1
|
Pillai VG, Malyk KR, Kennedy CR. Mechanistic insights on C(acyl)-N functionalisation mediated by late transition metals. Dalton Trans 2024; 53:18803-18818. [PMID: 39115156 PMCID: PMC11614710 DOI: 10.1039/d4dt01829j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The carboxamide functional group has a privileged role in organic and biological chemistry due to its prevalence and utility across synthetic and natural products. Due to nN → π*CO delocalisation, amides and related functional groups are typically kinetically resistant to degradation. Nonetheless, over the past decade, transition metal catalysis has transformed our ability to utilise molecules featuring C(acyl)-N units as reactants. Alongside the burgeoning catalytic applications ranging from COx utilisation to small molecule synthesis, elucidation of the underlying mechanisms remains a critical ongoing effort. Herein, we aggregate and analyse current understanding of the mechanisms for C(acyl)-N functionalisation of amides and related functional groups with a focus on recent developments involving mechanisms unique to the late transition metals. Discussion is organized around three general mechanistic manifolds: redox-neutral mechanisms, 2e- redox-cycling mechanisms, and mechanisms involving 1e- redox steps. For each class, we focus on reactions that directly involve a transition metal mediator/catalyst in the C(acyl)-N cleavage step. We conclude with an outlook on the outstanding ambiguities and opportunities for innovation.
Collapse
Affiliation(s)
- Vivek G Pillai
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Kaycie R Malyk
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - C Rose Kennedy
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
2
|
Nguyen TVT, Brownsey DK, Bossonnet A, Wodrich MD, Waser J. Homologation of Alkenyl Carbonyls via a Cyclopropanation/Light-Mediated Selective C-C Cleavage Strategy. Angew Chem Int Ed Engl 2024:e202417719. [PMID: 39478669 DOI: 10.1002/anie.202417719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Indexed: 11/22/2024]
Abstract
We report herein our studies on the direct photoactivation of carbonyl cyclopropanes to give biradical intermediates, leading to selective cleavage of the more substituted carbon-carbon bond. Depending on the substrate structure, extended alkenes were isolated or directly reacted in a photo-Nazarov process to give bicyclic products. Based on these results, a unified reductive ring-opening reaction was developed by using diphenyl disulfide as a hydrogen atom transfer (HAT) reagent. By performing a sequential cyclopropanation/selective ring opening reaction, we achieved a CH2 insertion into the α,β bond of both acyclic and cyclic unsaturated carbonyl compounds. Our protocol provides a further tool for the modification of the carbon framework of organic compounds, complementing the recent progress in "skeletal editing".
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Duncan K Brownsey
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Luo A, Li Z, Chen H, Wang Y, Liu X, Bin Z, Yang Y, You J. De(sulfon)amidative Cyclization: The Synthesis of Dibenzolactams and Dibenzosultams for Organic Light Emitting Diode Materials. Angew Chem Int Ed Engl 2024:e202416518. [PMID: 39431982 DOI: 10.1002/anie.202416518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
This study addresses a challenge in organic synthetic chemistry: the direct cleavage of amide bonds, which is typically hampered by the thermodynamic stability of the C(Ar)-C(acyl) bond. Previous methods often rely on "CO" extrusion-jointing transition metal-catalyzed process and require activated tertiary amides, limiting their applicability due to incompatibility with reactive functional groups such as halogens. Herein, we report a transition metal-free approach for the deamidative cyclization of biaryl diamides via a radical process, yielding dibenzolactam derivatives. Along this line, we have developed the desulfonamidative cyclization of biaryl disulfonamides to produce dibenzosultams through direct nucleophilic aromatic substitution, demonstrating high selectivity for unsymmetrical structures. Additionally, unsymmetrical sulfamoyl biaryl amides, containing both amide and sulfonamide functionalities, can selectively undergo desulfonamidative coupling with the amide to form dibenzolactams, which offers a complementary synthetic pathway to unsymmetric dibenzolactams. These protocols exhibit excellent compatibility with reactive functional groups, including halogens, providing an innovative synthetic toolbox for the development of thermally activated delayed fluorescence (TADF) materials used in organic light emitting diodes (OLEDs). DMAC-PDO, incorporating a dibenzolactam as the acceptor unit, serves as an efficient blue TADF emitter with a maximum external quantum efficiency (EQEmax) of 23.4 %.
