistry, Physical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
26
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
27
|
Minges H, Sewald N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020. [DOI: 10.1002/cctc.202000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| |
Collapse
|
28
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Li H, Fang W, Zhao Z, Li A, Li Z, Li M, Li Q, Feng X, Song Y. Droplet Precise Self‐Splitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angew Chem Int Ed Engl 2020; 59:10535-10539. [DOI: 10.1002/anie.202003839] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Huizeng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Wei Fang
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Zhipeng Zhao
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - An Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
| | - Qunyang Li
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Xiqiao Feng
- AML, CNMM, and Department of Engineering Mechanics, and State Key Laboratory of Tribology Tsinghua University Beijing 100084 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences (ICCAS) Beijing Engineering Research Center of Nanomaterials for Green Printing Technology National Laboratory for Molecular Sciences (BNLMS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
General synthesis of unnatural 4-, 5-, 6-, and 7-bromo-d-tryptophans by means of a regioselective indole alkylation. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Abstract
Pd-mediated reactions have emerged as a powerful tool for the site-selective and bioorthogonal late-stage diversification of amino acids, peptides and related compounds. Indole moieties of tryptophan derivatives are susceptible to C2 H-activation, whereas halogenated aromatic amino acids such as halophenylalanines or halotryptophans provide a broad spectrum of different functionalisations. The compatibility of transition-metal-catalysed cross-couplings with functional groups in peptides, other biologically active compounds and even proteins has been demonstrated. This Review primarily compiles the application of different cross-coupling reactions to modify halotryptophans, halotryptophan containing peptides or halogenated, biologically active compounds derived from tryptophan. Modern approaches use regio- and stereoselective biocatalytic strategies to generate halotryptophans and derivatives on a preparative scale. The combination of bio- and chemocatalysis in cascade reactions is given by the biocompatibility and bioorthogonality of Pd-mediated reactions.
Collapse
Affiliation(s)
- Hendrik Gruß
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
32
|
|
33
|
Abstract
Monomeric RGD peptides show unspecific fluid-phase uptake in cells, whereas multimeric RGD peptides are thought to be internalized by integrin-mediated endocytosis. However, a potential correlation between uptake mechanism and molecular mass has been neglected so far. A dual derivatization of peptide c(RGDw(7Br)K) was performed to investigate this. A fluorescent probe was installed by chemoselective Suzuki-Miyaura cross-coupling of the 7-bromotryptophan and a poly(ethylene glycol) (PEG) linker was attached to the lysine residue. Flow cytometry and live cell imaging confirmed unspecific uptake of the small, non-PEGylated peptide, whereas the PEG5000 peptide conjugate unveiled a selective internalization by M21 cells overexpressing αv β3 and no uptake in αv -deficient M21L cells.
Collapse
Affiliation(s)
- Isabell Kemker
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rebecca C. Feiner
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Kristian M. Müller
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
34
|
Bergmann Medal: R. T. Raines / Bergmann Young Investigator Award: C. Schnepel / Bessel Award: S. T. Liddle. Angew Chem Int Ed Engl 2020; 59:2941. [DOI: 10.1002/anie.202000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Bergmann‐Medaille: R. T. Raines / Bergmann‐Nachwuchspreis: C. Schnepel / Bessel‐Forschungspreis: S. T. Liddle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Minges H, Schnepel C, Böttcher D, Weiß MS, Sproß J, Bornscheuer UT, Sewald N. Targeted Enzyme Engineering Unveiled Unexpected Patterns of Halogenase Stabilization. ChemCatChem 2019. [DOI: 10.1002/cctc.201901827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Christian Schnepel
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Dominique Böttcher
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Martin S. Weiß
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Department of Biotechnology and Enzyme CatalysisGreifswald University Felix-Hausdorff-Str.4 17489 Greifswald Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of ChemistryBielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
37
|
Recent Advances in Flavin-Dependent Halogenase Biocatalysis: Sourcing, Engineering, and Application. Catalysts 2019. [DOI: 10.3390/catal9121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The introduction of a halogen atom into a small molecule can effectively modulate its properties, yielding bioactive substances of agrochemical and pharmaceutical interest. Consequently, the development of selective halogenation strategies is of high technological value. Besides chemical methodologies, enzymatic halogenations have received increased interest as they allow the selective installation of halogen atoms in molecular scaffolds of varying complexity under mild reaction conditions. Today, a comprehensive library of aromatic halogenases exists, and enzyme as well as reaction engineering approaches are being explored to broaden this enzyme family’s biocatalytic application range. In this review, we highlight recent developments in the sourcing, engineering, and application of flavin-dependent halogenases with a special focus on chemoenzymatic and coupled biosynthetic approaches.
