1
|
Benseghir Y, Tsang MY, Schöfbeck F, Hetey D, Kitao T, Uemura T, Shiozawa H, Reithofer MR, Chin JM. Electric-field assisted spatioselective deposition of MIL-101(Cr) PEDOT to enhance electrical conductivity and humidity sensing performance. J Colloid Interface Sci 2025; 678:979-986. [PMID: 39226838 DOI: 10.1016/j.jcis.2024.08.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.
Collapse
Affiliation(s)
- Youven Benseghir
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Min Ying Tsang
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Flora Schöfbeck
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Daniel Hetey
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidetsugu Shiozawa
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jia Min Chin
- Institute of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Hurlock MJ, Christian MS, Small LJ, Percival SJ, Rademacher DX, Schindelholz ME, Nenoff TM. Exceptional Electrical Detection of Trace NO 2 via Mixed Metal MOF-on-MOF Film-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39504256 DOI: 10.1021/acsami.4c15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The tunability of metal-organic frameworks (MOFs) makes them exceptional materials for the development of highly selective, low-power sensors for toxic gas detection. Herein, we demonstrate enhanced detection of NO2 gas by a MOF-based electrical impedance sensor made using a unique mixed metal MOF-on-MOF synthesis. A combined experimental and computational study was performed using the exemplar NixMg1-x-MOF-74 to understand the fundamental structure-property relationships behind metal mixing and MOF film synthesis methods on sensor performance. Density functional theory results indicated that the presence of Ni in Mg-MOF-74 increased framework stability and increased the electron density of states at lower energies near the HOMO, as well as enhanced the NO2-Mg adsorption interaction. Impedance data of the NixMg1-x-MOF-74 films with larger Ni contents showed greater impedance change after exposure to 1 ppm of NO2 gas. Furthermore, when synthesized through either a drop-cast or direct solvothermal film growth approach, the monometallic Ni-based sensors had the best performance. However, the mixed metal NixMg1-x-MOF-74 sensors synthesized through a MOF-on-MOF approach resulted in the highest impedance change, outperforming all monometallic Ni-based sensors. In particular, the mixed metal Ni-on-Mg-MOF-74 film was the best-performing sensor with an impedance change of 309 upon trace NO2 exposure. Change in impedance response after NO2 exposure was improved by 52% compared to the best monometallic Ni-on-Ni-MOF-74 sensor. Structural analysis of the Ni-on-Mg film showed that the first Mg-MOF-74 layer acts as a structural template controlling the structural features of the final film after metal exchange with Ni. This led to improved film quality, evidenced by the greater crystallinity and larger MOF grain sizes, and resulted in enhanced sensor performance which was not achievable through other metal mixing methods. Altogether, this study identifies structure-property relationships and synthetic templating methods that inform MOF-based sensor design, allowing for improved detection of toxic compounds.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David X Rademacher
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
3
|
Kong L, Yu C, Chen Y, Zhu Z, Jiang L. Rational MOF Membrane Design for Gas Detection in Complex Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407021. [PMID: 39444085 DOI: 10.1002/smll.202407021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Metal-organic frameworks (MOFs) hold significant promise in the realm of gas sensing. However, current understanding of their sensing mechanisms remains limited. Furthermore, the large-scale fabrication of MOFs is hampered by their inadequate mechanical properties. These two challenges contribute to the sluggish development of MOF-based gas-sensing materials. In this review, the selection of metal ions and organic ligands for designing MOFs is first presented, deepening the understanding of the interactions between different metal ions/organic ligands and target gases. Subsequently, the typical interfacial synthesis strategies (gas-solid, gas-liquid, solid-liquid interfaces) are provided, highlighting the potential for constructing MOF membranes on superhydrophobic and/or superhydrophilic substrates. Then, a multi-scale structure design strategies is proposed, including multi-dimensional membrane design and heterogeneous membrane design, to improve sensing performance through enhanced interfacial mass transfer and specific gas sieving. This strategy is anticipated to augment the task-specific capabilities of MOF-based materials in complex environments. Finally, several key future research directions are outlined with the aim not only to further investigate the underlying sensing principles of MOF membranes but also to achieve efficient detection of target gases amidst interfering gases and elevated moisture levels.
