1
|
Thorwart T, Greb L. Structural Flexibility is a Decisive Factor in FLP Dihydrogen Cleavage with Tetrahedral Lewis Acids: A Silane Case Study. Chemistry 2024; 30:e202401912. [PMID: 38856095 DOI: 10.1002/chem.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Dihydrogen activation is the paradigmatic reaction of frustrated Lewis pairs (FLPs). While trigonal-planar Lewis acids have been well established in this transformation, tetrahedral Lewis acids are surprisingly limited. Indeed, several cases were computed as thermodynamically and kinetically feasible but exhibit puzzling discrepancies with experimental results. In the present study, a computational investigation of the factors influencing dihydrogen activation are considered by large ensemble sampling of encounter complexes, deformation energies and the activation strain model for a silicon/nitrogen FLP and compared with a boron/phosphorous FLP. The analysis adds the previously missing dimension of Lewis acids' structural flexibility as a factor that influences preexponential terms beyond pure transition state energies. It sheds light on the origin of "overfrustration" (defined herein), indicates structural constraint in Lewis acids as a linchpin for activation of weak donor substrates, and allows drawing a more refined mechanistic picture of this emblematic reactivity.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Krämer F. Aluminum in Frustrated Lewis Pair Chemistry. Angew Chem Int Ed Engl 2024; 63:e202405207. [PMID: 38826040 DOI: 10.1002/anie.202405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
This review article describes the development of the use of aluminum compounds in the chemistry of frustrated Lewis pairs (FLPs) over the last 14 years. It also discusses the synthesis, reactivity and catalytic applications of intermolecular, intramolecular and so-called hidden FLPs with phosphorus, nitrogen and carbon Lewis bases. The intrinsically higher acidity of aluminum compounds compared to their boron analogs opens up different reaction pathways. The results are presented in a more or less chronological order. It is shown that Al FLPs react with a variety of polar and non-polar substrates and form both stable adducts and reversibly activate bonds. Consequently, some catalytic applications of the title compounds were presented such as dimerization of alkynes, hydrogenation of tert-butyl ethylene and imines, C-F bond activation, reduction of CO2, dehydrogenation of amine borane and transfer of ammonia. In addition, various Al FLPs were used as initiators in polymerization reactions.
Collapse
Affiliation(s)
- Felix Krämer
- C1 Green Chemicals AG, Am Studio 2a, 12489, Berlin, Germany
| |
Collapse
|
3
|
Kumar M, Nayek HP. Syntheses and exploration of the catalytic activities of organotin(IV) compounds. Dalton Trans 2024; 53:9827-9837. [PMID: 38804088 DOI: 10.1039/d4dt00646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Six organotin(IV) compounds (1-6) have been synthesized by reaction of the polydentate pro-ligands H3L and H2L, respectively, with the corresponding diorganotin chlorides. All of the compounds were characterized by FT-IR spectroscopy, 1H, 13C{1H}, and 119Sn (1H) NMR spectroscopy, HRMS spectrometry, and single-crystal X-ray diffraction. The solid-state structures show that all of the compounds are monomeric (except compound 3) and contain a penta-coordinated tin atom. Compound 3 is a dimer with two hexa-coordinated tin atoms. Compounds 1-3 contain a non-coordinated hydroxymethyl group. All of the compounds have been screened for their catalytic efficacy in the synthesis of 1,2 disubstituted benzimidazoles using o-phenylenediamine and aldehyde derivatives. It has been observed that both the Lewis acidic Sn(IV) centre and the hydroxymethyl group (hydrogen bond donor) catalyse the reactions with a product yield of up to 92%.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
4
|
Chauhan P, Chauhan A, Shankar R. Carbon-Sulfur Bond Cleavage in Methanesulfonate on Diorganotin Quinaldate Platform - Synthesis and Characterization of [(n-Bu 2SnL) 2SO 4]. Chem Asian J 2024; 19:e202400013. [PMID: 38353128 DOI: 10.1002/asia.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The synthesis of mixed ligand di-n-butyltin complexes, [(n-Bu2SnL1-3)2SO4], 2-4 (HL1-3=2-quinoline/ 1-isoquinoline/ 4-methoxy-2-quinoline carboxylic acid) has been realized by reacting n-Bu2Sn(OMe)OSO2Me, 1 a with the corresponding quinaldic acid under solvothermal conditions. The observed transformation of methane sulfonate to sulfate anion represents a rare example of C-S bond cleavage on the organotin scaffolds, n-Bu2Sn(L1-3)OSO2Me, which have been identified as en route intermediates by NMR and X-ray crystallography. Analogous reaction when extended with Me2Sn(OMe)OSO2Me, 1 b and HL2 yields [(Me2Sn)2(L2)3(OSO2Me)], 5 as partially disproportionated product of Me2Sn(L2)OSO2Me. The solid-state structures of 2-5 reveal variable modes of coordination of the ligands to afford molecular and polymeric motifs.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Aishwarya Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ravi Shankar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
5
|
Žáková A, Saha P, Paparakis A, Zábranský M, Gastelu G, Kukla J, Uranga JG, Hulla M. Hexacoordinated tin complexes catalyse imine hydrogenation with H 2. Chem Commun (Camb) 2024; 60:3287-3290. [PMID: 38421350 DOI: 10.1039/d3cc05878f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Frustrated Lewis pair (FLP) hydrogenation catalysts predominantly use alkyl- and aryl-substituted Lewis acids (LA) that offer a limited number of combinations of substituents, limiting our ability to tune their properties and, ultimately, their reactivity. Nevertheless, main-group complexes have numerous ligands available for such purposes, which could enable us to broaden the range of FLP catalysis. Supporting this hypothesis, we demonstrate here that hexacoordinated tin complexes with Schiff base ligands catalyse imine hydrogenation via activation of H2(g). As shown by hydrogen-deuterium scrambling, [Sn(tBu2Salen)(OTf)2] activated H2(g) at 25 °C and 10 bar of H2. After tuning the ligands, we found that [Sn(Salen)Cl2] was the most efficient imine hydrogenation catalyst despite having the lowest activity in H2(g) activation. Moreover, various imines were hydrogenated in yields up to 98% thereby opening up opportunities for developing novel FLP hydrogenation catalysts based on hexacoordinated LA of main-group elements.
