1
|
Satoh Y, Ono Y, Takahashi R, Katayama H, Iwaoka M, Yoshino O, Arai K. Seleno-relaxin analogues: effect of internal and external diselenide bonds on the foldability and a fibrosis-related factor of endometriotic stromal cells. RSC Chem Biol 2024; 5:729-737. [PMID: 39092438 PMCID: PMC11289879 DOI: 10.1039/d4cb00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage. In this study, seleno-relaxins, SeRlx-α and SeRlx-β, which are [C11UA,C11UB] and [C10UA,C15UA] variants of H2 relaxin, respectively, were synthesized via a one-pot oxidative chain assembly (folding) from the component A- and B-chains. The substitution of SS bonds in a protein with their analogue, diselenide (SeSe) bonds, has been shown to alter the physical, chemical, and physiological properties of the protein. The surface SeSe bond (U11A-U11B) enhanced the yield of chain assembly while the internal SeSe bond (U10A-U15A) improved the reaction rate of the folding, indicating that these bridges play a major role in controlling the thermodynamics and kinetics, respectively, of the folding mechanism. Furthermore, SeRlx-α and SeRlx-β effectively reduced the expression of a tissue fibrosis-related factor in human endometriotic stromal cells. Thus, the findings of this study indicate that the S-to-Se substitution strategy not only enhances the foldability of relaxin, but also provides new guidance for the development of novel relaxin formulations for endometriosis treatment.
Collapse
Affiliation(s)
- Yuri Satoh
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
2
|
Sen S, Ali R, Onkar A, Verma S, Ahmad QT, Bhadauriya P, Sinha P, Nair NN, Ganesh S, Verma S. Synthesis of a highly thermostable insulin by phenylalanine conjugation at B29 Lysine. Commun Chem 2024; 7:161. [PMID: 39043846 PMCID: PMC11266353 DOI: 10.1038/s42004-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Globally, millions of diabetic patients require daily life-saving insulin injections. Insulin heat-lability and fibrillation pose significant challenges, especially in parts of the world without ready access to uninterrupted refrigeration. Here, we have synthesized four human insulin analogs by conjugating ε-amine of B29 lysine of insulin with acetic acid, phenylacetic acid, alanine, and phenylalanine residues. Of these, phenylalanine-conjugated insulin, termed FHI, was the most stable under high temperature (65 °C), elevated salt stress (25 mM NaCl), and varying pH levels (ranging from highly acidic pH 1.6 to physiological pH 7.4). It resists fibrillation for a significantly longer duration with sustained biological activity in in vitro, ex vivo, and in vivo and displays prolonged stability over its native counterpart. We further unravel the critical interactions, such as additional aromatic π-π interactions and hydrogen bonding in FHI, that are notably absent in native insulin. These interactions confer enhanced structural stability of FHI and offer a promising solution to the challenges associated with insulin heat sensitivity.
Collapse
Affiliation(s)
- Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Akanksha Onkar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, 94143, CA, USA
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Quazi Taushif Ahmad
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pradip Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India.
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India.
| |
Collapse
|
3
|
Xu R, Jap E, Gubbins B, Hagemeyer CE, Karas JA. Semisynthesis of A6-A11 lactam insulin. J Pept Sci 2024; 30:e3542. [PMID: 37697741 PMCID: PMC10909544 DOI: 10.1002/psc.3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.
Collapse
Affiliation(s)
- Rong Xu
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Edwina Jap
- Australian Centre for Blood DiseasesMonash UniversityMelbourneVictoria3004Australia
| | - Ben Gubbins
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| | | | - John A. Karas
- School of ChemistryThe University of MelbourneMelbourneVictoria3010Australia
| |
Collapse
|
4
|
Zhang Y, Hung-Chieh Chou D. From Natural Insulin to Designed Analogs: A Chemical Biology Exploration. Chembiochem 2023; 24:e202300470. [PMID: 37800626 DOI: 10.1002/cbic.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Since its discovery in 1921, insulin has been at the forefront of scientific breakthroughs. From its amino acid sequencing to the revelation of its three-dimensional structure, the progress in insulin research has spurred significant therapeutic breakthroughs. In recent years, protein engineering has introduced innovative chemical and enzymatic methods for insulin modification, fostering the development of therapeutics with tailored pharmacological profiles. Alongside these advances, the quest for self-regulated, glucose-responsive insulin remains a holy grail in the field. In this article, we highlight the pivotal role of chemical biology in driving these innovations and discuss how it continues to shape the future trajectory of insulin research.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, 1701 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
5
|
Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Commun Chem 2023; 6:258. [PMID: 37989850 PMCID: PMC10663622 DOI: 10.1038/s42004-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| |
Collapse
|
6
|
Sen S, Ali R, Singh H, Onkar A, Bhadauriya P, Ganesh S, Verma S. An unnatural amino acid modified human insulin derivative for visual monitoring of insulin aggregation. Org Biomol Chem 2023; 21:7561-7566. [PMID: 37671483 DOI: 10.1039/d3ob01038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Insulin often forms toxic fibrils during production and transportation, which are deposited as amyloids at repeated injection sites in diabetic patients. Distinguishing early fibrils from non-fibrillated insulin is difficult. Herein, we introduce a chemically modified human insulin derivative with a distinct visual colour transition upon aggregation, facilitating insulin quality assessment.