Collapse
Affiliation(s)
- Lei Kong
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Chengyue Yu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an, Shandong, 271018, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongpeng Zhu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
4
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
5
|
Wu X, Tian X, Zhang W, Peng X, Zhou S, Buenconsejo PJS, Li Y, Xiao S, Tao J, Zhang M, Yuan H. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H 2S Detection. Angew Chem Int Ed Engl 2024:e202410411. [PMID: 39187431 DOI: 10.1002/anie.202410411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Conductive metal-organic frameworks (c-MOFs) hold promise for highly sensitive sensing systems due to their conductivity and porosity. However, the fabrication of c-MOF thin films with controllable morphology, thickness, and preferential orientation remains a formidable yet ubiquitous challenge. Herein, we propose an innovative template-assisted strategy for constructing MOF-on-MOF (Ni3(HITP)2/NUS-8 (HITP: 2,3,6,7,10,11-hexamino-tri (p-phenylene))) systems with good electrical conductivity, porosity, and solution processability. Leveraging the 2D nature and solution processability of NUS-8, we achieve the controllable self-assembly of Ni3(HITP)2 on NUS-8 nanosheets, producing solution-processable Ni3(HITP)2/NUS-8 nanosheets with a film conductivity of 1.55×10-3 S ⋅ cm-1 at room temperature. Notably, the excellent solution processability facilitates the fabrication of large-area thin films and printing of intricate patterns with good uniformity, and the Ni3(HITP)2/NUS-8-based system can monitor finger bending. Gas sensors based on Ni3(HITP)2/NUS-8 exhibit high sensitivity (LOD~6 ppb) and selectivity towards ultratrace H2S at room temperature, attributed to the coupling between Ni3(HITP)2 and NUS-8 and the redox reaction with H2S. This approach not only unlocks the potential of stacking different MOF layers in a sequence to generate functionalities that cannot be achieved by a single MOF, but also provides novel avenues for the scalable integration of MOFs in miniaturized devices with salient sensing performance.
Collapse
Affiliation(s)
- Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xin Tian
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Siyuan Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection (School of Electrical Engineering and Automation), Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jifang Tao
- School of Information Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
Abstract
Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.
Collapse
Affiliation(s)
- Zhenyu Zhai
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Yaqian Liu
- Inner Mongolia Institute of Metrology Testing and Research, Hohhot 010020, China
| | - Congju Li
- College of Textiles, Donghua University, Shanghai 201620, China;
| | - Defa Wang
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| |
Collapse
|
7
|
Zhang F, Jiao C, Shang Y, Cao S, Sun R, Lu X, Yan Z, Zeng J. In Situ Growth of Conductive Metal-Organic Framework onto Cu 2O for Highly Selective and Humidity-Independent Hydrogen Sulfide Detection in Food Quality Assessment. ACS Sens 2024; 9:1310-1320. [PMID: 38390684 DOI: 10.1021/acssensors.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The sensitivity of chemiresistive gas sensors based on metal oxide semiconductors (MOSs) has been inherently affected by ambient humidity because their reactive oxygen species are easily hydroxylated by water molecules, which significantly reduces the accuracy of the gas sensors in food quality assessment. Although conventional metal organic frameworks (MOFs) can serve as coatings for MOSs for humidity-independent gas detection, they have to operate at high working temperatures due to their low or nonconductivity, resulting in high power consumption, significant manufacturing inconvenience, and short-term stability due to the oxidation of MOFs. Here, the conductive and thickness-controlled CuHHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene)-coated Cu2O are developed by combining in situ etching and layer-by-layer liquid-phase growth method, which achieves humidity-independent detection of H2S at room temperature. The response to H2S only decreases by 2.6% below 75% relative humidity (RH), showing a 9.6-fold improvement than the bare Cu2O sensor, which is ascribed to the fact that the CuHHTP layer hinders the adsorption of water molecules. Finally, a portable alarm system is developed to monitor food quality by tracking released H2S. Compared with gas chromatography method, their relative error is within 9.4%, indicating a great potential for food quality assessment.
Collapse
Affiliation(s)
- Fangdou Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chunpeng Jiao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanxue Shang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ruichang Sun
- Huangdao Customs of the People's Republic of China, Qingdao 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zifeng Yan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemical Safety, China University of Petroleum (East China), Qingdao 266580, PR China
| |
Collapse
|
8
|
Liu W, Huang Y, Ji C, Grimes CA, Liang Z, Hu H, Kang Q, Yan HL, Cai QY, Zhou YG. Eu 3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens 2024; 9:759-769. [PMID: 38306386 DOI: 10.1021/acssensors.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 μM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chenhui Ji
- Department of Chemistry, Baotou Teachers College, Baotou 014030, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hairong Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hai-Long Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing-Yun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Wen X, Bi S, Wang C, Zeng S. An Activated Structure Transformable Ratiometric Photoacoustic Nanoprobe for Real-Time Dynamic Monitoring of H 2S In Vivo. NANO LETTERS 2023; 23:10642-10650. [PMID: 37955992 DOI: 10.1021/acs.nanolett.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
H2S has emerged as a promising biomarker for many diseases such as colon cancer and metformin-induced hepatotoxicity. Real-time monitoring of H2S levels in vivo is significant for early accurate diagnosis of these diseases. Herein, a new accurate and reliable nanoprobe (Au NRs@Ag) was designed for real-time dynamic ratiometric photoacoustic (PA) imaging of H2S in vivo based on the endogenous H2S-triggered local surface plasmon resonance (LSPR) red-shift. The Au NRs@Ag nanoprobe can be readily converted into Au NRs@Ag2S via the endogenous H2S-activated in situ sulfurative reaction, subsequently leading to a significant red-shift of the LSPR wavelength from 808 to 980 nm and enabling accurate ratiometric PA (PA980/PA808) imaging of H2S. Moreover, dynamic ratiometric PA imaging of metformin-induced hepatotoxicity was also successfully achieved by the designed PA imaging strategy. These findings provide the possibility of designing a new ratiometric PA imaging strategy for dynamic in situ monitoring of H2S-related diseases.