Collapse
|
38
|
Gkotsi DS, Ludewig H, Sharma SV, Connolly JA, Dhaliwal J, Wang Y, Unsworth WP, Taylor RJK, McLachlan MMW, Shanahan S, Naismith JH, Goss RJM. A marine viral halogenase that iodinates diverse substrates. Nat Chem 2019; 11:1091-1097. [PMID: 31611633 PMCID: PMC6875430 DOI: 10.1038/s41557-019-0349-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/09/2019] [Indexed: 11/23/2022]
Abstract
Oceanic cyanobacteria are the most abundant oxygen-generating phototrophs on our planet, and therefore, important to life. These organisms are infected by viruses called cyanophages, recently shown to encode metabolic genes that modulate host photosynthesis, phosphorus cycling and nucleotide metabolism. Herein, we report the characterisation of a wild type flavin-dependent viral halogenase (VirX1) from a cyanophage. Notably, halogenases have been previously associated with secondary metabolism, tailoring natural products. Exploration of this viral halogenase reveals it capable of regioselective halogenation of a diverse range of substrates, with a preference for forming aryl iodide species; this has potential implications for the metabolism of the infected host. Until recently, a flavin-dependent halogenase (FDH) capable of iodination in vitro had not been reported. VirX1 is interesting from a biocatalytic perspective showing strikingly broad substrate flexibility, and a clear preference for iodination, as illustrated by kinetic analysis. These factors together render it an attractive tool for synthesis.
Collapse
Affiliation(s)
- Danai S Gkotsi
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Hannes Ludewig
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Sunil V Sharma
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Jack A Connolly
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Jagwinder Dhaliwal
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Yunpeng Wang
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | | | | | - Matthew M W McLachlan
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK.,QEDDI, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen Shanahan
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, UK.,Research Complex at Harwell, Rutherford Laboratory, Didcot, UK.,The Rosalind Franklin Institute, Didcot, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK. .,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
39
|
Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. iScience 2019; 19:1291-1336. [PMID: 31402257 PMCID: PMC6831821 DOI: 10.1016/j.isci.2019.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Although in recent years there has been an increased awareness of the widespread nature of biofluorescence in the marine environment, the diversity of the molecules responsible for this luminescent phenotype has been mostly limited to green fluorescent proteins (GFPs), GFP-like proteins, and fluorescent fatty acid-binding proteins (FABPs). In the present study, we describe a previously undescribed group of brominated tryptophan-kynurenine small molecule metabolites responsible for the green biofluorescence in two species of sharks and provide their structural, antimicrobial, and spectral characterization. Multi-scale fluorescence microscopy studies guided the discovery of metabolites that were differentially produced in fluorescent versus non-fluorescent skin, as well as the species-specific structural details of their unusual light-guiding denticles. Overall, this study provides the detailed description of a family of small molecules responsible for marine biofluorescence and opens new questions related to their roles in central nervous system signaling, resilience to microbial infections, and photoprotection. We describe a new form of biofluorescence from the skin of catsharks Bromo-tryptophan-kynurenines are biofluorescent and show antimicrobial activities Specific dermal denticles in the chain catshark act as optical light-guides This study opens questions related to biological function of shark fluorescence
Collapse
|
40
|
Kemker I, Schnepel C, Schröder DC, Marion A, Sewald N. Cyclization of RGD Peptides by Suzuki–Miyaura Cross-Coupling. J Med Chem 2019; 62:7417-7430. [DOI: 10.1021/acs.jmedchem.9b00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Isabell Kemker
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Christian Schnepel
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - David C. Schröder
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
41
|
Ressmann AK, Schwendenwein D, Leonhartsberger S, Mihovilovic MD, Bornscheuer UT, Winkler M, Rudroff F. Substrate‐Independent High‐Throughput Assay for the Quantification of Aldehydes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna K. Ressmann
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | | | - Simon Leonhartsberger
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald University Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | | | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| |
Collapse
|
42
|
Gruß H, Belu C, Bernhard LM, Merschel A, Sewald N. Fluorogenic Diversification of Unprotected Bromotryptophan by Aqueous Mizoroki–Heck Cross‐Coupling. Chemistry 2019; 25:5880-5883. [DOI: 10.1002/chem.201900437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Hendrik Gruß
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Clara Belu
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Laura M. Bernhard
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Arne Merschel
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Department of ChemistryBielefeld University Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
43
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
44
|
Gesse P, Müller TJJ. Consecutive Five-Component Ugi-4CR-CAL B-Catalyzed Aminolysis Sequence and Concatenation with Transition Metal Catalysis in a One-Pot Fashion to Substituted Triamides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pascal Gesse
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf; Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf; Germany
| |
Collapse
|
45
|
Schnepel C, Kemker I, Sewald N. One-Pot Synthesis of d-Halotryptophans by Dynamic Stereoinversion Using a Specific l-Amino Acid Oxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Schnepel