Collapse
Affiliation(s)
- Andrea Žáková
- Department of Inorganic Chemistry, Faculty of Science Charles, University Prague, 128 00, Czech Republic.
| | - Pritha Saha
- Department of Inorganic Chemistry, Faculty of Science Charles, University Prague, 128 00, Czech Republic.
| | - Alexandros Paparakis
- Department of Inorganic Chemistry, Faculty of Science Charles, University Prague, 128 00, Czech Republic.
| | - Martin Zábranský
- Department of Inorganic Chemistry, Faculty of Science Charles, University Prague, 128 00, Czech Republic.
| | - Gabriela Gastelu
- Instituto de Investigaciones en Físico-Química Córdoba Universidad Nacional de Córdoba (INFIQC-CONICET), Córdoba, 5000, Argentina
| | - Jaroslav Kukla
- Institute of Environmental Studies, Faculty of Science Charles, University Prague, 128 00, Czech Republic
| | - Jorge G Uranga
- Instituto de Investigaciones en Físico-Química Córdoba Universidad Nacional de Córdoba (INFIQC-CONICET), Córdoba, 5000, Argentina
| | - Martin Hulla
- Department of Inorganic Chemistry, Faculty of Science Charles, University Prague, 128 00, Czech Republic.
| |
Collapse
|
6
|
Thorwart T, Greb L. Reversible C-H bond silylation with a neutral silicon Lewis acid. Chem Sci 2023; 14:11237-11242. [PMID: 37860638 PMCID: PMC10583699 DOI: 10.1039/d3sc03488g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The silicon-carbon bond is a valuable linchpin for synthetic transformations. However, installing Si-C functionalities requires metalated C-nucleophiles, activated silicon reagents (silylium ions, silyl radicals, and silyl anions), or transition metal catalysis, and it occurs irreversibly. In contrast, spontaneous C-H silylations with neutral silanes leading to anionic silicates, and their reversible deconstruction, are elusive. Herein, the CH-bond silylation of heterocycles or a terminal alkyne is achieved by reaction with bis(perfluoro(N-phenyl-ortho-amidophenolato))silane and 1,2,2,6,6-pentamethylpiperidine. Computational and experimental insights reveal a frustrated Lewis pair (FLP) mechanism. Adding a silaphilic donor to the ammonium silicate products induces the reformation of the C-H bond, thus complementing previously known irreversible C-H bond silylation protocols. Interestingly, the FLP "activated" N-methylpyrrole exhibits "deactivated" features against electrophiles, while a catalytic functionalization is found to be effective only in the absence of a base.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| | - Lutz Greb
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut Im Neuenheimer Feld 270 Heidelberg 69120 Germany
| |
Collapse
|
7
|
Prakash R, Joseph J, Andrews AP, Varghese B, Venugopal A. From Sn(II) to Sn(IV): Enhancing Lewis Acidity Via Oxidation. Inorg Chem 2023; 62:14828-14832. [PMID: 37676732 DOI: 10.1021/acs.inorgchem.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We demonstrate the increased Lewis acidity on going from Sn(II) to Sn(IV) by oxidizing TpMe2SnOTf (OTf = SO3CF3) to TpMe2SnF(OTf)2. Replacement of the fluoride ion in TpMe2SnF(OTf)2 by a triflate, resulting in TpMe2Sn(OTf)3 further enhances the Lewis acidity at tin. 119Sn NMR spectroscopy, modified Gutmann-Beckett test, computational analysis, and catalytic phosphine oxide deoxygenation support the claims.
Collapse
Affiliation(s)
- Rini Prakash
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, Kerala, India
| | - Jerin Joseph
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, Kerala, India
| | - Alex P Andrews
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, Kerala, India
| | - Babu Varghese
- Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
8
|
Ghara M, Mondal H, Pal R, Chattaraj PK. Frustrated Lewis Pairs: Bonding, Reactivity, and Applications. J Phys Chem A 2023. [PMID: 37216335 DOI: 10.1021/acs.jpca.3c02141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The outstanding capability of Frustrated Lewis Pair (FLP) catalysts to activate small molecules has gained significant attention in recent times. Reactivity of FLP is further extended toward the hydrogenation of various unsaturated species. Over the past decade, this unique catalysis concept has been successfully expanded to heterogeneous catalysis as well. The present review article gives a brief survey on several studies on this field. A thorough discussion on quantum chemical studies concerning the activation of H2 is provided. The role of aromaticity and boron-ligand cooperation on the reactivity of FLP is discussed in the Review. How FLP can activate other small molecules by cooperative action of its Lewis centers is also discussed. Further, the discussion is shifted to the hydrogenation of various unsaturated species and the mechanism regarding this process. It also discusses the latest theoretical advancements in the application of FLP in heterogeneous catalysis across various domains, such as two-dimensional materials, functionalized surfaces, and metal oxides. A deeper understanding of the catalytic process may assist in devising new heterogeneous FLP catalysts through experimental design.
Collapse
Affiliation(s)
- Manas Ghara
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Himangshu Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
9
|
Wickemeyer L, Hartmann L, Neumann B, Stammler H, Mitzel NW. Differences in the Reactivity of Geminal Si-O-P and Al-O-P Frustrated Lewis Pairs. Chemistry 2023; 29:e202202842. [PMID: 36349870 PMCID: PMC10107522 DOI: 10.1002/chem.202202842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The new oxygen-bridged geminal Si/P Frustrated Lewis Pair (FLP) tBu2 P-O-Si(C2 F5 )3 (2) is able to reversibly bind carbon dioxide at ambient temperature. We compared its reactivity towards benzil, but-3-en-2-one, nitriles and phenylacetylene to that of the Al/P FLP tBu2 P-O-AlBis2 (Bis=-CH(SiMe3 )2 ) (1). When reacted with benzil, both, 1 and 2, form the 1,2-addition product, but in the Si/P FLP 2, the second carbonyl function additionally binds to the silicon atom. With but-3-en-2-one 2 forms the 1,2-addition product, while 1 binds in 1,4-position. The reaction with acetonitrile yielded an unexpected etheneimine adduct for both systems, while only 1 reacted with tert-butylnitrile. With benzonitrile and acrylonitrile, 2 showed reversible addition to the C≡N bond and 1 forms a stable adduct with benzonitrile. Solely 1 shows reactivity towards phenylacetylene affording a mixture of the CH deprotonation adduct tBu2 P(H)-O-AlBis2 (CCPh) and the FLP -C≡C 1,2-addition adduct under ring formation. All compounds were characterized by multinuclear NMR spectroscopy, XRD and elemental analysis.