Collapse
Affiliation(s)
- Xingwang Wen
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Shenghui Bi
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chunxia Wang
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| | - Songjun Zeng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
10
|
Li X, Deng D, He L, Xu Y. A non-enzymatic glucose sensor based on a mesoporous carbon sphere immobilized Co-MOF-74 nanocomposite. Dalton Trans 2023; 52:15447-15455. [PMID: 37455587 DOI: 10.1039/d3dt01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exploration of credible non-enzymatic glucose sensors with high selectivity and sensitivity is of great significance for early clinical monitoring of glucose concentration and preventing the threat of diabetes to human health. Here, mesoporous carbon (MC) sphere immobilized Co-MOF-74 nanorods (NRs), denoted as Co-MOF-74 NRs/MC, were successfully prepared, in which the nanostructural porous carbon sphere was obtained using cobalt glycolate as the built-in template followed by a subsequent carbonization and acid treatment, and the MC spheres were then in situ deposited on the surface of Co-MOF-74 NRs via a solvothermal method. Benefiting from the good conductivity of the grafted porous carbon spheres and the abundant active sites, as well as the permeability of microporous MOF-74 nanocrystals, the Co-MOF-74 NRs/MC modified glassy carbon electrode (GCE) exhibited effective non-enzymatic glucose sensing performance with a fast response time (less than 3 s) and a glucose sensitivity of 98.0 μA cm-2 mM-1. Furthermore, the Co-MOF-74 NRs/MC/GCE showed a favourable anti-interference capability in the presence of various interferents and good long-term reusability. The applicability of Co-MOF-74 NRs/MC/GCE for glucose sensing in real serum samples was also investigated, verifying the applicability of the electrode for targeted glucose monitoring in practical applications.
Collapse
Affiliation(s)
- Xianliang Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Diwei Deng
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Lufang He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China
| |
Collapse
|
11
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Abstract
The demand for monitoring chemical and physical information surrounding, air quality, and disease diagnosis has propelled the development of devices for gas sensing that are capable of translating external stimuli into detectable signals. Metal-organic frameworks (MOFs), possessing particular physiochemical properties with designability in topology, specific surface area, pore size and/or geometry, potential functionalization, and host-guest interactions, reveal excellent development promises for manufacturing a variety of MOF-coated sensing devices for multitudinous applications including gas sensing. The past years have witnessed tremendous progress on the preparation of MOF-coated gas sensors with superior sensing performance, especially high sensitivity and selectivity. Although limited reviews have summarized different transduction mechanisms and applications of MOF-coated sensors, reviews summarizing the latest progress of MOF-coated devices under different working principles would be a good complement. Herein, we summarize the latest advances of several classes of MOF-based devices for gas sensing, i.e., chemiresistive sensors, capacitors, field-effect transistors (FETs) or Kelvin probes (KPs), electrochemical, and quartz crystal microbalance (QCM)-based sensors. The surface chemistry and structural characteristics were carefully associated with the sensing behaviors of relevant MOF-coated sensors. Finally, challenges and future prospects for long-term development and potentially practical application of MOF-coated sensing devices are pointed out.
Collapse
Affiliation(s)
- Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Mallik S, Chand Pal S, Acharyya S, Verma SP, Mandal A, Guha PK, Das MC, Goswami DK. MOF-Assimilated High-Sensitive Organic Field-Effect Transistors for Rapid Detection of a Chemical Warfare Agent. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37317896 DOI: 10.1021/acsami.3c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The selective and rapid detection of trace amounts of highly toxic chemical warfare agents has become imperative for efficiently using military and civilian defense. Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid porous material that could be potential next-generation toxic gas sensors. However, the growth of a MOF thin film for efficiently utilizing the material properties for fabricating electronic devices has been challenging. Herein, we report a new approach to efficiently integrate MOF as a receptor through diffusion-induced ingress into the grain boundaries of the pentacene semiconducting film in the place of the most adaptive chemical functionalization method for sensor fabrication. We used bilayer conducting channel-based organic field-effect transistors (OFETs) as a sensing platform comprising CPO-27-Ni as the sensing layer, coated on the pentacene layer, showed a strong response toward sensing of diethyl sulfide, which is one of the stimulants of bis (2-chloroethyl) sulfide, a highly toxic sulfur mustard (HD). Using OFET as a sensing platform, these sensors can be a potential candidate for trace amounts of sulfur mustard detection below 10 ppm in real time as wearable devices for onsite uses.
Collapse
Affiliation(s)
- Samik Mallik
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Snehanjan Acharyya
- Advance Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shiv Prakash Verma
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajoy Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta Kumar Guha
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advance Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipak Kumar Goswami
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Abdelhamid HN, Sultan S, Mathew AP. 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO 2) and heavy metal ions. Dalton Trans 2023; 52:2988-2998. [PMID: 36779352 DOI: 10.1039/d2dt04168e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Metal-organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64-1.15 mmol g-1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14-554.8 ± 15 mg g-1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden. .,Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| |
Collapse
|
15
|
Su Z, Kong L, Mei J, Li Q, Qian Z, Ma Y, Chen Y, Ju S, Wang J, Jia W, Zhu C, Fan W. Enzymatic bionanocatalysts for combating peri-implant biofilm infections by specific heat-amplified chemodynamic therapy and innate immunomodulation. Drug Resist Updat 2023; 67:100917. [PMID: 36608472 DOI: 10.1016/j.drup.2022.100917] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.