Collapse
Affiliation(s)
- Shantanu Sen
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Rafat Ali
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Harminder Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| | - Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, UP, India.
| |
Collapse
|
7
|
Zhao R, Shi P, Wei XX, Xia Z, Shi C, Shi J. Synthesis of A11 Cys-B11 Cys Disulfide Surrogates of H2 Relaxin through an Intermolecular Native Chemical Ligation-Assisted Diaminodiacid Strategy. Org Lett 2023; 25:6544-6548. [PMID: 37642298 DOI: 10.1021/acs.orglett.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report an intermolecular native chemical ligation-assisted diaminodiacid strategy for the flexible construction of A11Cys-B11Cys disulfide surrogates of H2 relaxin. The practicality of this strategy was evidenced by the synthesis of four new H2 relaxin analogs, among which H2-2a-B28Ile is found to exhibit improved potency, selectivity, and stability compared with native H2 relaxin.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pan Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao-Xiong Wei
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhemin Xia
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Kubra KT, Hasan MM, Hasan MN, Salman MS, Khaleque MA, Sheikh MC, Rehan AI, Rasee AI, Waliullah R, Awual ME, Hossain MS, Alsukaibi AK, Alshammari HM, Awual MR. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
9
|
Hasan MN, Salman MS, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Rasee AI, Awual ME, Waliullah R, Hossain MS, Islam A, Khandaker S, Alsukaibi AK, Alshammari HM, Awual MR. Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Zhao R, Shi P, Cui JB, Shi C, Wei XX, Luo J, Xia Z, Shi WW, Zhou Y, Tang J, Tian C, Meininghaus M, Bierer D, Shi J, Li YM, Liu L. Single-Shot Solid-Phase Synthesis of Full-Length H2 Relaxin Disulfide Surrogates. Angew Chem Int Ed Engl 2023; 62:e202216365. [PMID: 36515186 DOI: 10.1002/anie.202216365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Pan Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Bin Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Xiong Wei
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Luo
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Zhemin Xia
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Wei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yingxin Zhou
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Tang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Changlin Tian
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mark Meininghaus
- Drug Discovery Sciences, Bayer AG, Pharmaceuticals, Aprather Weg 18 A, 42096, Wuppertal, Germany
| | - Donald Bierer
- Drug Discovery Sciences, Bayer AG, Pharmaceuticals, Aprather Weg 18 A, 42096, Wuppertal, Germany
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Hasan M, Tul Kubra K, Hasan N, Awual E, Salman S, Sheikh C, Islam Rehan A, Islam Rasee A, Waliullah R, Islam S, Khandaker S, Islam A, Sohrab Hossain M, Alsukaibi AK, Alshammari HM, Awual R. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Fagihi MA, Bhattacharjee S. Amyloid Fibrillation of Insulin: Amelioration Strategies and Implications for Translation. ACS Pharmacol Transl Sci 2022; 5:1050-1061. [PMID: 36407954 PMCID: PMC9667547 DOI: 10.1021/acsptsci.2c00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Insulin is a therapeutically relevant molecule with use in treating diabetes patients. Unfortunately, it undergoes a range of untoward and often unpredictable physical transformations due to alterations in its biochemical environment, including pH, ionic strength, temperature, agitation, and exposure to hydrophobic surfaces. The transformations are prevalent in its physiologically active monomeric form, while the zinc cation-coordinated hexamer, although physiologically inactive, is stable and less susceptible to fibrillation. The resultant molecular reconfiguration, including unfolding, misfolding, and hydrophobic interactions, often results in agglomeration, amyloid fibrillogenesis, and precipitation. As a result, a part of the dose is lost, causing a compromised therapeutic efficacy. Besides, the amyloid fibrils form insoluble deposits, trigger immunologic reactions, and harbor cytotoxic potential. The physical transformations also hold back a successful translation of non-parenteral insulin formulations, in addition to challenges related to encapsulation, chemical modification, purification, storage, and dosing. This review revisits the mechanisms and challenges that drive such physical transformations in insulin, with an emphasis on the observed amyloid fibrillation, and presents a critique of the current amelioration strategies before prioritizing some future research objectives.