Collapse
Affiliation(s)
- Lucas Wickemeyer
- Lehtuhl für Anorganische Chemie und Strukturchemie andCentrum für Molekulare Materialen CM2Fakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Lukas Hartmann
- Lehtuhl für Anorganische Chemie und Strukturchemie andCentrum für Molekulare Materialen CM2Fakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Lehtuhl für Anorganische Chemie und Strukturchemie andCentrum für Molekulare Materialen CM2Fakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Lehtuhl für Anorganische Chemie und Strukturchemie andCentrum für Molekulare Materialen CM2Fakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert W. Mitzel
- Lehtuhl für Anorganische Chemie und Strukturchemie andCentrum für Molekulare Materialen CM2Fakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
10
|
Wickemeyer L, Trapp PC, Aders N, Neumann B, Stammler HG, Mitzel NW. Reactivity of Oxygen-Bridged Geminal Al/P and Si/P Frustrated Lewis Pairs towards Heterocumulenes. Chemistry 2023; 29:e202203685. [PMID: 36734185 DOI: 10.1002/chem.202203685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The two oxygen-bridged geminal frustrated Lewis pairs (FLP) tBu2 P-O-AlBis2 (Bis=CH(SiMe3 )2 ; 1) and tBu2 P-O-Si(C2 F5 )3 (2) were reacted with the heterocumulenes PhNCO, PhOCN, PhNCS, CS2 and PhNSO as well as SO2 . With isocyanate and cyanate, both 1 and 2, form addition products under formation of five-membered rings. With CS2 , isothiocyanate and sulfinylaniline, only 1 forms stable adducts, whereas 2 shows reactivity towards sulfinylaniline, but the product decomposed after a few minutes. The reaction of 1 with SO2 led to partial cleavage of the P-O-Al and Al-C units, as confirmed by X-ray diffraction studies of a complex aggregate. The reaction of 2 with SO2 affords the 1,2-addition product. All adducts were characterized by means of multinuclear NMR spectroscopy, X-ray crystallography and CHN analyses.
Collapse
Affiliation(s)
- Lucas Wickemeyer
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Pia C Trapp
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Niklas Aders
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie and, Centrum für Molekulare Materialen CM2, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
11
|
Paparakis A, Turnell-Ritson RC, Sapsford JS, Ashley AE, Hulla M. Tin-catalyzed reductive coupling of amines with CO 2 and H 2. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tin-based FLPs catalyze reductive coupling reactions of amines with CO2 and H2. Water produced by the reaction is well tolerated and TONs up to 300 can be achieved.
Collapse
Affiliation(s)
- Alexandros Paparakis
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | | | - Joshua S. Sapsford
- Department of Chemistry, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Andrew E. Ashley
- Department of Chemistry, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Martin Hulla
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| |
Collapse
|
12
|
Thorwart T, Hartmann D, Greb L. Dihydrogen Activation with a Neutral, Intermolecular Silicon(IV)-Amine Frustrated Lewis Pair. Chemistry 2022; 28:e202202273. [PMID: 35861023 DOI: 10.1002/chem.202202273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/07/2023]
Abstract
The heterolytic cleavage of dihydrogen constitutes the hallmark reaction of frustrated Lewis pairs (FLP). While being well-established for planar Lewis acids, such as boranes or silylium ions, the observation of the primary H2 splitting products with non-planar Lewis acid FLPs remained elusive. In the present work, we report bis(perfluoro-N-phenyl-ortho-amidophenolato)silane and its application in dihydrogen activation to a fully characterized hydridosilicate. The strict design of the Lewis acid, the limited selection of the Lewis base, and the distinct reaction conditions emphasize the narrow tolerance to achieve this fascinating process with a tetrahedral Lewis acid.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
13
|
Donath M, Schwedtmann K, Schneider T, Hennersdorf F, Bauzá A, Frontera A, Weigand JJ. Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nat Chem 2022; 14:384-391. [PMID: 35379968 DOI: 10.1038/s41557-022-00913-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The main feedstock for the value-added phosphorus chemicals used in industry and research is white phosphorus (P4), from which the key intermediate for forming P(III) compounds is PCl3. Owing to its high reactivity, syntheses based on PCl3 are often accompanied by product mixtures and laborious work-up procedures, so an alternative process to form a viable P(III) transfer reagent is desirable. Our concept of oxidative onioation, where white phosphorus is selectively converted into triflate salts of versatile P1 transfer reagents such as [P(LN)3][OTf]3 (LN is a cationic, N-based substituent; that is, 4-dimethylaminopyridinio), provides a convenient alternative for the implementation of P-O, P-N and P-C bonds while circumventing the use of PCl3. We use p-block element compounds of type RnE (for example, Ph3As or PhI) to access weak adducts between nitrogen Lewis bases LN and the corresponding dications [RnELN]2+. The proposed equilibrium between [RnELN]2+ + LN and [RnE(LN)2]2+ allows for the complete oxidative onioation of all six P-P bonds in P4 to yield highly reactive and versatile trications [P(LN)3]3+.