Collapse
Affiliation(s)
- Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qianming Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 DingJiaQiao Road, Nanjing 210009, China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Weitao Jia
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, P. R. China.
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
A Zr-based coordination polymer for detection and adsorption of fluoride in water. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
17
|
Lahcen A, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49399-49424. [PMID: 36315467 PMCID: PMC9650679 DOI: 10.1021/acsami.2c12842] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.
Collapse
Affiliation(s)
- Abdellatif
Ait Lahcen
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Sandeep G. Surya
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Abderrahman Lamaoui
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Ceren Durmus
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Aziz Amine
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Xu T, Zhang M, Zhao F, Zhao J, Cong W, Xie C, Yang Z, Wang G, Li J. Highly sensitive detection of H 2S gas at low temperature based on ZnCo 2O 4 microtube sensors. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129753. [PMID: 35988496 DOI: 10.1016/j.jhazmat.2022.129753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
It is extremely necessary to detect Hydrogen sulfide (H2S) due to the hazardous nature. Thus, it is required to design a material which can detect H2S gas at low temperature. In this work, ZnCo2O4 microtubes are prepared by using absorbent cotton as template, combining immersion method in metal salt solution (Zn:Co=1:2) with calcination treatment in air. The influence of calcination temperature on the particle size and sensing property was also discussed. The diameter of particles on the ZnCo2O4 microtubes increases with increasing calcination temperature. The hollow microtubes of ZnCo2O4 materials calcined at 600 °C (ZCO-600) exhibit superb sensing performance to H2S at 90 °C with the lowest detection limit of 50 ppb. The optimum operating temperature (90 °C) was lower than the other reported ZnCo2O4 sensors. ZCO-600 sensor also shows excellent selectivity, repeatability, stability, humidity resistance and the good linear relationship in ppb and ppm level H2S. In addition, the feasible sensing mechanism of ZCO-600 to H2S is explored on the basis of XPS analysis. Thus, ZnCo2O4 as a sensing material possesses widespread application prospects for the detection of trace H2S gas.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Mingxia Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fangbo Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Wenbo Cong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Chunling Xie
- Ocean College, Yantai University, Yantai 264005, PR China.
| | - Zi Yang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Junqing Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
19
|
|
20
|
Li D, Song J, Cheng Y, Wu X, Wang Y, Sun C, Yue C, Lei X. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Lead‐Free Perovskite. Angew Chem Int Ed Engl 2022; 61:e202206437. [DOI: 10.1002/anie.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Yang Li
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jun‐Hua Song
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu Cheng
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Min Wu
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu‐Yin Wang
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Chuan‐Ju Sun
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
21
|
Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials. In particular, ionic liquids have been employed as electrolytes of exceptional properties for the preparation of amperometric gas sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials which can be employed, in pure form or as a component of MOF-based functional composites, as active materials of chemiresistive or optical sensors. Here, we report on the most recent developments relative to the use of these classes of materials in chemical sensing. We discuss the main features of these materials and the reasons why they are considered interesting in the field of chemical sensors. Subsequently, we review some of the technological and scientific results published in the span of the last six years that we consider among the most interesting and useful ones for expanding the awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these materials and the factors involved in their possible use for new generations of sensor devices.
Collapse
|
22
|
Li J, Zhang N, Yang X, Yang X, Wang Z, Liu H. RhB@MOF-5 Composite Film as a Fluorescence Sensor for Detection of Chilled Pork Freshness. BIOSENSORS 2022; 12:bios12070544. [PMID: 35884347 PMCID: PMC9313163 DOI: 10.3390/bios12070544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
This study presents a novel composite thin film based on rhodamine B encapsulated into MOF-5 (Metal Organic Frameworks) as a fluorescence sensor for the real-time detection of the freshness of chilled pork. The composite film can adsorb and respond to the volatile amines produced by the quality deterioration of pork during storage at 4 °C, with the fluorescence intensity of RhB decreasing over time. The quantitative model used for predicting the freshness indicator (total volatile base nitrogen) of pork was built using the fluorescence spectra (excited at 340 nm) of the RhB@MOF-5 composite film combined with the partial least squares (PLS) algorithm, providing Rc2 and Rp2 values of 0.908 and 0.821 and RMSEC (root mean square error of calibration) and RMSEP (root mean square error of prediction) values of 3.435 mg/100 g and 3.647 mg/100 g, respectively. The qualitative model established by the partial least squares discriminant analysis (PLS-DA) algorithm was able to accurately classify pork samples as fresh, acceptable or spoiled, and the accuracy was 86.67%.
Collapse
Affiliation(s)
- Jingyi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (X.Y.)
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100097, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China;
| | - Xin Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (X.Y.)
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100097, China
| | - Xinting Yang
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100097, China
| | - Zengli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (X.Y.)