Collapse
Affiliation(s)
- Anping Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Zhijie Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Haohua Chen
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| | - Ya Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xiaoyu Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
4
|
Li W, Shi S, Cao M, Gao W, Zhang X, Li W, Yu Y, Li T. Palladium(II)-Catalyzed Norbornene-Mediated Selective meta-C-H Silylation for the Synthesis of Arylsilanes from Primary Benzamides. Org Lett 2024; 26:5506-5510. [PMID: 38900141 DOI: 10.1021/acs.orglett.4c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A palladium(II)-catalyzed norbornene-mediated remote selective meta-C-H silylation of primary benzamides was developed for the synthesis of arylsilanes. Such a conversion provides access to a range of arylsilanes with exclusive selectivity using norbornene (NBE) as the meta-C-H activator. The amide directing group can be detached simultaneously through C-C bond cleavage or undergo a dehydration reaction pathway to form nitriles.
Collapse
Affiliation(s)
- Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Shukui Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Man Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Wenchao Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Wentao Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Henan 473061, China
| |
Collapse
|
5
|
Liu H, Huang H. Construction of Bidentate Phosphines Enabled by Photoinduced Reductive Diphosphination of Alkenes. Chemistry 2024; 30:e202304109. [PMID: 38340028 DOI: 10.1002/chem.202304109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 02/12/2024]
Abstract
The diphosphination of alkenes through a radical pathway offers a promising approach for the rapid construction of aryl bisphosphines. However, such a synthetic strategy has not been successfully applied to the preparation of alkyl bisphosphines, partially due to the difficulties in the generation of phosphorus-centered radicals from common alkyl phosphine compounds. We herein demonstrate that this challenge can be overcome by hiring Janus-faced chlorophosphine as the phosphine source that can act as not only a radical precursor to generate phosphine-centered radicals but also a radicalphile to capture alkyl radicals. With this novel strategy, a photocatalyzed reductive diphosphination reaction has been established, allowing for a straightforward synthesis of both aryl and alkyl 1,2-bisphosphines from readily accessible alkenes and chlorophosphines.
Collapse
Affiliation(s)
- Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| |
Collapse
|
6
|
Bulger AS, Nasrallah DJ, Tena Meza A, Garg NK. Enantioselective nickel-catalyzed Mizoroki-Heck cyclizations of amide electrophiles. Chem Sci 2024; 15:2593-2600. [PMID: 38362425 PMCID: PMC10866352 DOI: 10.1039/d3sc05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Amide cross-couplings that rely on C-N bond activation by transition metal catalysts have emerged as valuable synthetic tools. Despite numerous discoveries in this field, no catalytic asymmetric variants have been disclosed to date. Herein, we demonstrate the first such transformation, which is the Mizoroki-Heck cyclization of amide substrates using asymmetric nickel catalysis. This proof-of-concept study provides an entryway to complex enantioenriched polycyclic scaffolds and advances the field of amide C-N bond activation chemistry.
Collapse
Affiliation(s)
- Ana S Bulger
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Daniel J Nasrallah
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Arismel Tena Meza
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
7
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Xiong Z, Nie H, Zhang S, Hu M, Qin C, Wang S, Ji F, Jiang G. Electrochemically Driven Selective Removal of the S═N Bond-Directing Group Using Cyclohexanone Oxime as the Mediator. J Org Chem 2023; 88:4334-4344. [PMID: 36922910 DOI: 10.1021/acs.joc.2c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
An inexpensive electrochemical induction system was used for the efficient reductive defunctionalization of sulfoximines through a radical pathway. This practical and robust strategy could be used for the removal of the S═N bond-directing group from various sulfoximines. The practicability of this method was demonstrated by its mild conditions, simple operation, one-pot procedure, gram-scale synthesis, and the undivided cell. Furthermore, preliminary mechanistic studies suggested that the reaction might proceed via a homocoupling reaction and a denitrification procedure.