Collapse
Affiliation(s)
- Megren
H. A. Fagihi
- School
of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
- Clinical
Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran 55461, Kingdom
of Saudi Arabia
| | - Sourav Bhattacharjee
- School
of Veterinary Medicine, University College
Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Werner M, Pampel J, Pham TL, Thomas F. Late-Stage Functionalisation of Peptides on the Solid Phase by an Iodination-Substitution Approach. Chemistry 2022; 28:e202201339. [PMID: 35700354 PMCID: PMC9545490 DOI: 10.1002/chem.202201339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/20/2022]
Abstract
The functionalisation of peptides at a late synthesis stage holds great potential, for example, for the synthesis of peptide pharmaceuticals, fluorescent biosensors or peptidomimetics. Here we describe an on-resin iodination-substitution reaction sequence on homoserine that is also suitable for peptide modification in a combinatorial format. The reaction sequence is accessible to a wide range of sulfur nucleophiles with various functional groups including boronic acids, hydroxy groups or aromatic amines. In this way, methionine-like thioethers or thioesters and thiosulfonates are accessible. Next to sulfur nucleophiles, selenols, pyridines and carboxylic acids were successfully used as nucleophiles, whereas phenols did not react. The late-stage iodination-substitution approach is not only applicable to short peptides but also to the more complex 34-amino-acid WW domains. We applied this strategy to introduce 7-mercapto-4-methylcoumarin into a switchable ZnII responsive WW domain to design an iFRET-based ZnII sensor.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
- Department of Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julius Pampel
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
16
|
Sen S, Ali R, Onkar A, Ganesh S, Verma S. Strategies for interference of insulin fibrillogenesis: challenges and advances. Chembiochem 2022; 23:e202100678. [PMID: 35025120 DOI: 10.1002/cbic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The discovery of insulin came up with very high hopes for diabetic patients. In the year 2021, the world celebrated the 100 th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.
Collapse
Affiliation(s)
- Shantanu Sen
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Rafat Ali
- Indian Institute of Technology Kanpur, Chemistry, Room No 131 Lab No2, CESE department IIT Kanpur, 208016, Kanpur, INDIA
| | - Akanksha Onkar
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology-Kanpur, Department of Chemistry, IIT-Kanpur, 208016, Kanpur, INDIA
| |
Collapse
|
17
|
Cui JB, Wei XX, Zhao R, Zhu H, Shi J, Bierer D, Li YM. Chemical synthesis of disulfide surrogate peptides by using beta-carbon dimethyl modified diaminodiacids. Org Biomol Chem 2021; 19:9021-9025. [PMID: 34611692 DOI: 10.1039/d1ob01715b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The replacement of disulfide bridges with metabolically stable isosteres is a promising strategy to improve the stability of disulfide-rich polypeptides towards reducing agents and isomerases. A diaminodiacid-based strategy is one of the most effective methods to construct disulfide bond mimics, but modified diaminodiacids have not been developed till now. Inspired by the fact that alkylation of disulfide bonds can regulate the activity of polypeptides, herein, we report the first example of thioether bridged diaminodiacids incorporating Cys Cβ dimethyl modification, obtained by penicillamine (Pen)-based thiol alkylation. The utility of these new diaminodiacids was demonstrated by the synthesis of disulfide surrogates of oxytocin containing a short-span disulfide bond and of KIIIA with large-span disulfide bonds. This new type of synthetic bridge further extends the diaminodiacid toolbox to facilitate the study of the structure-activity relationship of disulfide-rich peptides.