- Correspondence: (Z.W.); (H.L.); Tel.: +86-10-62737066 (Z.W.); +86-10-51503630 (H.L.)
| | - Huan Liu
- Research Center of Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100097, China
- Correspondence: (Z.W.); (H.L.); Tel.: +86-10-62737066 (Z.W.); +86-10-51503630 (H.L.)
| |
Collapse
|
23
|
Sun H, Cao M, Zhang P, Tian X, Lu M, Du L, Xue K, Cui G. Magnetic-Field-Enhanced H 2S Sensitivity of Cu 2O/NiO Heterostructure Ordered Nanoarrays. ACS Sens 2022; 7:1903-1911. [PMID: 35729782 DOI: 10.1021/acssensors.2c00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetism is a promising external intervention for gas sensitivity based on a heterogeneous interfacial structure caused by the regulation of the heterogeneous interface conductivity and the surface oxygen adsorption. In this study, Cu2O/NiO heterostructure-ordered nanoarrays were prepared with a two-dimensional (2D) electrodeposition in situ assembly method for H2S gas detection at room temperature under the action of a magnetic field. The nanoarrays were multibarrier structures with a strictly periodic structure that was greater than hundreds of microns in size. The experimental data confirmed that the response of 50 ppm of H2S based on the nanoarrays was improved by nearly 61% with a relatively weak magnetic field. Particularly at a low concentration (≤20 ppm), the effect of the magnetic field enhancement on the sensitivity was more obvious. We attributed the enhancement of the gas sensitivity with the magnetic field to the regulation of the Cu2O-NiO interface conductance and the surface oxygen adsorption. This study demonstrated that a magnetic field could significantly enhance the gas sensitivity based on heterostructures. Results of this study provide an important reference for the application of magnetism in gas detection and the design of new gas-sensitive materials.
Collapse
Affiliation(s)
- Haoming Sun
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Meng Cao
- School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Pinhua Zhang
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Xiaojing Tian
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Manli Lu
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Lulu Du
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Kaifeng Xue
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Guangliang Cui
- School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
| |
Collapse
|
24
|
Li DY, Song JH, Cheng Y, Wu XM, Wang YY, Sun CJ, Yue CY, Lei XW. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol based on Highly Emissive 0D Hybrid Lead‐free Perovskite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong-Yang Li
- Qufu Normal University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Jun-Hua Song
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu Cheng
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Min Wu
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu-Yin Wang
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Chuan-Ju Sun
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Cheng-Yang Yue
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Wu Lei
- Jining University School of Chemistry, Chemical Engineering and Materials Engineering Xingtan Road 273155 Qufu CHINA
| |
Collapse
|
25
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
26
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Chen Y, Yang Z, Hu H, Zhou X, You F, Yao C, Liu FJ, Yu P, Wu D, Yao J, Hu R, Jiang X, Yang H. Advanced Metal-Organic Frameworks-Based Catalysts in Electrochemical Sensors. Front Chem 2022; 10:881172. [PMID: 35433639 PMCID: PMC9010028 DOI: 10.3389/fchem.2022.881172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 01/18/2023] Open
Abstract
Developing efficient catalysts is vital for the application of electrochemical sensors. Metal-organic frameworks (MOFs), with high porosity, large specific surface area, good conductivity, and biocompatibility, have been widely used in catalysis, adsorption, separation, and energy storage applications. In this invited review, the recent advances of a novel MOF-based catalysts in electrochemical sensors are summarized. Based on the structure-activity-performance relationship of MOF-based catalysts, their mechanism as electrochemical sensor, including metal cations, synthetic ligands, and structure, are introduced. Then, the MOF-based composites are successively divided into metal-based, carbon-based, and other MOF-based composites. Furthermore, their application in environmental monitoring, food safety control, and clinical diagnosis is discussed. The perspective and challenges for advanced MOF-based composites are proposed at the end of this contribution.
Collapse
Affiliation(s)
- Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhiquan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huilin Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xinchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Peng Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Dan Wu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
28
|
A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat Commun 2022; 13:1685. [PMID: 35354794 PMCID: PMC8967875 DOI: 10.1038/s41467-022-29284-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) as an important biological gasotransmitter plays a pivotal role in many physiological and pathological processes. The sensitive and quantitative detection of H2S level is therefore crucial for precise diagnosis and prognosis evaluation of various diseases but remains a huge challenge due to the lack of accurate and reliable analytical methods in vivo. In this work, we report a smart, H2S-responsive and depleting nanoplatform (ZNNPs) for quantitative and real-time imaging of endogenous H2S for early diagnosis and treatment of H2S-associated diseases. We show that ZNNPs exhibit unexpected NIR conversion (F1070 → F720) and ratiometric photoacoustic (PA680/PA900) signal responsiveness towards H2S, allowing for sensitive and quantitative visualization of H2S in acute hepatotoxicity, cerebral hemorrhage model as well as colorectal tumors in living mice. ZNNPs@FA simultaneously scavenges the mitochondrial H2S in tumors leading to significant ATP reduction and severe mitochondrial damage, together with the activated photodynamic effect, resulting in efficient suppression of colorectal tumor growth in mice. We believe that this platform may provide a powerful tool for studying the vital impacts of H2S in related diseases.