Collapse
Affiliation(s)
- Maximilian Donath
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Tobias Schneider
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
14
|
Xu H, Chen M, Ji M. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
16
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
17
|
de Las Nieves-Piña M, Frontera A, Mooibroek TJ, Bauzá A. Frustrated Lewis Pairs Based on Carbon⋅⋅⋅Carbon + Tetrel Bonds: A DFT Study. Chemphyschem 2021; 22:2478-2483. [PMID: 34596315 DOI: 10.1002/cphc.202100613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Indexed: 01/02/2023]
Abstract
The ability of Triangulenium (TA+ ) compounds to form Frustrated Lewis Pairs (FLPs) with N-HeteroCycle Carbenes (NHCs) is analysed in this manuscript at the PBE0-D3/def2-TZVP level of theory. We have used six TA+ -based moieties, three presenting similar bridging groups (O (trioxo), -CH2 (triaryl) and -NH (triaza)) and another three mixing, O, -CH2 and NH moieties. In addition, several aryl-substituted NHCs have been used as electron donor moieties to undergo carbon⋅⋅⋅carbon+ tetrel bonds with the TA+ derivatives. More precisely, -Me,-iPr, -tBu and -Ph groups were used. Finally, we have used Bader's quantum theory of "atoms in molecules" (QTAIM) and Natural Bonding Analysis (NBO) to characterize the carbon⋅⋅⋅carbon+ tetrel bonds described herein. We expect the results gathered herein will be useful for further exploitation of carbon⋅⋅⋅carbon+ bonds in the formation of FLPs as well as to expand the current knowledge of tetrel bonds to the fields of synthetic chemistry and catalysis.
Collapse
Affiliation(s)
- María de Las Nieves-Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.7, 07122, Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.7, 07122, Palma de Mallorca, Baleares, Spain
| | - Tiddo J Mooibroek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park A, 904, E1.26, 1098 XH, Amsterdam, The Netherlands
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.7, 07122, Palma de Mallorca, Baleares, Spain
| |
Collapse
|
18
|
A neutral germanium/phosphorus frustrated Lewis pair: Synthesis and reactivity. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Sarkar P, Das S, Pati SK. Investigating Tetrel-Based Neutral Frustrated Lewis Pairs for Hydrogen Activation. Inorg Chem 2021; 60:15180-15189. [PMID: 34590831 DOI: 10.1021/acs.inorgchem.1c01543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrel Lewis acids are a prospective alternative to commonly employed neutral boranes in frustrated Lewis pair (FLP) chemistry. While cationic tetrylium Lewis acids, being isolobal and iso(valence)electronic, are a natural replacement to boranes, neutral tetrel Lewis acids allude as less trivial options due to the absence of a formally empty p orbital on the acceptor atom. Recently, a series of intramolecular geminal FLPs (C2F5)3E-CH2-P(tBu)2 (E = Si, Ge, Sn) featuring neutral tetrel atoms as acceptor sites has been reported for activation of small molecules including H2. In this work, through density functional theory computations, we elucidate the general mechanistic picture of H2 activation by this family of FLPs. Our findings reveal that the acceptor atom derives the required Lewis acidity utilizing the antibonding orbitals of its adjacent bonds with the individual contributions depending on the identity of the acceptor and the donor atoms. By varying the identity of the Lewis acid and Lewis base sites and attached substituents, we unravel their interplay on the energetics of the H2 activation. We find that switching the donor site from P to N significantly affects the synchronous nature of the bond breaking/formations along the reaction pathway, and as a result, N-bearing FLPs have a more favorable H2 activation profile than those with P. Our results are quantitatively discussed in detail within the framework of the activation-strain model of reactivity along with the energy-decomposition analysis method. Finally, the reductive elimination decomposition route pertinent to the plausible extension of the H2 activation to catalytic hydrogenation by these FLPs is also examined.
Collapse
Affiliation(s)
- Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shubhajit Das
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
20
|
Hartmann D, Braner S, Greb L. Bis(perchlorocatecholato)silane and heteroleptic bidonors: hidden frustrated Lewis pairs resulting from ring strain. Chem Commun (Camb) 2021; 57:8572-8575. [PMID: 34373874 DOI: 10.1039/d1cc03452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bis(perchlorocatecholato)silane and bidentate N,N- or N,P-heteroleptic donors were reacted to form hexacoordinated complexes. Depending on the ring strain and hemilability in the adducts, frustrated Lewis pair (FLP) reactivity with aldehydes and catalytic ammonia borane dehydrocoupling was enabled. All reactions were analyzed using density functional theory. This approach represents an alternative way, beyond relying on steric bulk, to achieve frustration in bimolecular FLPs.
Collapse
Affiliation(s)
- Deborah Hartmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, Heidelberg 69120, Germany.
| | | | | |
Collapse
|
21
|
Sapsford JS, Csókás D, Turnell-Ritson RC, Parkin LA, Crawford AD, Pápai I, Ashley AE. Transition Metal-Free Direct Hydrogenation of Esters via a Frustrated Lewis Pair. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Dániel Csókás
- Research Center for Natural Sciences, Institute of Organic Chemistry, Budapest H-1117, Hungary
| | | | - Liam A. Parkin
- Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K
| | | | - Imre Pápai
- Research Center for Natural Sciences, Institute of Organic Chemistry, Budapest H-1117, Hungary
| | - Andrew E. Ashley
- Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K
| |
Collapse
|
22
|
Holtkamp P, Poier D, Neumann B, Stammler H, Mitzel NW. Exploring the Reactivity of a Frustrated Sn/P Lewis Pair: The Highly Selective Complexation of the cis-Azobenzene Photoisomer. Chemistry 2021; 27:3793-3798. [PMID: 33284497 PMCID: PMC7986075 DOI: 10.1002/chem.202004600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/16/2022]
Abstract
The reactivity of the geminal frustrated Lewis pair (FLP) (F5 C2 )3 SnCH2 P(tBu)2 (1) was explored by reacting it with a variety of small molecules (PhOCN, PhNCS, PhCCH, tBuCCH, H3 CC(O)CH=CH2 , Ph[C(O)]2 Ph, PhN=NPh and Me3 SiCHN2 ), featuring polar or non-polar multiple bonds and/or represent α,β-unsaturated systems. While most adducts are formed readily, the binding of azobenzene requires UV-induced photoisomerization, which results in the highly selective complexation of cis-azobenzene. In the case of benzil, the reaction does not lead to the expected 1,2- or 1,4-addition products, but to the non-stereoselective (tBu)2 PCH2 -transfer to a prochiral keto function of benzil. All adducts of 1 were characterised by means of multinuclear NMR spectroscopy, elemental analyses and X-ray diffraction experiments.