Collapse
Affiliation(s)
- Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Mkrtchyan S, Shkoor M, Phanindrudu M, Medved′ M, Sevastyanova O, Iaroshenko VO. Mechanochemical Defluorinative Arylation of Trifluoroacetamides: An Entry to Aromatic Amides. J Org Chem 2023; 88:863-870. [PMID: 36622848 PMCID: PMC9872087 DOI: 10.1021/acs.joc.2c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The amide bond is prominent in natural and synthetic organic molecules endowed with activity in various fields. Among a wide array of amide synthetic methods, substitution on a pre-existing (O)C-N moiety is an underexplored strategy for the synthesis of amides. In this work, we disclose a new protocol for the defluorinative arylation of aliphatic and aromatic trifluoroacetamides yielding aromatic amides. The mechanochemically induced reaction of either arylboronic acids, trimethoxyphenylsilanes, diaryliodonium salts, or dimethyl(phenyl)sulfonium salts with trifluoroacetamides affords substituted aromatic amides in good to excellent yields. These nickel-catalyzed reactions are enabled by C-CF3 bond activation using Dy2O3 as an additive. The current protocol provides versatile and scalable routes for accessing a wide variety of substituted aromatic amides. Moreover, the protocol described in this work overcomes the drawbacks and limitations in the previously reported methods.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia,
| | - Mohanad Shkoor
- Department
of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mandalaparthi Phanindrudu
- Inorganic
and Physical Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500607, India
| | - Miroslav Medved′
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia,Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University
Olomouc, Křížkovského 511/8, 77900 Olomouc, Czech Republic
| | - Olena Sevastyanova
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden,Division
of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer
Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Viktor O. Iaroshenko
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia,Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden,Division
of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer
Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden,Department
of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland,Department
of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück, Barbarastr. 7, D-49076 Osnabrück, Germany,; ; ;
| |
Collapse
|
11
|
Cetin HK, Baytaroglu C. The Impact of Age on Percutaneous Thrombectomy Outcomes in the Management of Lower Extremity Deep Vein Thrombosis. HASEKI TIP BÜLTENI 2022. [DOI: 10.4274/haseki.galenos.2022.8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Transamidation of thioamides with nucleophilic amines: thioamide N-C(S) activation by ground-state-destabilization. Org Biomol Chem 2022; 20:5981-5988. [PMID: 35441645 DOI: 10.1039/d2ob00412g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. .,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Xinhao Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Linqin Shang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yang He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
13
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Wang CA, Rahman MM, Bisz E, Dziuk B, Szostak R, Szostak M. Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chang-An Wang
- College of Chemistry and Chemical Engineering, Taishan University, Tai’an, Shandong 271000, People’s Republic of China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Luu QH, Li J. A C-to-O atom-swapping reaction sequence enabled by Ni-catalyzed decarbonylation of lactones. Chem Sci 2022; 13:1095-1100. [PMID: 35211275 PMCID: PMC8790783 DOI: 10.1039/d1sc06968c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
Advances in site-selective functionalization reactions have enabled single atom changes on the periphery of a complex molecule, but reaction manifolds that enable such changes on the core framework of the molecule remain sparse. Here, we disclose a strategy for carbon-to-oxygen substitution in cyclic diarylmethanes and diarylketones to yield cyclic diarylethers. Oxygen atom insertion is accomplished by methylene and Baeyer-Villiger oxidations. To remove the carbon atom in this C-to-O "atom swap" process, we developed a nickel-catalyzed decarbonylation of lactones to yield the corresponding cyclic diaryl ethers. This reaction was enabled by mechanistic studies with stoichiometric nickel(ii) complexes that led to the optimization of a ligand capable of promoting a challenging C(sp2)-O(aryl) reductive elimination. The nickel-catalyzed decarbonylation was applied to 6-8 membered lactones (16 examples, 32-99%). Finally, a C-to-O atom-swapping reaction sequence was accomplished on a natural product and a pharmaceutical precursor.
Collapse
Affiliation(s)
- Quang H Luu
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Junqi Li
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| |
Collapse
|
16
|
Liu C, Szostak M. Decarbonylative Sonogashira Cross-Coupling: Fruitful Marriage of Alkynes with Carboxylic Acid Electrophiles. Org Chem Front 2022; 9:216-222. [PMID: 35495770 PMCID: PMC9049177 DOI: 10.1039/d1qo01539g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Sonogashira cross-coupling is one of the most fundamental C-C bond forming reactions, wherein the strategic value of the alkyne moiety has found widespread application at the frontiers of organic chemistry, materials science and drug discovery as the cornerstone building block of chemical synthesis. Although traditional variants of Sonogashira cross-coupling involve aryl halides and pseudohalides as electrophiles, recently, tremendous advances have been made in the unconventional disconnection exploiting common carboxylic acids by decarbonylation/transmetalation pathway. This manifold (1) permits to take advantage of carboxylic acids as a ubiquitous class of substrates in organic synthesis that are derived from an orthogonal pool of precursors to aryl halides and pseudohalides, (2) combines the benefits of the palladium catalyzed C(sp2)-C(sp) coupling of terminal alkynes with the inherent presence of the carboxylic acid moiety in pharmaceuticals, natural products and organic materials. In this highlight article, we summarize recent progress generated by the decarbonylative Sonogashira cross-coupling of carboxylic acid electrophiles to produce arylalkynes and conjugated enynes as a novel avenue for chemical synthesis, whereby a large number of chemical reactions critically rely on transformations of alkynes.