Collapse
|
29
|
Zhou Q, Xu L, Kan Z, Yang L, Chang Z, Dong B, Bai X, Lu G, Song H. A multi-platform sensor for selective and sensitive H 2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128075. [PMID: 34959212 DOI: 10.1016/j.jhazmat.2021.128075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The high-selectivity and high-sensitivity determination of trace concentrations of toxic gases is a major challenge when using semiconductor metal oxide (SMO) gas sensors in complicated real-world environments. In this study, by strategically combining a three-dimensional inverse opal (3DIO) macroporous ZnO substrate and a ZIF-8 outer filter membrane, two series of sensors with Pt NPs loaded at different locations are developed. In the optimal 3DIO ZnO@ZIF-8/Pt sensor, the existence of small Pt NPs in ZIF-8 cavities can effectively accelerate the absorption of H2S, capture electrons from the N site of ZIF-8, and donate the electron to the S site of H2S, as indicated by density functional theory simulations, leading to a significantly increased response to H2S. Together with the molecular-sieving effect that ZIF-8 exerts on gas molecules with larger kinetic diameters, the 3DIO ZnO@ZIF-8/Pt sensor exhibits a high response to H2S (118-5.5 ppm), a detection limit of 40 ppb, and importantly, a 59-fold higher selectivity to H2S against typical interference gases. In addition, the 3DIO ZnO@ZIF-8/Pt sensor is developed as a multi-platform sensor to evaluate trace concentrations of H2S in meat quality assessment, halitosis diagnosis, and automobile exhaust assessment.
Collapse
Affiliation(s)
- Qingqing Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lin Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Zitong Kan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Long Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, People's Republic of China.
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
30
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
31
|
Huang C, Liu D, Wang D, Guo H, Thomas T, Attfield JP, Qu F, Ruan S, Yang M. Mesoporous Ti 0.5Cr 0.5N for trace H 2S detection with excellent long-term stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127193. [PMID: 34844341 DOI: 10.1016/j.jhazmat.2021.127193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient, accurate and reliable detection and monitoring of H2S is of significance in a wide range of areas: industrial production, medical diagnosis, environmental monitoring, and health screening. However the rapid corrosion of commercial platinum-on-carbon (Pt/C) sensing electrodes in the presence of H2S presents a fundamental challenge for fuel cell gas sensors. Herein we report a solution to the issue through the design of a sensing electrode, which is based on Pt supported on mesoporous titanium chromium nitrides (Pt/Ti0.5Cr0.5N). Its desirable characteristics are due to its high electrochemical stability and strong metal-support interactions. The Pt/Ti0.5Cr0.5N-based sensors exhibit a much smaller attenuation (1.3%) in response to H2S than Pt/C-sensor (40%), after 2 months sensing test. Furthermore, the Pt/Ti0.5Cr0.5N-based sensors exhibit negligible cross response to other interfering gases compared with hydrogen sulfide. Results of density functional theory calculation also verify the excellent long-term stability and selectivity of the gas sensor. Our work hence points to a new sensing electrode system that offers a combination of high performance and stability for fuel-cell gas sensors.
Collapse
Affiliation(s)
- Chaozhu Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dongting Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras Adyar, Chennai 600036, India
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Shengping Ruan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
33
|
Li Y, Chen X, Ren H, Li X, Chen S, Ye BC. A novel electrochemical sensor based on molecularly imprinted polymer-modified C-ZIF67@Ni for highly sensitive and selective determination of carbendazim. Talanta 2022; 237:122909. [PMID: 34736646 DOI: 10.1016/j.talanta.2021.122909] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022]
Abstract
In this work, we propose a two-step coating method, combining C-ZIF67@Ni with molecular imprinting polymer (MIP), to develop a high-sensitivity and high-selectivity Carbendazim (CBD) electrochemical sensor. ZIF67@Ni was prepared by a simple chemical bath method, and C-ZIF67@Ni was obtained by high-temperature carbonization of ZIF67@Ni. Then, MIP layer was prepared by electrochemical in-situ polymerization, with O-aminophenol as functional monomers, CBD acting as template on the surface of the C-ZIF67@Ni-modified glassy carbon electrode (GCE). During the preparation process, the types of functional monomers, the polymerization solution pH, the ratio of functional monomers to template molecules, and the incubation time are optimized. The morphological characteristics, composition information and electrochemical properties of MIP/C-ZIF67@Ni/GCE were investigated in detail under optimal conditions. Physical characterization and electrochemical tests revealed that ZIF67@Ni significantly improves the electron transmission capacity and surface area of the sensor after high-temperature carbonization. C-ZIF67@ Ni has a good synergistic effect on MIP, allowing rapid and specific identification of the test substance. MIP/C-ZIF67@Ni/GCE showed a good linear relationship with CBD in the concentration range from 4 × 10-13 M to 1 × 10-9 M, the lowest detection limit was 1.35 × 10-13 M (S/N = 3) R2 = 0.9983 and RSD = 2.34. Additionally, the sensor showed good repeatability, stability, and selectivity, and can be used for the detection of carbendazim in soil and water with a recovery of 98% above.