Collapse
Affiliation(s)
- Ji-Bin Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Xiong Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Rui Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Huixia Zhu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096 Wuppertal, Germany
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. .,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021; 26:molecules26154587. [PMID: 34361740 PMCID: PMC8348434 DOI: 10.3390/molecules26154587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.
Collapse
|
19
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
20
|
Wang J, Dong L, Liu Y, Chen X, Ma Y, Yin H, Du S, Qi Y, Wang K. Efficient Synthesis and Oxidative Folding Studies of Centipede Toxin RhTx. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Ya’u Sabo Ajingi, Nujarin Jongruja. Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Qi Y, Qu Q, Bierer D, Liu L. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chem Asian J 2020; 15:2793-2802. [DOI: 10.1002/asia.202000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yun‐Kun Qi
- Department of Medicinal Chemistry School of Pharmacy Qingdao University Qingdao 266021 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Donald Bierer
- Bayer AG Department of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
23
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin‐2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Claudia E. Murar
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Ufuk Karakus
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Onur Boyman
- Department of Immunology University Hospital Zurich Gloriastrasse 23 8091 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
24
|
|
25
|
Murar CE, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode JW. Chemical Synthesis of Interleukin-2 and Disulfide Stabilizing Analogues. Angew Chem Int Ed Engl 2020; 59:8425-8429. [PMID: 32032465 DOI: 10.1002/anie.201916053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Chemical protein synthesis allows the construction of well-defined structural variations and facilitates the development of deeper understanding of protein structure-function relationships and new protein engineering strategies. Herein, we report the chemical synthesis of interleukin-2 (IL-2) variants on a multimilligram scale and the formation of non-natural disulfide mimetics that improve stability against reduction. The synthesis was accomplished by convergent KAHA ligations; the acidic conditions of KAHA ligation proved to be valuable for the solubilization of the hydrophobic segments of IL-2. The bioactivity of the synthetic IL-2 and its analogues were shown to be equipotent to recombinant IL-2 and exhibit improved stability against reducing agents.
Collapse
Affiliation(s)
- Claudia E Murar
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Mamiko Ninomiya
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Satomi Shimura
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
26
|
Qu Q, Gao S, Wu F, Zhang M, Li Y, Zhang L, Bierer D, Tian C, Zheng J, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Shuai Gao
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Fangming Wu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
| | - Meng‐Ge Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ying Li
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Long‐Hua Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Donald Bierer
- Bayer AGDepartment of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ji‐Shen Zheng
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Lei Liu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Qu Q, Gao S, Wu F, Zhang MG, Li Y, Zhang LH, Bierer D, Tian CL, Zheng JS, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large-Span Surrogate Bridges Through a Native-Chemical-Ligation-Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020; 59:6037-6045. [PMID: 32060988 DOI: 10.1002/anie.201915358] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022]
Abstract
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.
Collapse
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fangming Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng-Ge Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ying Li
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Hua Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Donald Bierer
- Bayer AG, Department of Medicinal Chemistry, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.,School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ji-Shen Zheng
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Zheng N, Karra P, VandenBerg MA, Kim JH, Webber MJ, Holland WL, Chou DHC. Synthesis and Characterization of an A6-A11 Methylene Thioacetal Human Insulin Analogue with Enhanced Stability. J Med Chem 2019; 62:11437-11443. [PMID: 31804076 PMCID: PMC7217704 DOI: 10.1021/acs.jmedchem.9b01589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin has been a life-saving drug for millions of people with diabetes. However, several challenges exist which limit therapeutic benefits and reduce patient convenience. One key challenge is the fibrillation propensity, which necessitates refrigeration for storage. To address this limitation, we chemically synthesized and evaluated a methylene thioacetal human insulin analogue (SCS-Ins). The synthesized SCS-Ins showed enhanced serum stability and aggregation resistance while retaining bioactivity compared with native insulin.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Michael A. VandenBerg