Collapse
Affiliation(s)
- Philipp Holtkamp
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Dario Poier
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
23
|
Shaikh AC, Veleta JM, Moutet J, Gianetti TL. Trioxatriangulenium (TOTA +) as a robust carbon-based Lewis acid in frustrated Lewis pair chemistry. Chem Sci 2021; 12:4841-4849. [PMID: 34168760 PMCID: PMC8179643 DOI: 10.1039/d0sc05893a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
We report the reactivity between the water stable Lewis acidic trioxatriangulenium ion (TOTA+) and a series of Lewis bases such as phosphines and N-heterocyclic carbene (NHC). The nature of the Lewis acid-base interaction was analyzed via variable temperature (VT) NMR spectroscopy, single-crystal X-ray diffraction, UV-visible spectroscopy, and DFT calculations. While small and strongly nucleophilic phosphines, such as PMe3, led to the formation of a Lewis acid-base adduct, frustrated Lewis pairs (FLPs) were observed for sterically hindered bases such as P( t Bu)3. The TOTA+-P( t Bu)3 FLP was characterized as an encounter complex, and found to promote the heterolytic cleavage of disulfide bonds, formaldehyde fixation, dehydrogenation of 1,4-cyclohexadiene, heterolytic cleavage of the C-Br bonds, and interception of Staudinger reaction intermediates. Moreover, TOTA+ and NHC were found to first undergo single-electron transfer (SET) to form [TOTA]·[NHC]˙+, which was confirmed via electron paramagnetic resonance (EPR) spectroscopy, and subsequently form a [TOTA-NHC]+ adduct or a mixture of products depending the reaction conditions used.
Collapse
Affiliation(s)
- Aslam C Shaikh
- University of Arizona, Department of Chemistry and Biochemistry Tucson AZ USA
| | - José M Veleta
- University of Arizona, Department of Chemistry and Biochemistry Tucson AZ USA
| | - Jules Moutet
- University of Arizona, Department of Chemistry and Biochemistry Tucson AZ USA
| | - Thomas L Gianetti
- University of Arizona, Department of Chemistry and Biochemistry Tucson AZ USA
| |
Collapse
|
24
|
Das S, Pati SK. Computational Exploration of Intramolecular Sn/N Frustrated Lewis Pairs for Hydrogen Activation and Catalytic Hydrogenation. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shubhajit Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Swapan K. Pati
- Theoretical Sciences Unit and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
25
|
Holtkamp P, Schwabedissen J, Neumann B, Stammler H, Koptyug IV, Zhivonitko VV, Mitzel NW. A Zwitterionic Phosphonium Stannate(II) via Hydrogen Splitting by a Sn/P Frustrated Lewis-Pair and Reductive Elimination. Chemistry 2020; 26:17381-17385. [PMID: 33016507 PMCID: PMC7839681 DOI: 10.1002/chem.202004425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/22/2022]
Abstract
The reactivity of the frustrated Lewis pair (FLP) (F5 C2 )3 SnCH2 P(tBu)2 (1) was investigated with respect to the activation of elemental hydrogen. The reaction of 1 at elevated hydrogen pressure afforded the intramolecular phosphonium stannate(II) (F5 C2 )2 SnCH2 PH(tBu)2 (3). It was characterized by means of multinuclear NMR spectroscopy and single crystal X-ray diffraction. NMR experiments with the two isotopologues H2 and D2 showed it to be formed via an H2 adduct (F5 C2 )3 HSnCH2 PH(tBu)2 (2) and the subsequent formal reductive elimination of pentafluoroethane; this is supported by DFT calculations. Parahydrogen-induced polarization experiments revealed the formation of a second product of the reaction of 1 with H2 , [HP(tBu)2 Me][Sn(C2 F5 )3 ] (4), in 1 H NMR spectra, whereas 2 was not detected due to its transient nature.
Collapse
Affiliation(s)
- Philipp Holtkamp
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Jan Schwabedissen
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Igor V. Koptyug
- International Tomography Center, SB RASInstitutskaya St. 3ANovosibirsk630090Russia
| | | | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
26
|
Hamza A, Sorochkina K, Kótai B, Chernichenko K, Berta D, Bolte M, Nieger M, Repo T, Pápai I. Origin of Stereoselectivity in FLP-Catalyzed Asymmetric Hydrogenation of Imines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Kristina Sorochkina
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Bianka Kótai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Konstantin Chernichenko
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Dénes Berta
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Michael Bolte
- Institute of Inorganic Chemistry, Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Timo Repo
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
27
|
Rauch M, Kar S, Kumar A, Avram L, Shimon LJW, Milstein D. Metal-Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes. J Am Chem Soc 2020; 142:14513-14521. [PMID: 32786799 PMCID: PMC7453403 DOI: 10.1021/jacs.0c05500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
A series of PNP zinc pincer complexes
capable of bond activation
via aromatization/dearomatization metal–ligand cooperation
(MLC) were prepared and characterized. Reversible heterolytic N–H
and H–H bond activation by MLC is shown, in which hemilability
of the phosphorus linkers plays a key role. Utilizing this zinc pincer
system, base-free catalytic hydrogenation of imines and ketones is
demonstrated. A detailed mechanistic study supported by computation
implicates the key role of MLC in facilitating effective catalysis.
This approach offers a new strategy for (de)hydrogenation and other
catalytic transformations mediated by zinc and other main group metals.
Collapse
Affiliation(s)
- Michael Rauch
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sayan Kar
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amit Kumar
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
28
|
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
- Henan Key Laboratory of Function‐Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang Henan 471934 China
| | - Wen‐Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University Beijing 100871 China
| |
Collapse
|
29
|
Abstract
The reductive amination, the reaction of an aldehyde or a ketone with ammonia or an amine in the presence of a reducing agent and often a catalyst, is an important amine synthesis and has been intensively investigated in academia and industry for a century. Besides aldehydes, ketones, or amines, starting materials have been used that can be converted into an aldehyde or ketone (for instance, carboxylic acids or organic carbonate or nitriles) or into an amine (for instance, a nitro compound) in the presence of the same reducing agent and catalyst. Mechanistically, the reaction starts with a condensation step during which the carbonyl compound reacts with ammonia or an amine, forming the corresponding imine followed by the reduction of the imine to the alkyl amine product. Many of these reduction steps require the presence of a catalyst to activate the reducing agent. The reductive amination is impressive with regard to the product scope since primary, secondary, and tertiary alkyl amines are accessible and hydrogen is the most attractive reducing agent, especially if large-scale product formation is an issue, since hydrogen is inexpensive and abundantly available. Alkyl amines are intensively produced and use fine and bulk chemicals. They are key functional groups in many pharmaceuticals, agro chemicals, or materials. In this review, we summarize the work published on reductive amination employing hydrogen as the reducing agent. No comprehensive review focusing on this subject has been published since 1948, albeit many interesting summaries dealing with one or the other aspect of reductive amination have appeared. Impressive progress in using catalysts based on earth-abundant metals, especially nanostructured heterogeneous catalysts, has been made during the early development of the field and in recent years.