Collapse
Affiliation(s)
- Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xuan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Hailong Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Shenyan Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
34
|
Fabrication of thulium metal–organic frameworks based smartphone sensor towards arsenical feed additive drug detection: Applicable in food safety analysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Li L, Zhang S, Lu Y, Zhang J, Zhang X, Wang R, Huang J. Highly Selective and Sensitive Detection of Volatile Sulfur Compounds by Ionically Conductive Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104120. [PMID: 34632647 DOI: 10.1002/adma.202104120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
High selectivity to specific analyte is essential for chemical sensors but difficult to achieve. For most chemical sensors, although the response to the target analyte can be more significant than interference analytes, they still show obvious responses to the interference analytes. Here, highly selective chemical sensors are developed with negligible responses to other interference vapors. Instead of the widely investigated electronically conductive metal-organic frameworks (EC-MOFs), ionically conductive MOFs (IC-MOFs) are used as the sensing materials, and the unique interaction between the ion charge carrier and the analyte is utilized to achieve high sensing selectivity. Through the modulation of the metal nodes (Cu, Co, Ni, Zn, Mg) and organic ligands (H2 TCPP, H2 THPP, H4 BTEC), sensor arrays based on a set of IC-MOFs are fabricated and achieve highly selective detection toward volatile sulfur compounds (VSCs). H2 S and CH3 SH can be selectively detected at concentrations down to 1 ppb and 1 ppm, respectively. The facile preparation and low cost endow the device with disposability. These results suggest new approaches for the development of highly selective chemical sensors.
Collapse
Affiliation(s)
- Li Li
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Shiqi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Yang Lu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Xuan Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Ruizhi Wang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
| | - Jia Huang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, 201804, P. R. China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University, Tongji University, Shanghai, 200434, P. R. China
| |
Collapse
|
36
|
|
37
|
He H, Zhao C, Xu J, Qu K, Jiang Z, Gao Z, Song YY. Exploiting Free-Standing p-CuO/n-TiO 2 Nanochannels as a Flexible Gas Sensor with High Sensitivity for H 2S at Room Temperature. ACS Sens 2021; 6:3387-3397. [PMID: 34464096 DOI: 10.1021/acssensors.1c01256] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is an extremely hazardous gas and is harmful to human health and the environment. Here, we developed a flexible H2S gas-sensing device operated at room temperature (25 °C) based on CuO nanoparticles coated with free-standing TiO2-nanochannel membranes that were prepared by simple electrochemical anodization. Benefiting from the modulated conductivity of the CuO/TiO2 p-n heterojunction and a unique nanochannel architecture, the traditional thermal energy was innovatively replaced with UV irradiation (λ = 365 nm) to provide the required energy for triggering the sensing reactions of H2S. Importantly, upon exposure to H2S, the p-n heterojunction is destroyed and the newly formed ohmic contact forms an antiblocking layer at the interface of CuS and TiO2, thus making the sensing device active at room temperature. The resulting CuO/TiO2 membrane exhibited a notable detection sensitivity for H2S featuring a minimum detection limit of 3.0 ppm, a response value of 46.81% against 100 ppm H2S gas, and a rapid response and recovery time. This sensing membrane also demonstrated excellent durability, long-term stability, and wide-range response to a concentration of up to 400 ppm in the presence of 40% humidity as well as outstanding flexibility and negligible change in electrical measurements under various mechanical stability tests. This study not only provides a new strategy to design a gas sensor but also paves a universal platform for sensitive gas sensing.
Collapse
Affiliation(s)
- Haoxuan He
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jing Xu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Kuanzhi Qu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhen Jiang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
38
|
Trul AA, Agina EV, Ponomarenko SA. Gas Sensors Based on Conjugated Oligomers and Polymers as Promising Sensitive Elements for Toxic Gases Monitoring in the Atmosphere. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
40
|
Chang J, Deng Z, Fang X, Hu C, Shi L, Dai T, Li M, Wang S, Meng G. Heterostructural (Sr 0.6Bi 0.305) 2Bi 2O 7/ZnO for novel high-performance H 2S sensor operating at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125500. [PMID: 33647623 DOI: 10.1016/j.jhazmat.2021.125500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Exploring novel sensing materials enabling selective discrimination of trace ambient H2S at lower temperature is of utmost importance for diverse practical applications. Herein, heterostructural (Sr0.6Bi0.305)2Bi2O7/ZnO (SBO/ZnO) nanomaterials were proposed. Synergetic effect of promoting analyte adsorption (via multiplying oxygen vacancy defects) and reversible sulfuration-desulfuration reaction induced unique band alignment among SBO/ZnO/ZnS, contributes to the sensitive and selective response toward H2S molecules. Novel SBO/ZnO (10%) sensor possesses excellent sensing H2S performances, including a high response (107.6 for 10 ppm), low limit of detection of 20 ppb, good selectivity and long-term stability. Together with the merits of low operation temperature of 75 °C and weak humidity dependence (endowed by the hydrophobic SBO), present heterostructural SBO/ZnO sensor paves the way for the practical monitoring of trace H2S pollutants in diverse workplaces including petroleum and natural gas industries.