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Matthew J. Webber
- Department of Chemical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, United States
| | - Danny Hung-Chieh Chou
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
29
|
Hossain MA, Okamoto R, Karas JA, Praveen P, Liu M, Forbes BE, Wade JD, Kajihara Y. Total Chemical Synthesis of a Nonfibrillating Human Glycoinsulin. J Am Chem Soc 2019; 142:1164-1169. [DOI: 10.1021/jacs.9b11424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Ryo Okamoto
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | | | | | | | - Briony E. Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
30
|
Weil-Ktorza O, Rege N, Lansky S, Shalev DE, Shoham G, Weiss MA, Metanis N. Substitution of an Internal Disulfide Bridge with a Diselenide Enhances both Foldability and Stability of Human Insulin. Chemistry 2019; 25:8513-8521. [PMID: 31012517 PMCID: PMC6861001 DOI: 10.1002/chem.201900892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Indexed: 11/12/2022]
Abstract
Insulin analogues, mainstays in the modern treatment of diabetes mellitus, exemplify the utility of protein engineering in molecular pharmacology. Whereas chemical syntheses of the individual A and B chains were accomplished in the early 1960s, their combination to form native insulin remains inefficient because of competing disulfide pairing and aggregation. To overcome these limitations, we envisioned an alternative approach: pairwise substitution of cysteine residues with selenocysteine (Sec, U). To this end, CysA6 and CysA11 (which form the internal intrachain A6-A11 disulfide bridge) were each replaced with Sec. The A chain[C6U, C11U] variant was prepared by solid-phase peptide synthesis; while sulfitolysis of biosynthetic human insulin provided wild-type B chain-di-S-sulfonate. The presence of selenium atoms at these sites markedly enhanced the rate and fidelity of chain combination, thus solving a long-standing challenge in chemical insulin synthesis. The affinity of the Se-insulin analogue for the lectin-purified insulin receptor was indistinguishable from that of WT-insulin. Remarkably, the thermodynamic stability of the analogue at 25 °C, as inferred from guanidine denaturation studies, was augmented (ΔΔGu ≈0.8 kcal mol-1 ). In accordance with such enhanced stability, reductive unfolding of the Se-insulin analogue and resistance to enzymatic cleavage by Glu-C protease occurred four times more slowly than that of WT-insulin. 2D-NMR and X-ray crystallographic studies demonstrated a native-like three-dimensional structure in which the diselenide bridge was accommodated in the hydrophobic core without steric clash.
Collapse
Affiliation(s)
- Orit Weil-Ktorza
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Nischay Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Shifra Lansky
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Deborah E Shalev
- Wolfson Center for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Gil Shoham
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Michael A Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
31
|
Patil NA, Karas JA, Wade JD, Hossain MA, Tailhades J. Rapid Photolysis‐Mediated Folding of Disulfide‐Rich Peptides. Chemistry 2019; 25:8599-8603. [DOI: 10.1002/chem.201901334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nitin A. Patil
- The Monash Biomedicine Discovery Institute 15 Innovation Walk Clayton VIC 3800 Australia
| | - John A. Karas
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
| | - John D. Wade
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne 30 Royal Parade, Parkville Victoria 3052 Australia
| | - Mohammed Akhter Hossain
- Department of Pharmacology and TherapeuticsThe University of Melbourne Victoria 3010 Australia
- The Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne 30 Royal Parade, Parkville Victoria 3052 Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute 15 Innovation Walk Clayton VIC 3800 Australia
- EMBL AustraliaMonash University Clayton Victoria 3800 Australia
| |
Collapse
|
32
|
Huang DL, Bai JS, Wu M, Wang X, Riedl B, Pook E, Alt C, Erny M, Li YM, Bierer D, Shi J, Fang GM. Non-reducible disulfide bond replacement implies that disulfide exchange is not required for hepcidin-ferroportin interaction. Chem Commun (Camb) 2019; 55:2821-2824. [PMID: 30762062 DOI: 10.1039/c9cc00328b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have led to opposing hypotheses about the requirement of intermolecular disulfide exchange in the binding of the iron regulatory peptide hepcidin to its receptor ferroportin. To clarify this issue, we used the diaminodiacid approach to replace the disulfide bonds in hepcidin with non-reducible thioether bonds. Our results implied that disulfide exchange is not required for the interaction between hepcidin and ferroportin. This theory is further supported by our development of biologically active minihepcidins that do not show activity dependence on cysteine.