Collapse
Affiliation(s)
- Chengwei Liu
- School of Chemical Engineering and Technology, Yantai Nanshan University, Longkou, Yantai, Shandong 265713, China; School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
17
|
Silva MDSBD, Araujo JGLD, Bento JCCV, Azevedo AMD, Souto CRO, Anjos ASDD, Araújo AMMD, Silva DRD, Menezes FG, Gondim AD, Cavalcanti LN. Nickel-catalyzed reductive decarboxylation of fatty acids for drop-in biofuel production. RSC Adv 2022; 12:27889-27894. [PMID: 36320252 PMCID: PMC9521194 DOI: 10.1039/d2ra04057c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
An operationally simple and highly selective method for the decarboxylation of fatty acids under remarkably mild conditions is described herein. The activation of the aliphatic carboxylic acids by esterification with N-hydroxyphthalimide (NHPI) enabled efficient deoxygenation to synthesize n-alkanes in up to 67% yield, employing inexpensive PMHS as a hydrogen source, NiCl2·6H2O, bipyridine, and zinc in THF. In contrast to the conventional thermo-catalytic approaches, this protocol does not require high temperature and high pressure of hydrogen gas to deoxygenate biomass-derived carboxylic acids, thus representing an attractive alternative for producing drop-in biofuels. An operationally simple and highly selective method for the Ni-catalyzed decarboxylation of redox active esters (RAEs) derived from fatty acids under remarkably mild conditions is described herein.![]()
Collapse
Affiliation(s)
- Maria do S. B. da Silva
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Jhudson G. L. de Araujo
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Júlia C. C. V. Bento
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Amanda M. de Azevedo
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Carlos R. O. Souto
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Aécia S. D. dos Anjos
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Aruzza M. M. de Araújo
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Djalma R. da Silva
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Fabrício G. Menezes
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Amanda D. Gondim
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| | - Lívia N. Cavalcanti
- Federal University of Rio Grande do Norte, Institute of Chemistry, 59072-970, Natal, RN, Brazil
| |
Collapse
|
18
|
Chen Y, Sheng D, Wang F, Rao W, Shen SS, Wang SY. Nickel( ii)/TPMPP catalyzed reductive coupling of oxalates and tetrasulfides: synthesis of unsymmetric disulfides. Org Chem Front 2022. [DOI: 10.1039/d2qo00945e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni(ii)/TPMPP-catalyzed reductive cross-coupling reaction of benzyl oxalates and tetrasulfides to synthesize unsymmetric disulfides is reported.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou, 215009, PR China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Chen Y, Wang F, Liu BX, Rao WD, Wang SY. A Ni( ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates. Org Chem Front 2022. [DOI: 10.1039/d1qo01614h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni(ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates to synthesize benzylic sulfides/selenides under mild conditions is developed.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Dong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
21
|
Cook A, MacLean H, St. Onge P, Newman SG. Nickel-Catalyzed Reductive Deoxygenation of Diverse C–O Bond-Bearing Functional Groups. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Haydn MacLean
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Piers St. Onge
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J Org Chem 2021; 86:10455-10466. [PMID: 34275281 DOI: 10.1021/acs.joc.1c01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter Σ(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Daniel J Pyle
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.,Department of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Krzysztof Ejsmont
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
23
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
24
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
25
|
Nishimoto Y, Yasuda M, Wang F, Yi J. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals, and Ketals by Formal Insertion of Diazo Compounds into a Carbon–Carbon Bond. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1523-1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractHomologation of alkyl acetates, alkyl ethers, acetals, and ketals was accomplished via formal insertion of diazo esters into carbon–carbon σ-bonds. The combined Lewis acid InI3 with Me3SiBr catalyzed the homologation of alkyl acetates and alkyl ethers. That of acetals and ketals was catalyzed solely by the use of InBr3. The key point of the homologation mechanism is that the indium-based Lewis acids have the appropriate amount of Lewis acidity to achieve both the abstraction and release of leaving groups. The abstraction of a leaving group by an indium-based Lewis acid and the electrophilic addition of carbocation or oxonium intermediates to diazo esters followed by the rearrangement of carbon substituents provide the corresponding cation intermediates. Finally, the leaving group that is captured by the Lewis acid bonds with cation intermediates to furnish the homologated products.