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Isabell Kemker
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, PO Box 100131, 33501 Bielefeld, Germany
| |
Collapse
|
46
|
Moritzer AC, Minges H, Prior T, Frese M, Sewald N, Niemann HH. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J Biol Chem 2018; 294:2529-2542. [PMID: 30559288 DOI: 10.1074/jbc.ra118.005393] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Indexed: 11/06/2022] Open
Abstract
Flavin-dependent halogenases increasingly attract attention as biocatalysts in organic synthesis, facilitating environmentally friendly halogenation strategies that require only FADH2, oxygen, and halide salts. Different flavin-dependent tryptophan halogenases regioselectively chlorinate or brominate trypto-phan's indole moiety at C5, C6, or C7. Here, we present the first substrate-bound structure of a tryptophan 6-halogenase, namely Thal, also known as ThdH, from the bacterium Streptomyces albogriseolus at 2.55 Å resolution. The structure revealed that the C6 of tryptophan is positioned next to the ϵ-amino group of a conserved lysine, confirming the hypothesis that proximity to the catalytic residue determines the site of electrophilic aromatic substitution. Although Thal is more similar in sequence and structure to the tryptophan 7-halogenase RebH than to the tryptophan 5-halogenase PyrH, the indole binding pose in the Thal active site more closely resembled that of PyrH than that of RebH. The difference in indole orientation between Thal and RebH appeared to be largely governed by residues positioning the Trp backbone atoms. The sequences of Thal and RebH lining the substrate binding site differ in only few residues. Therefore, we exchanged five amino acids in the Thal active site with the corresponding counterparts in RebH, generating the quintuple variant Thal-RebH5. Overall conversion of l-Trp by the Thal-RebH5 variant resembled that of WT Thal, but its regioselectivity of chlorination and bromination was almost completely switched from C6 to C7 as in RebH. We conclude that structure-based protein engineering with targeted substitution of a few residues is an efficient approach to tailoring flavin-dependent halogenases.
Collapse
Affiliation(s)
| | - Hannah Minges
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Research Groups, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | |
Collapse
|
47
|
Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One 2018; 13:e0196797. [PMID: 29746521 PMCID: PMC5945002 DOI: 10.1371/journal.pone.0196797] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Flavin-dependent halogenases catalyse halogenation of aromatic compounds. In most cases, this reaction proceeds with high regioselectivity and requires only the presence of FADH2, oxygen, and halide salts. Since marine habitats contain high concentrations of halides, organisms populating the oceans might be valuable sources of yet undiscovered halogenases. A new Hidden-Markov-Model (HMM) based on the PFAM tryptophan halogenase model was used for the analysis of marine metagenomes. Eleven metagenomes were screened leading to the identification of 254 complete or partial putative flavin-dependent halogenase genes. One predicted halogenase gene (brvH) was selected, codon optimised for E. coli, and overexpressed. Substrate screening revealed that this enzyme represents an active flavin-dependent halogenase able to convert indole to 3-bromoindole. Remarkably, bromination prevails also in a large excess of chloride. The BrvH crystal structure is very similar to that of tryptophan halogenases but reveals a substrate binding site that is open to the solvent instead of being covered by a loop.
Collapse
Affiliation(s)
- Pia R. Neubauer
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Christiane Widmann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Lea Schröder
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Marcel Frese
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Physical Chemistry (PCIII), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Hartmut H. Niemann
- Structural Biochemistry (BCIV), Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry (OCIII), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
48
|
Gkotsi DS, Dhaliwal J, McLachlan MMW, Mulholand KR, Goss RJM. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Curr Opin Chem Biol 2018; 43:119-126. [DOI: 10.1016/j.cbpa.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 10/24/2022]
|
49
|
Andorfer MC, Lewis JC. Understanding and Improving the Activity of Flavin-Dependent Halogenases via Random and Targeted Mutagenesis. Annu Rev Biochem 2018; 87:159-185. [PMID: 29589959 DOI: 10.1146/annurev-biochem-062917-012042] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Flavin-dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes have been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications.
Collapse
Affiliation(s)
- Mary C Andorfer
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
50
|
Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates. Methods Enzymol 2018; 604:333-366. [PMID: 29779658 DOI: 10.1016/bs.mie.2018.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flavin-adenine dinucleotide (FAD)-dependent halogenases are widespread in natural product biosynthetic gene clusters and have been demonstrated to employ small organic molecules as substrates for halogenation, as well as substrates that are tethered to carrier proteins (CPs). Despite numerous reports of FAD-dependent halogenases utilizing CP-tethered substrates, only a few have been biochemically characterized due to limited accessibility to the physiological substrates. Here, we describe a method for the preparation of acyl-S-CP substrates and their use in biochemical assays to query the activity of FAD-dependent halogenases. Furthermore, we describe a mass spectrometry-based method for the characterization of acyl-S-CP substrates and the corresponding halogenated products generated by the halogenases. Finally, we test the substrate specificity of a physiological chlorinase and a physiological brominase from marine bacteria, and, for the first time, demonstrate the distinct halide specificity of halogenases. The methodology described here will enable characterization of new halogenases employing CP-tethered substrates.
Collapse
|