Collapse
Affiliation(s)
- Dong-Liang Huang
- School of Life Science, Institute of Health Science and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang T, Fan J, Chen XX, Zhao R, Xu Y, Bierer D, Liu L, Li YM, Shi J, Fang GM. Synthesis of Peptide Disulfide-Bond Mimics by Using Fully Orthogonally Protected Diaminodiacids. Org Lett 2018; 20:6074-6078. [PMID: 30216082 DOI: 10.1021/acs.orglett.8b02459] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new strategy was developed for the synthesis of peptide disulfide-bond mimics using fully orthogonally protected diaminodiacids. This method overcomes the previous problems of heavy-metal contamination and poor compatibility with Fmoc chemistry and provides a practical avenue for the efficient preparation of peptide disulfide-bond mimics.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China.,School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jian Fan
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China
| | - Rui Zhao
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Yang Xu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Donald Bierer
- Department of Medicinal Chemistry , Bayer AG , Aprather Weg 18A , 42096 Wuppertal , Germany
| | - Lei Liu
- Tsinghua University , Beijing 100084 , P. R. China
| | - Yi-Ming Li
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Jing Shi
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , P. R. China
| |
Collapse
|
34
|
Macháčková K, Collinsová M, Chrudinová M, Selicharová I, Pícha J, Buděšínský M, Vaněk V, Žáková L, Brzozowski AM, Jiráček J. Insulin-like Growth Factor 1 Analogs Clicked in the C Domain: Chemical Synthesis and Biological Activities. J Med Chem 2017; 60:10105-10117. [DOI: 10.1021/acs.jmedchem.7b01331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kateřina Macháčková
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Vaněk
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute
of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
35
|
Jaradat DMM. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 2017; 50:39-68. [PMID: 29185032 DOI: 10.1007/s00726-017-2516-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022]
Abstract
A historical overview of peptide chemistry from T. Curtius to E. Fischer to M. Bergmann and L. Zervas is first presented. Next, the fundamentals of peptide synthesis with a focus on solid phase peptide synthesis by R. B. Merrifield are described. Immobilization strategies to attach the first amino acid to the resin, coupling strategies in stepwise peptide chain elongation, and approaches to synthesize difficult peptide sequences are also shown. A brief comparison between tert-butyloxycarbonyl (Boc)/benzyl (Bzl) strategy and 9-fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (t -Bu) strategy utilized in solid phase peptide synthesis is given with an emphasis on the latter. Finally, the review focuses on the discovery and development of peptide ligation and the latest advances in this field including native amide bond formation strategies, these include the native chemical ligation, α-ketoacid-hydroxylamine ligation, and serine/threonine ligation which are the most commonly used chemoselective ligation methods that provide amide bond at the ligation site. This review provides an overview of the literature concerning the most important advances in the chemical synthesis of proteins and peptides covering the period from 1882 to 2017.
Collapse
Affiliation(s)
- Da'san M M Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, P.O. Box 19117, Al-Salt, Jordan.
| |
Collapse
|
36
|
Wang T, Kong YF, Xu Y, Fan J, Xu HJ, Bierer D, Wang J, Shi J, Li YM. Efficient synthesis of hydrocarbon-bridged diaminodiacids through nickel-catalyzed reductive cross-coupling. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Hossain MA, Bathgate RAD. Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorg Med Chem 2017; 26:2827-2841. [PMID: 28988628 DOI: 10.1016/j.bmc.2017.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides' interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
38
|
Hossain MA, Wade JD. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres. Acc Chem Res 2017; 50:2116-2127. [PMID: 28829564 DOI: 10.1021/acs.accounts.7b00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience
and Mental Health and School
of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
39
|
Gori A, Gagni P, Rinaldi S. Disulfide Bond Mimetics: Strategies and Challenges. Chemistry 2017; 23:14987-14995. [PMID: 28749012 DOI: 10.1002/chem.201703199] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/25/2022]
Abstract
The activity profile of many biologically relevant proteins and peptides often relies on a precise 3D structural organization. In this context, disulfide bonds are natural covalent constraints that play a key role in driving and stabilizing the folding pattern of these molecules. Despite its prominent significance as structural motif, the disulfide bond itself is inherently unstable under physiological conditions, posing a major limit to the use and development of disulfide-rich peptides and proteins as molecular tools and drug lead compounds. To tackle this restriction, disulfide engineering with stable functional analogues has arisen a considerable interest. Here, the most popular approaches to disulfide replacement are reviewed and discussed with particular emphasis on advantages and limitations under both functional and synthetic perspectives.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| |
Collapse
|
40
|