Collapse
Affiliation(s)
- Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Xiaodong Fang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China.
| | - Chaohao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Lei Shi
- University of Science and Technology of China, Hefei 230026, China
| | - Tiantian Dai
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China.
| |
Collapse
|
41
|
Yuan H, Liu G, Qiao Z, Li N, Buenconsejo PJS, Xi S, Karmakar A, Li M, Cai H, Pennycook SJ, Zhao D. Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101257. [PMID: 34057259 DOI: 10.1002/adma.202101257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guoliang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Nanxi Li
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Jurong Island, Singapore, 627833, Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
42
|
Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: A dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Liu Y, Chen Z, Qiu W, Liu G, Eddaoudi M, Koros WJ. Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas sweetening. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Antina LA, Ksenofontov AA, Kazak AV, Usol’tseva NV, Antina EV, Berezin MB. Effect of ms-substitution on aggregation behavior and spectroscopic properties of BODIPY dyes in aqueous solution, Langmuir-Schaefer and poly(methyl methacrylate) thin films. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Nizamidin P, Yimit A, Turdi G, Chen ZJ, Zhang F, Kutilike B. Fabrication and characterization of photo-responsive metal–organic framework membrane for gas sensing using planar optical waveguide sensor. Anal Chim Acta 2021; 1158:338385. [DOI: 10.1016/j.aca.2021.338385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
|
46
|
Mani V, Selvaraj S, Jeromiyas N, Huang ST, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Salama KN. Growth of large-scale MoS 2 nanosheets on double layered ZnCo 2O 4 for real-time in situ H 2S monitoring in live cells. J Mater Chem B 2021; 8:7453-7465. [PMID: 32667020 DOI: 10.1039/d0tb01162b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is an urgent need to develop in situ sensors that monitor the continued release of H2S from biological systems to understand H2S-related pathology and pharmacology. For this purpose, we have developed a molybdenum disulfide supported double-layered zinc cobaltite modified carbon cloth electrode (MoS2-ZnCo2O4-ZnCo2O4) based electrocatalytic sensor. The results of our study suggest that the MoS2-ZnCo2O4-ZnCo2O4 electrode has excellent electrocatalytic ability to oxidize H2S at physiological pH, in a minimized overpotential (+0.20 vs. Ag/AgCl) with an amplified current signal. MoS2 grown on double-layered ZnCo2O4 showed relatively better surface properties and electrochemical properties than MoS2 grown on single-layered ZnCo2O4. The sensor delivered excellent analytical parameters, such as low detection limit (5 nM), wide linear range (10 nM-1000 μM), appreciable stability (94.3%) and high selectivity (2.5-fold). The practicality of the method was tested in several major biological fluids. The electrode monitors the dynamics of bacterial H2S in real-time for up to 5 h with good cell viability. Our research shows that MoS2-ZnCo2O4-ZnCo2O4/carbon cloth is a robust and sensitive electrode to understand how bacteria seek to adjust their defense strategies under exogenously induced stress conditions.
Collapse
Affiliation(s)
- Veerappan Mani
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
48
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021; 60:8505-8509. [DOI: 10.1002/anie.202100006] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
49
|
Yang XL, Ding C, Guan RF, Zhang WH, Feng Y, Xie MH. Selective dual detection of H 2S and Cu 2+ by a post-modified MOF sensor following a tandem process. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123698. [PMID: 33264887 DOI: 10.1016/j.jhazmat.2020.123698] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Fabrication of metal-organic frameworks (MOFs) based multifunctional sensors for various environmental pollutants represents a promising solution to the development of novel monitoring technologies. In this work, a dual responsive sensor of UiO-66-MA has been efficiently fabricated via post-modification of the UiO-66-MOF with maleic anhydride (MA), and dual detection of H2S and Cu2+ in aquatic environments has been achieved tandemly. UiO-66-MA could selectively undergo Michael addition with H2S accompanying a linear fluorescence turn-on behavior. The sensing is highly sensitive and selective, and the detection limit value of 3.3 nM represents the lowest record among all MOF-based H2S sensing researches. Moreover, an alternative sensor for Cu2+ could be further tandemly afforded after the H2S sensing. The H2S added product of UiO-66-MA/H2S exhibits selective fluorescence quenching towards Cu2+ with a detection limit as low as 2.6 nM. UiO-66-MA exhibits dual sensing functions for H2S and Cu2+ following a tandem process based on combinatorial principles of Michael addition and S-Cu coordination. Evaluation studies suggest the promising potentials of UiO-66-MA in determining the level of H2S and Cu2+ in aquatic environment, and the tandemly derived dual sensing functions demonstrate the advantages of developing multifunctional MOF sensors based on combinatorial principles.
Collapse
Affiliation(s)
- Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Cheng Ding
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Rong-Feng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Hui Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
50
|
Zhang L, Zhou Y, Han S. The Role of Metal–Organic Frameworks in Electronic Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lin‐Tao Zhang
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ye Zhou
- Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
| | - Su‐Ting Han
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|