1
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
2
|
Shen L, Wang Y, Liu C, Alateng W, Wang Y, Zeeck A, Wang W, Zhang P, Wei Y, Cai X. Genome-Driven Discovery of Antiviral Atralabdans A-C from the Soil-Dwelling Streptomyces atratus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1735-1745. [PMID: 38976838 DOI: 10.1021/acs.jnatprod.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Heterologous expression of an atr terpenoid gene cluster derived from Streptomyces atratus Gö66 in S. albus J1074 led to the discovery of three novel labdane diterpenoids featuring an unprecedented 6/6/5-fused tricyclic skeleton, designated as atralabdans A-C (1-3), along with a known compound, labdanmycin A. Compounds 1-3 were identified through extensive spectroscopic analysis, including NMR calculations with DP4+ probability analysis, and a comparative assessment of experimental and theoretical electronic circular dichroism (ECD) spectra. A plausible biosynthetic pathway for these compounds was proposed. Compounds 1-3 exhibited inhibitory activity against the human neurotropic coxsackievirus B3 (CVB3); 1 was the most potent, surpassing the positive control ribavirin with a higher therapeutic index.
Collapse
Affiliation(s)
- Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanyan Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chengxin Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wula Alateng
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yuxin Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Axel Zeeck
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37073, Germany
| | - Weiguang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming 650031, People's Republic of China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanhong Wei
- Sino-German Biomedical Center, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- State Key Laboratory of Dao-di Herbs, Beijing 100700, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Xu Q, Fu J, Wu L, Li Y, Lu Y, Shi Y, Sun H, Li X, Wang L, Hong B. Engineering Streptomyces sp. CPCC 204095 for the targeted high-level production of isatropolone A by elucidating its pathway-specific regulatory mechanism. Microb Cell Fact 2024; 23:113. [PMID: 38622698 PMCID: PMC11020959 DOI: 10.1186/s12934-024-02387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.
Collapse
Affiliation(s)
- Cong Zhang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianqian Xu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Fu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs and State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Fu J, Liu X, Zhang M, Liu J, Li S, Jiang B, Wu L. Di-Isatropolone C, a Spontaneous Isatropolone C Dimer Derivative with Autophagy Activity. Molecules 2024; 29:1477. [PMID: 38611756 PMCID: PMC11013608 DOI: 10.3390/molecules29071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Isatropolone C from Streptomyces sp. CPCC 204095 features a fused cyclopentadienone-tropolone-oxacyclohexadiene tricyclic moiety in its structure. Herein, we report an isatropolone C dimer derivative, di-isatropolone C, formed spontaneously from isatropolone C in methanol. Notably, the structure of di-isatropolone C resolved by NMR reveals a newly formed cyclopentane ring to associate the two isatropolone C monomers. The configurations of four chiral carbons, including a ketal one, in the cyclopentane ring are assigned using quantum NMR calculations and DP4+ probability. The plausible molecular mechanism for di-isatropolone C formation is proposed, in which complex dehydrogenative C-C bond coupling may have happened to connect the two isatropolone C monomers. Like isatropolone C, di-isatropolone C shows the biological activity of inducing autophagy in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingya Jiang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.F.); (X.L.); (M.Z.); (J.L.); (S.L.)
| | - Linzhuan Wu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.F.); (X.L.); (M.Z.); (J.L.); (S.L.)
| |
Collapse
|
5
|
Schwitalla JW, Le NTH, Um S, Schalk F, Brönstrup M, Baunach M, Beemelmanns C. Heterologous expression of the cryptic mdk gene cluster and structural revision of maduralactomycin A. RSC Adv 2023; 13:34136-34144. [PMID: 38019997 PMCID: PMC10663993 DOI: 10.1039/d3ra05931f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
After conducting an in silico analysis of the cryptic mdk cluster region and performing transcriptomic studies, an integrative Streptomyces BAC Vector containing the mdk gene sequence was constructed. The heterologous expression of the mdk cluster in Streptomyces albus J1074 resulted in the production of the angucyclic product, seongomycin, which allowed for the assesment of its antibacterial, antiproliferative, and antiviral activities. Heterologous production was further confirmed by targeted knock-out experiments involving key regulators of the biosynthetic pathways. We were further able to revise the core structure of maduralactomycin A, using a computational approach.