Arai K, Takei T, Okumura M, Watanabe S, Amagai Y, Asahina Y, Moroder L, Hojo H, Inaba K, Iwaoka M. Preparation of Selenoinsulin as a Long‐Lasting Insulin Analogue. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kenta Arai
- Department of Chemistry School of Science Tokai University Kitakaname, Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Toshiki Takei
- Department of Chemistry School of Science Tokai University Kitakaname, Hiratsuka-shi Kanagawa 259-1292 Japan
- Institute for Protein Research Osaka University Yamadaoka, Suita-shi Osaka 565-0871 Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Aoba-ku Sendai 2-1-1 Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Aoba-ku Sendai 2-1-1 Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Aoba-ku Sendai 2-1-1 Japan
| | - Yuya Asahina
- Institute for Protein Research Osaka University Yamadaoka, Suita-shi Osaka 565-0871 Japan
| | - Luis Moroder
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Hironobu Hojo
- Institute for Protein Research Osaka University Yamadaoka, Suita-shi Osaka 565-0871 Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Aoba-ku Sendai 2-1-1 Japan
| | - Michio Iwaoka
- Department of Chemistry School of Science Tokai University Kitakaname, Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
41
|
Arai K, Takei T, Okumura M, Watanabe S, Amagai Y, Asahina Y, Moroder L, Hojo H, Inaba K, Iwaoka M. Preparation of Selenoinsulin as a Long-Lasting Insulin Analogue. Angew Chem Int Ed Engl 2017; 56:5522-5526. [PMID: 28394477 DOI: 10.1002/anie.201701654] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Indexed: 01/06/2023]
Abstract
Synthetic insulin analogues with a long lifetime are current drug targets for the therapy of diabetic patients. The replacement of the interchain disulfide with a diselenide bridge, which is more resistant to reduction and internal bond rotation, can enhance the lifetime of insulin in the presence of the insulin-degrading enzyme (IDE) without impairing the hormonal function. The [C7UA ,C7UB ] variant of bovine pancreatic insulin (BPIns) was successfully prepared by using two selenocysteine peptides (i.e., the C7U analogues of A- and B-chains, respectively). In a buffer solution at pH 10 they spontaneously assembled under thermodynamic control to the correct insulin fold. The selenoinsulin (Se-Ins) exhibited a bioactivity comparable to that of BPIns. Interestingly, degradation of Se-Ins with IDE was significantly decelerated (τ1/2 ≈8 h vs. ≈1 h for BPIns). The lifetime enhancement could be due to both the intrinsic stability of the diselenide bond and local conformational changes induced by the substitution.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Toshiki Takei
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.,Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
| | - Yuta Amagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Luis Moroder
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
42
|
Liu W, Zheng Y, Kong X, Heinis C, Zhao Y, Wu C. Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a One-Pot Reaction. Angew Chem Int Ed Engl 2017; 56:4458-4463. [PMID: 28240444 DOI: 10.1002/anie.201610942] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/14/2017] [Indexed: 12/11/2022]
Abstract
We report the discovery of a small phenyl molecule with four isosteric thiolate-reactive groups of sequentially varied reactivity. This molecule was exploited in combination with cysteine/penicillamine thiolates of different nucleophilic reactivity for precisely regulated and efficient locking (PROP-locking) of linear peptides into multicyclic topologies through a one-pot reaction. The PROP-locking relies on multistep and sequential thiolate/fluorine nucleophilic substitutions, which is not only rapid but highly specific, thus enabling rapid locking of peptides with high amino acid diversities without protecting groups. Several tricyclic peptide templates and bioactive peptides were designed and synthesized using the PROP-locking strategy. We believe that tricyclic peptides precisely locked through stable thioether bonds should be promising structurally constrained scaffolds for developing potential therapeutics and target ligands.
Collapse
Affiliation(s)
- Weidong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Xudong Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
43
|
Liu W, Zheng Y, Kong X, Heinis C, Zhao Y, Wu C. Precisely Regulated and Efficient Locking of Linear Peptides into Stable Multicyclic Topologies through a One-Pot Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Weidong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Xudong Kong
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; 1015 Lausanne Switzerland
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; State Key Laboratory of Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials; Department of Chemistry; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P.R. China
| |
Collapse
|
44
|
Liu Y, Lee J, Mansfield KM, Ko JH, Sallam S, Wesdemiotis C, Maynard HD. Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein. Bioconjug Chem 2017; 28:836-845. [PMID: 28044441 DOI: 10.1021/acs.bioconjchem.6b00659] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be nontoxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States.,Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University , Irvine, California 92618, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Kathryn M Mansfield
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| | - Sahar Sallam
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron , 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive, East, Los Angeles, California 90095, United States
| |
Collapse
|