Collapse
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Junyi Yi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| |
Collapse
|
26
|
Singh B, Ahmed J, Biswas A, Paira R, Mandal SK. Reduced Phenalenyl in Catalytic Dehalogenative Deuteration and Hydrodehalogenation of Aryl Halides. J Org Chem 2021; 86:7242-7255. [PMID: 33949861 DOI: 10.1021/acs.joc.1c00573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehalogenative deuteration reactions are generally performed through metal-mediated processes. This report demonstrates a mild protocol for hydrodehalogenation and dehalogenative deuteration of aryl/heteroaryl halides (39 examples) using a reduced odd alternant hydrocarbon phenalenyl under transition metal-free conditions and has been employed successfully for the incorporation of deuterium in various biologically active compounds. The combined approach of experimental and theoretical studies revealed a single electron transfer-based mechanism.
Collapse
Affiliation(s)
- Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Amit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rupankar Paira
- Department of Chemistry, Maharaja Manindra Chandra College, 20 Ramkanto Bose Street, Kolkata 700003, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
27
|
Banovetz HK, Vickerman KL, David CM, Alkan M, Stanley LM. Palladium-Catalyzed Intermolecular Alkene Carboacylation via Ester C–O Bond Activation. Org Lett 2021; 23:3507-3512. [DOI: 10.1021/acs.orglett.1c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haley K. Banovetz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Kevin L. Vickerman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Colton M. David
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Melisa Alkan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
Li W, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. A Strategy for Amide C–N Bond Activation with Ruthenium Catalyst: Selective Aromatic Acylation. Org Lett 2021; 23:2521-2526. [DOI: 10.1021/acs.orglett.1c00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenkuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
29
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel‐Catalyzed Suzuki–Miyaura‐Coupling and Transfer‐Hydrogenation Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy B. Boit
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Milauni M. Mehta
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Emma L. Baker
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
30
|
Boit TB, Mehta MM, Kim J, Baker EL, Garg NK. Reductive Arylation of Amides via a Nickel-Catalyzed Suzuki-Miyaura-Coupling and Transfer-Hydrogenation Cascade. Angew Chem Int Ed Engl 2021; 60:2472-2477. [PMID: 33029868 PMCID: PMC7855255 DOI: 10.1002/anie.202012048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
We report a means to achieve the addition of two disparate nucleophiles to the amide carbonyl carbon in a single operational step. Our method takes advantage of non-precious-metal catalysis and allows for the facile conversion of amides to chiral alcohols via a one-pot Suzuki-Miyaura cross-coupling/transfer-hydrogenation process. This study is anticipated to promote the development of new transformations that allow for the conversion of carboxylic acid derivatives to functional groups bearing stereogenic centers via cascade processes.