Collapse
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II - Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
30
|
Sapsford JS, Csókás D, Scott DJ, Turnell-Ritson RC, Piascik AD, Pápai I, Ashley AE. Establishing the Role of Triflate Anions in H 2 Activation by a Cationic Triorganotin(IV) Lewis Acid. ACS Catal 2020; 10:7573-7583. [PMID: 32905389 PMCID: PMC7469243 DOI: 10.1021/acscatal.0c02023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Indexed: 12/13/2022]
Abstract
![]()
Cationic
Lewis acids (LAs) are gaining interest as targets for
frustrated Lewis pair (FLP)-mediated catalysis. Unlike neutral boranes,
which are the most prevalent LAs for FLP hydrogenations, the Lewis
acidity of cations can be tuned through modulation of the counteranion;
however, detailed studies on such anion effects are currently lacking
in the literature. Herein, we present experimental and computational
studies which probe the mechanism of H2 activation using iPr3SnOTf (1-OTf) in conjunction
with a coordinating (quinuclidine; qui) and noncoordinating (2,4,6-collidine;
col) base and compare its reactivity with {iPr3Sn·base}{Al[OC(CF3)3]4} (base = qui/col) systems which lack a coordinating anion to investigate
the active species responsible for H2 activation and hence
resolve any mechanistic roles for OTf– in the iPr3SnOTf-mediated pathway.
Collapse
Affiliation(s)
- Joshua S. Sapsford
- Molecular Sciences Research Hub, Imperial College, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Daniel J. Scott
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, Regensburg 93051, Germany
| | - Roland C. Turnell-Ritson
- Molecular Sciences Research Hub, Imperial College, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Adam D. Piascik
- Molecular Sciences Research Hub, Imperial College, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| | - Imre Pápai
- Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Andrew E. Ashley
- Molecular Sciences Research Hub, Imperial College, White City Campus, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
31
|
Dong M, Wang J, Wu S, Zhao Y, Ma Y, Xing Y, Cao F, Li L, Li Z, Zhu H. Catalytic Mechanism Study on the 1,2‐ and 1,4‐Transfer Hydrogenation of Ketimines and β‐Enamino Esters Catalyzed by Axially Chiral Biscarboline‐Based Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mengxian Dong
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Jie Wang
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Shijie Wu
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yang Zhao
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yangyang Ma
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Yongfei Xing
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Fei Cao
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Longfei Li
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| | - Zhenqiu Li
- College of Life ScienceHebei University Baoding 071002 People's Republic of China
| | - Huajie Zhu
- College of PharmacyHebei University Baoding 071002 People's Republic of China
| |
Collapse
|
32
|
Marczenko KM, Johnson CL, Chitnis SS. Synthesis of a Perfluorinated Phenoxyphosphorane and Conversion to Its Hexacoordinate Anions. Chemistry 2019; 25:8865-8874. [PMID: 30958579 DOI: 10.1002/chem.201901333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/19/2022]
Abstract
We report the synthesis and structural characterization of a neutral PV Lewis acid, P(OC6 F5 )5 , and salts containing the six-coordinate anions [P(OC6 F5 )5 F]- and [P(OC6 F5 )6 ]- . The latter anion exhibits a rare example of F-πarene interactions in both the solid and the solution phase, which has been quantitatively studied by variable-temperature (VT) NMR spectroscopy. The Lewis acid strength of P(OC6 F5 )5 has been assessed through experimental fluoride ion competition experiments and quantum-chemical calculations of its fluoride ion affinity (FIA) and global electrophilicity index (GEI). Our findings highlight the importance of considering solvent effects in electrophilicity calculations, even when neutral Lewis acids are involved, and show a rare divergence between FIA and GEI trends. The coordinating abilities of the [P(OC6 F5 )6 ]- and [P(OC6 F5 )5 F]- anions towards the trityl cation, as a prototypical electrophile, have been assessed.
Collapse
Affiliation(s)
- Katherine M Marczenko
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, N. S., B3H 4R2, Canada
| | - Chloe-Louise Johnson
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, N. S., B3H 4R2, Canada
| | - Saurabh S Chitnis
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, N. S., B3H 4R2, Canada
| |
Collapse
|
33
|
Daru J, Bakó I, Stirling A, Pápai I. Mechanism of Heterolytic Hydrogen Splitting by Frustrated Lewis Pairs: Comparison of Static and Dynamic Models. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- János Daru
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Imre Bakó
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - András Stirling
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Imre Pápai
- Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
34
|
Zwettler N, Mösch-Zanetti NC. Interaction of Metal Oxido Compounds with B(C 6 F 5 ) 3. Chemistry 2019; 25:6064-6076. [PMID: 30707470 DOI: 10.1002/chem.201805148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/07/2022]
Abstract
Lewis acid-base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6 F5 )3 . It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| |
Collapse
|
35
|
Lin Y, Zhu DP, Du YR, Zhang R, Zhang SJ, Xu BH. Tris(pyrazolyl)borate Cobalt-Catalyzed Hydrogenation of C═O, C═C, and C═N Bonds: An Assistant Role of a Lewis Base. Org Lett 2019; 21:2693-2698. [DOI: 10.1021/acs.orglett.9b00679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Lin
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - De-Ping Zhu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Ran Du
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Suo-Jiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
|
37
|
Holtkamp P, Friedrich F, Stratmann E, Mix A, Neumann B, Stammler H, Mitzel NW. A Neutral Geminal Tin/Phosphorus Frustrated Lewis Pair. Angew Chem Int Ed Engl 2019; 58:5114-5118. [DOI: 10.1002/anie.201901037] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Philipp Holtkamp
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Felix Friedrich
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Erik Stratmann
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Andreas Mix
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie, and Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
38
|
Holtkamp P, Friedrich F, Stratmann E, Mix A, Neumann B, Stammler H, Mitzel NW. Ein neutrales geminales frustriertes Zinn/Phosphor‐Lewis‐Paar. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philipp Holtkamp
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Felix Friedrich
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Erik Stratmann
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Andreas Mix
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Hans‐Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie und Centrum für Molekulare Materialien CM2Fakultät für ChemieUniversität Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| |
Collapse
|
39
|
Diab F, Aicher FSW, Sindlinger CP, Eichele K, Schubert H, Wesemann L. Reductive Elimination and Oxidative Addition of Hydrogen at Organostannylium and Organogermylium Cations. Chemistry 2019; 25:4426-4434. [PMID: 30706972 DOI: 10.1002/chem.201805770] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Fatima Diab
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Frederik S. W. Aicher
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Christian P. Sindlinger
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
- Institut für Anorganische ChemieGeorg-August Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Klaus Eichele
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Lars Wesemann
- Institut für Anorganische ChemieEberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
40
|
Lam J, Szkop KM, Mosaferi E, Stephan DW. FLP catalysis: main group hydrogenations of organic unsaturated substrates. Chem Soc Rev 2019; 48:3592-3612. [PMID: 30178796 DOI: 10.1039/c8cs00277k] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article is focused on recent developments in main group mediated hydrogenation chemistry and catalysis using "frustrated Lewis pairs" (FLPs). The broading range of substrates and catalyst systems is reviewed and the advances in catalytic reductions and the development of stereoselective, asymmetric reductions made since 2012 is considered.