Collapse
Affiliation(s)
- Jan W Schwitalla
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8 66123 Saarbrücken Germany
| | - Ngoc-Thao-Hien Le
- Department of Pharmaceutical Sciences, Natural Products and Food Research and Analysis (NatuRA), University of Antwerp Universiteitsplein 1 B-2610 Antwerp Belgium
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University Incheon 21983 South Korea
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 D-38124 Braunschweig Germany
| | - Martin Baunach
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Hans-Knöll Institute (HKI) Beutenbergstraße 11a 07745 Jena Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8 66123 Saarbrücken Germany
- Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
6
|
Portero CE, Han Y, Marchán-Rivadeneira MR. Advances on the biosynthesis of pyridine rings. ENGINEERING MICROBIOLOGY 2023; 3:100064. [PMID: 39629243 PMCID: PMC11611018 DOI: 10.1016/j.engmic.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2024]
Abstract
Numerous studies have investigated the biosynthesis of pyridine heterocycles derived from nicotinic acid. However, metabolic pathways generating pyridine heterocycles in nature remain uninvestigated. Here, we summarize recent contributions conducted in the last decade on the biosynthetic pathways of non-derivate from nicotinic acid pyridine rings and discuss their implication on the study of natural products with pyridine structures.
Collapse
Affiliation(s)
- Carolina E Portero
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL) - Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
| | - M Raquel Marchán-Rivadeneira
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL) - Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| |
Collapse
|
7
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
8
|
Chen Q, Lan P, Tan S, Banwell MG. The Palladium-Catalyzed Glycosylation of Halotropones. Org Lett 2023; 25:384-388. [PMID: 36606750 DOI: 10.1021/acs.orglett.2c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A range of mono- and disaccharides, including glucose derivative 10, has been cleanly coupled, in the presence of a Pd catalyst, with various halogenated and structurally distinctive tropones, including "parent" compound 11, to afford the corresponding α- and β-anomeric forms of the tropolone glycosides, e.g., 12 and 13, respectively. Varying the ligand used influences the anomer distribution significantly and such that either the α- or β-form predominates. Notable chemo- and regioselectivities are observed when dihalogenated troponoids are employed as coupling partners.
Collapse
Affiliation(s)
- Qi Chen
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong510632, China.,Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University,Zhanjiang, Guangdong524023, China
| |
Collapse
|
9
|
Li L, Zhang M, Li S, Jiang B, Zhang J, Yu L, Liu H, Wu L. Isatropolone/isarubrolone C m from Streptomyces with biological activity of inducing incomplete autophagy. J Antibiot (Tokyo) 2022; 75:702-708. [PMID: 36224376 DOI: 10.1038/s41429-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Isatropolones/isarubrolones are Streptomyces secondary metabolites featuring a tropolone ring in the pentacyclic scaffolds of these molecules. They are able to induce complete autophagy in human HepG2 cells. Here, methyl isatropolones (1-2) and isarubrolone (3) are identified from Streptomyces CPCC 204095. They all have a methyl tropolone ring in the pentacyclic scaffold of these molecules resolved by MS and NMR spectra. Biological activity assay indicates that isatropolone Cm (1) and isarubrolone Cm (3) induce incomplete autophagy in human HepG2 cells.
Collapse
Affiliation(s)
- Linli Li
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
- Department of Clinical Pharmacy, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, People's Republic of China
| | - Miaoqing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China.