Collapse
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Milauni M Mehta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Emma L Baker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
31
|
Zheng YL, Newman SG. Cross-coupling reactions with esters, aldehydes, and alcohols. Chem Commun (Camb) 2021; 57:2591-2604. [DOI: 10.1039/d0cc08389e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article describes how diverse oxygen-containing functional groups such as esters, aldehydes, and alcohols can participate in cross-coupling reactions to prepare amides, ketones, alcohols, and beyond.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
32
|
He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. A Strategy for Accessing Aldehydes
via
Palladium‐Catalyzed C−O/C−N Bond Cleavage in the Presence of Hydrosilanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhanyu He
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zijia Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Junxiang Ru
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yulin Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Tingting Liu
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
33
|
Uno H, Kawai K, Shiro M, Shibata N. Modular Synthesis of Medium-Sized Fluorinated and Nonfluorinated Heterocyclic Lactones by Sequential CN-Bond-Cleaving Ring Expansion under Pd Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Koki Kawai
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
34
|
Boit TB, Bulger AS, Dander JE, Garg NK. Activation of C-O and C-N Bonds Using Non-Precious-Metal Catalysis. ACS Catal 2020; 10:12109-12126. [PMID: 33868770 PMCID: PMC8049354 DOI: 10.1021/acscatal.0c03334] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jacob E Dander
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
35
|
|
36
|
Lee GS, Won J, Choi S, Baik M, Hong SH. Synergistic Activation of Amides and Hydrocarbons for Direct C(sp
3
)–H Acylation Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Chemistry College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Joonghee Won
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seulhui Choi
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
37
|
Lee GS, Won J, Choi S, Baik M, Hong SH. Synergistic Activation of Amides and Hydrocarbons for Direct C(sp
3
)–H Acylation Enabled by Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2020; 59:16933-16942. [DOI: 10.1002/anie.202004441] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Chemistry College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Joonghee Won
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seulhui Choi
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry Korean Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
38
|
Gao P, Szostak M. Highly Selective and Divergent Acyl and Aryl Cross-Couplings of Amides via Ir-Catalyzed C–H Borylation/N–C(O) Activation. Org Lett 2020; 22:6010-6015. [DOI: 10.1021/acs.orglett.0c02105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
39
|
Matsushita K, Takise R, Muto K, Yamaguchi J. Ester dance reaction on the aromatic ring. SCIENCE ADVANCES 2020; 6:eaba7614. [PMID: 32832607 PMCID: PMC7439616 DOI: 10.1126/sciadv.aba7614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Aromatic rearrangement reactions are useful tools in the organic chemist's toolbox when generating uncommon substitution patterns. However, it is difficult to precisely translocate a functional group in (hetero) arene systems, with the exception of halogen atoms in a halogen dance reaction. Here, we describe an unprecedented "ester dance" reaction: a predictable translocation of an ester group from one carbon atom to another on an aromatic ring. Specifically, a phenyl carboxylate substituent can be shifted from one carbon to an adjacent carbon on a (hetero) aromatic ring under palladium catalysis to often give a thermodynamically favored, regioisomeric product with modest to good conversions. The obtained ester moiety can be further converted to various aromatic derivatives through the use of classic and state-of-the-art transformations including amidation, acylations, and decarbonylative couplings.
Collapse
Affiliation(s)
- Kaoru Matsushita
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Ryosuke Takise
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | | | | |
Collapse
|
40
|
Lu H, Yu TY, Xu PF, Wei H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chem Rev 2020; 121:365-411. [DOI: 10.1021/acs.chemrev.0c00153] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
41
|
Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chem Rev 2020; 120:6124-6196. [DOI: 10.1021/acs.chemrev.9b00682] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Andrew L. Clevenger
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan M. Stolley
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Justis Aderibigbe
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
42
|
Kurosawa MB, Isshiki R, Muto K, Yamaguchi J. Catalytic Deoxygenative Coupling of Aromatic Esters with Organophosphorus Compounds. J Am Chem Soc 2020; 142:7386-7392. [DOI: 10.1021/jacs.0c02839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Miki B. Kurosawa
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ryota Isshiki
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kei Muto
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
43
|
Ma S, Zhou T, Li G, Szostak M. Suzuki‐Miyaura Cross‐Coupling of Amides using Well‐Defined, Air‐Stable [(PR
3
)
2
Pd(II)X
2
] Precatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siyue Ma
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Guangchen Li
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark, NJ 07102 United States
| |
Collapse
|
44
|
Zeng X, Zhang Y, Liu Z, Geng S, He Y, Feng Z. Iron-Catalyzed Borylation of Aryl Ethers via Cleavage of C–O Bonds. Org Lett 2020; 22:2950-2955. [DOI: 10.1021/acs.orglett.0c00679] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoqin Zeng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Yuxuan Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Zhengli Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Shasha Geng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Zhang Feng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
- School of Preclinical Medicine, North Sichuan Medical College, Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, Nanchong, Sichuan 637000, China
| |
Collapse
|
45
|
Wang Z, Wang X, Nishihara Y. Nickel or Palladium-Catalyzed Decarbonylative Transformations of Carboxylic Acid Derivatives. Chem Asian J 2020; 15:1234-1247. [PMID: 32125073 DOI: 10.1002/asia.202000117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Indexed: 11/07/2022]
Abstract
Carboxylic acid derivatives containing acyl halides, anhydrides, esters, amides and acyl nitriles are highly appealing electrophiles in transition-metal-catalyzed carbon-carbon bond-forming reactions due to their ready availability and low cost, which can provide divergent transformations of carboxylic acids into other value-added products. In this Minireview, we focus on the recent advances of decarbonylative transformations of carboxylic acid derivatives in carbon-carbon bond formations using Ni or Pd catalysts. A series of reaction types, product classifications and reaction pathways are presented herein, which show the advantageous features of carboxylic acid derivatives as alternative to aryl or alkyl halides in terms of reactivity and compatibility. The well-accepted mechanism of nickel- or palladium-catalyzed decarbonylative transformations involves initial oxidative addition of carboxylic acid derivatives, followed by decarbonylation or transmetalation (or insertion), and reductive elimination to generate the products, thereby regenerating the catalysts.