Collapse
Affiliation(s)
- Jolie Lam
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario M5S3H6, Canada.
| | | | | | | |
Collapse
|
41
|
Vasko P, Fuentes MÁ, Hicks J, Aldridge S. Reversible O–H bond activation by an intramolecular frustrated Lewis pair. Dalton Trans 2019; 48:2896-2899. [DOI: 10.1039/c9dt00228f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions of the O–H bonds in alcohols, water and phenol with dimethylxanthene-derived frustrated Lewis pairs (FLPs) have been probed.
Collapse
Affiliation(s)
- Petra Vasko
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - M. Ángeles Fuentes
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Jamie Hicks
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Simon Aldridge
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| |
Collapse
|
42
|
Turnell-Ritson RC, Sapsford JS, Cooper RT, Lee SS, Földes T, Hunt PA, Pápai I, Ashley AE. Base-induced reversible H 2 addition to a single Sn(ii) centre. Chem Sci 2018; 9:8716-8722. [PMID: 30627391 PMCID: PMC6289099 DOI: 10.1039/c8sc03110j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/17/2018] [Indexed: 12/02/2022] Open
Abstract
A range of amines catalyse the oxidative addition (OA) of H2 to [(Me3Si)2CH]2Sn (1), forming [(Me3Si)2CH]2SnH2 (2). Experimental and computational studies point to 'frustrated Lewis pair' mechanisms in which 1 acts as a Lewis acid and involve unusual late transition states; this is supported by the observation of a kinetic isotope effect for Et3N. When DBU is used the energetics of H2 activation are altered, allowing an equilibrium between 1, 2 and adduct [1·DBU] to be established, thus demonstrating reversible oxidative addition/reductive elimination (RE) of H2 at a single main group centre.
Collapse
Affiliation(s)
| | - Joshua S Sapsford
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - Robert T Cooper
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - Stella S Lee
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - Tamás Földes
- Research Center for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary .
| | - Patricia A Hunt
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| | - Imre Pápai
- Research Center for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary .
| | - Andrew E Ashley
- Department of Chemistry , Imperial College London , London , SW7 2AZ , UK .
| |
Collapse
|
43
|
Bayne JM, Fasano V, Szkop KM, Ingleson MJ, Stephan DW. Phosphorous(v) Lewis acids: water/base tolerant P 3-trimethylated trications. Chem Commun (Camb) 2018; 54:12467-12470. [PMID: 30335095 DOI: 10.1039/c8cc06564k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water/base intolerance of the previously reported electrophilic phosphonium cations has been overcome by replacing the labile electron-withdrawing groups generally attached to phosphorus (e.g. -F, -OAr, -CF3) with methyl groups. Tri-phosphorus(v) tricationic species, accessible in one-pot from commercially available materials, are air and water/base tolerant, yet are sufficiently Lewis acidic for catalysis.
Collapse
Affiliation(s)
- J M Bayne
- Department of Chemistry, University of Toronto, M5S 3H6, Canada.
| | | | | | | | | |
Collapse
|
44
|
Greb L. Lewis Superacids: Classifications, Candidates, and Applications. Chemistry 2018; 24:17881-17896. [DOI: 10.1002/chem.201802698] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lutz Greb
- Anorganisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 Germany
| |
Collapse
|
45
|
Mummadi S, Brar A, Wang G, Kenefake D, Diaz R, Unruh DK, Li S, Krempner C. “Inverse” Frustrated Lewis Pairs: An Inverse FLP Approach to the Catalytic Metal Free Hydrogenation of Ketones. Chemistry 2018; 24:16526-16531. [DOI: 10.1002/chem.201804370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Suresh Mummadi
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| | - Amandeep Brar
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering Institute of Theoretical and Computational Chemistry Nanjing University Xianlin Road No. 163 210023 Nanjing Jiangsu P. R. China
| | - Dustin Kenefake
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| | - Rony Diaz
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| | - Daniel K. Unruh
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| | - Shuhua Li
- School of Chemistry and Chemical Engineering Institute of Theoretical and Computational Chemistry Nanjing University Xianlin Road No. 163 210023 Nanjing Jiangsu P. R. China
| | - Clemens Krempner
- Department of Chemistry & Biochemistry Texas Tech University, Box 41061 Lubbock Texas 79409-1061 USA
| |
Collapse
|
46
|
Zwettler N, Walg SP, Belaj F, Mösch‐Zanetti NC. Heterolytic Si-H Bond Cleavage at a Molybdenum-Oxido-Based Lewis Pair. Chemistry 2018; 24:7149-7160. [PMID: 29521459 PMCID: PMC6001527 DOI: 10.1002/chem.201800226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 12/15/2022]
Abstract
The reaction of a molybdenum(VI) oxido imido complex with the strong Lewis acid B(C6 F5 )3 gave access to the Lewis adduct [Mo{OB(C6 F5 )3 }(NtBu)L2 ] featuring reversible B-O bonding in solution. The resulting frustrated Lewis pair (FLP)-like reactivity is reflected by the compound's ability to heterolytically cleave Si-H bonds, leading to a clean formation of the novel cationic MoVI species 3 a (R=Et) and 3 b (R=Ph) of the general formula [Mo(OSiR3 )(NtBu)L2 ][HB(C6 F5 )3 ]. These compounds possess properties highly unusual for molybdenum d0 species such as an intensive, charge-transfer-based color as well as a reversible redox couple at very low potentials, both dependent on the silane used. Single-crystal X-ray diffraction analyses of 2 and 4 b, a derivative of 3 b featuring the [FB(C6 F5 )3 ]- anion, picture the stepwise elongation of the Mo=O bond, leading to a large increase in the electrophilicity of the metal center. The reaction of 3 a and 3 b with benzaldehyde allowed for the regeneration of compound 2 by hydrosilylation of the benzaldehyde. NMR spectroscopy suggested an unusual mechanism for the transformation, involving a substrate insertion in the B-H bond of the borohydride anion.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Simon P. Walg
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| | - Nadia C. Mösch‐Zanetti
- Institute of Chemistry, Inorganic ChemistryUniversity of GrazSchubertstrasse 18010GrazAustria
| |
Collapse
|
47
|
Sapsford JS, Scott DJ, Allcock NJ, Fuchter MJ, Tighe CJ, Ashley AE. Direct Reductive Amination of Carbonyl Compounds Catalyzed by a Moisture Tolerant Tin(IV) Lewis Acid. Adv Synth Catal 2018; 360:1066-1071. [PMID: 29706853 PMCID: PMC5901005 DOI: 10.1002/adsc.201701418] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Indexed: 12/03/2022]
Abstract
Despite the ever-broadening applications of main-group 'frustrated Lewis pair' (FLP) chemistry to both new and established reactions, their typical intolerance of water, especially at elevated temperatures (>100 °C), represents a key barrier to their mainstream adoption. Herein we report that FLPs based on the Lewis acid iPr3SnOTf are moisture tolerant in the presence of moderately strong nitrogenous bases, even under high temperature regimes, allowing them to operate as simple and effective catalysts for the reductive amination of organic carbonyls, including for challenging bulky amine and carbonyl substrate partners.
Collapse
Affiliation(s)
| | - Daniel J. Scott
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | | | | | | | | |
Collapse
|
48
|
Scott DJ, Fuchter MJ, Ashley AE. Designing effective 'frustrated Lewis pair' hydrogenation catalysts. Chem Soc Rev 2018; 46:5689-5700. [PMID: 28692084 DOI: 10.1039/c7cs00154a] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decade has seen the subject of transition metal-free catalytic hydrogenation develop incredibly rapidly, transforming from a largely hypothetical possibility to a well-established field that can be applied to the reduction of a diverse variety of functional groups under mild conditions. This remarkable change is principally attributable to the development of so-called 'frustrated Lewis pairs': unquenched combinations of bulky Lewis acids and bases whose dual reactivity can be exploited for the facile activation of otherwise inert chemical bonds. While a number of comprehensive reviews into frustrated Lewis pair chemistry have been published in recent years, this tutorial review aims to provide a focused guide to the development of efficient FLP hydrogenation catalysts, through identification and consideration of the key factors that govern their effectiveness. Following discussion of these factors, their importance will be illustrated using a case study from our own research, namely the development of FLP protocols for successful hydrogenation of aldehydes and ketones, and for related moisture-tolerant hydrogenation.
Collapse
Affiliation(s)
- Daniel J Scott
- Department of Chemistry, Imperial College London, SW7 2AZ, UK.
| | | | | |
Collapse
|
49
|
Das S, Mondal S, Pati SK. Mechanistic Insights into Hydrogen Activation by Frustrated N/Sn Lewis Pairs. Chemistry 2018; 24:2575-2579. [PMID: 29276811 DOI: 10.1002/chem.201705861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/31/2022]
Abstract
The mechanism of H2 activation by recently reported N/Sn Lewis pairs is unravelled using the representative iPr3 SnOTf/DABCO combination. Computations provide evidence for weak intermolecular associations between Lewis acid and Lewis base (LA/LB) in which the counteranion to cationic LA fragment plays a critical role. Two frustrated Lewis pairs (FLPs) are observed; an unprecedented counteranion-mediated noncovalent LA/LB association is characterised along with the usual FLP structure. Both the FLPs are shown to be capable of H2 activation through cooperative electron transfer processes involving the LA/LB centres. Overall, computed results are in good agreement with the experimental findings and account for the observed reactivity. Insights obtained in this study are fundamentally important for the rational design of Sn-based alternative FLP LAs. The present findings could also provide a general mechanistic framework for H2 activation by FLPs having an ion pair LA component.
Collapse
Affiliation(s)
- Shubhajit Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sukanta Mondal
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Present address: Department of Educational Science, Ashutosh Mukhopadhyay School of Education, Assam University, Silchar, 788011, Assam, India
| | - Swapan K Pati
- Theoretical Sciences Unit and New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
50
|
Fasano V, LaFortune JHW, Bayne JM, Ingleson MJ, Stephan DW. Air- and water-stable Lewis acids: synthesis and reactivity of P-trifluoromethyl electrophilic phosphonium cations. Chem Commun (Camb) 2018; 54:662-665. [DOI: 10.1039/c7cc09128a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrophilic phosphonium cations (EPCs) containing a –CF3 group are stable to air, water, alcohol and strong Brønsted acid and function as Lewis acid catalysts without requiring anhydrous reaction conditions.
Collapse
Affiliation(s)
- V. Fasano
- School of Chemistry, University of Manchester
- UK
- Department of Chemistry, University of Toronto
- Canada
| | | | - J. M. Bayne
- Department of Chemistry, University of Toronto
- Canada
| | | | - D. W. Stephan
- Department of Chemistry, University of Toronto
- Canada
| |
Collapse
|