Collapse
Affiliation(s)
- Zhenhua Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Xiu Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 70-8530, Japan
| |
Collapse
|
46
|
Chen X, Zhou XY. Decarboxylation of indole-3-carboxylic acids under metal-free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1703137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
47
|
Rahman MM, Liu C, Bisz E, Dziuk B, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. N-Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. J Org Chem 2020; 85:5475-5485. [DOI: 10.1021/acs.joc.0c00227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-373 Wrocław, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
48
|
Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids. Nat Commun 2020; 11:946. [PMID: 32075976 PMCID: PMC7031291 DOI: 10.1038/s41467-020-14799-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/30/2020] [Indexed: 11/24/2022] Open
Abstract
Amides are among the most fundamental functional groups and essential structural units, widely used in chemistry, biochemistry and material science. Amide synthesis and transformations is a topic of continuous interest in organic chemistry. However, direct catalytic asymmetric activation of amide C-N bonds still remains a long-standing challenge due to high stability of amide linkages. Herein, we describe an organocatalytic asymmetric amide C-N bonds cleavage of N-sulfonyl biaryl lactams under mild conditions, developing a general and practical method for atroposelective construction of axially chiral biaryl amino acids. A structurally diverse set of axially chiral biaryl amino acids are obtained in high yields with excellent enantioselectivities. Moreover, a variety of axially chiral unsymmetrical biaryl organocatalysts are efficiently constructed from the resulting axially chiral biaryl amino acids by our present strategy, and show competitive outcomes in asymmetric reactions.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Qianqian Shi
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, China
| | - Wanyao Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingying Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhouli Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
49
|
Yu CG, Matsuo Y. Nickel-Catalyzed Deaminative Acylation of Activated Aliphatic Amines with Aromatic Amides via C-N Bond Activation. Org Lett 2020; 22:950-955. [PMID: 31961696 DOI: 10.1021/acs.orglett.9b04497] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deaminative functionalization of aliphatic primary amines has great synthetic utility. Herein, we describe a Ni-catalyzed reductive deaminative cross-electrophile coupling reaction between Katritzky salts and aromatic amides. This work provides examples of the synthesis of various ketones from alkylpyridinium salts, including both primary and secondary alkylamines. Given its mild reaction conditions and high functional group tolerance, this cross-coupling strategy is expected to be useful for late-stage functionalization of complex compounds.
Collapse
Affiliation(s)
- Chu-Guo Yu
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Yutaka Matsuo
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China.,Institute of Materials Innovation, Institutes of Innovation for Future Society , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| |
Collapse
|
50
|
Mehta MM, Boit TB, Dander JE, Garg NK. Ni-Catalyzed Suzuki-Miyaura Cross-Coupling of Aliphatic Amides on the Benchtop. Org Lett 2020; 22:1-5. [PMID: 31621338 PMCID: PMC6994262 DOI: 10.1021/acs.orglett.9b03434] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suzuki-Miyaura cross-couplings of amides offer an approach to the synthesis of ketones that avoids the use of basic or pyrophoric nucleophiles. However, these reactions require glovebox manipulations, thus limiting their practicality. We report a benchtop protocol for Suzuki-Miyaura cross-couplings of aliphatic amides that utilizes a paraffin capsule containing a Ni(0) precatalyst and NHC ligand. This methodology is broad in scope, is scalable, and provides a user-friendly approach to convert aliphatic amides to alkyl-aryl ketones.
Collapse
Affiliation(s)
| | | | | | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|