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Jingpu Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Hongyu Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Haji M, Hosseinzadeh M. Cyclohepta[b]pyran: an important scaffold in biologically active natural products. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Yan Y, Yu Z, Zhong W, Hou X, Tao Q, Cao M, Wang L, Cai X, Rao Y, Huang SX. Characterization of Multifunctional and Non-stereoselective Oxidoreductase RubE7/IstO, Expanding the Functional Diversity of the Flavoenzyme Superfamily. Angew Chem Int Ed Engl 2022; 61:e202200189. [PMID: 35191152 DOI: 10.1002/anie.202200189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Flavin-dependent enzymes enable a broad range of redox transformations and generally act as monofunctional and stereoselective catalysts. Herein, we report the investigation of a multifunctional and non-stereoselective FMN-dependent oxidoreductase RubE7 from the rubrolone biosynthetic pathway. Our study outlines a single RubE7-catalysed sequential reduction of three spatially distinct bonds in a tropolone ring and a reversible double-bond reduction and dehydrogenation. The crystal structure of IstO (a RubE7 homologue) with 2.0 Å resolution reveals the location of the active site at the interface of two monomers, and the size of active site is large enough to permit both flipping and free rotation of the substrate, resulting in multiple nonselective reduction reactions. Molecular docking and site mutation studies demonstrate that His106 is oriented towards the substrate and is important for the reverse dehydrogenation reaction.
Collapse
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minhang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
12
|
Liu J, Liu X, Fu J, Jiang B, Li S, Wu L. Dihydroisatropolone C from Streptomyces and Its Implication in Tropolone-Ring Construction for Isatropolone Biosynthesis. Molecules 2022; 27:molecules27092882. [PMID: 35566231 PMCID: PMC9099902 DOI: 10.3390/molecules27092882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Isatropolones/isarubrolones are actinomycete secondary metabolites featuring a tropolone-ring in their structures. From the isatropolone/isarubrolone producer Streptomyces sp. CPCC 204095, 7,12-dihydroisatropolone C (H2ITC) is discovered and identified as a mixture of two interchangeable diastereomers differing in the C-6 configuration. As a major metabolite in the mycelial growth period of Streptomyces sp. CPCC 204095, H2ITC can be oxidized spontaneously to isatropolone C (ITC), suggesting H2ITC is the physiological precursor of ITC. Characterization of H2ITC makes us propose dihydrotropolone-ring construction in the biosynthesis of isatropolones.
Collapse
|
13
|
Zhang M, Li L, Wu L, Zhang J. Isarubrolone C Promotes Autophagic Degradation of Virus Proteins via Activating ATG10S in HepG2 Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:1018-1028. [PMID: 35201775 DOI: 10.1021/acs.jnatprod.1c01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isarubrolone C is a bioactive polycyclic tropoloalkaloid from Streptomyces. Our previous study showed that isarubrolone C could trigger autophagy. Here, we report isarubrolone C potential in broad-spectrum antiviral effect and its antiviral mechanism in vitro. Our results show that isarubrolone C activated autophagy and reduced levels of viral proteins in the cells harboring HCV-CORE/NS5B, HBx, ZIKV-NS5, and HIV-RT, respectively. The role of isarubrolone C in suppression of the viral proteins was via an autophagic degradation pathway rather than a proteasome pathway. Co-immunoprecipitation assays revealed that isarubrolone C promoted both autophagy flux opening and the viral proteins being enwrapped in autolysosomes. PCR assays showed that isarubrolone C elevated the transcription levels of ATG10/ATG10S and IL28A. Further, ATG10S high expression could efficiently enhance IL28A expression and the ability of isarubrolone C to degrade the viral proteins by promoting the colocalization of viral proteins with autolysosomes. Additionally, knockdown of endogenous IL28A caused both losses of the isarubrolone C antiviral effect and autolysosome formation. These results indicate that the role of isarubrolone C antiviruses is achieved by triggering the autophagic mechanism, which is mediated by endogenous ATG10S and IL28A activation. This is the first report about isarubrolone C potential of in vitro broad-spectrum antiviruses.
Collapse
Affiliation(s)
- Miaoqing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linli Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingpu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
14
|
Romaniszyn M, Sieroń L, Albrecht Ł. 5-Substituted-furan-2(3 H)-ones in [8 + 2]-Cycloaddition with 8,8-Dicyanoheptafulvene. J Org Chem 2022; 87:5296-5302. [PMID: 35349288 PMCID: PMC9016758 DOI: 10.1021/acs.joc.2c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
This study demonstrates
the use of organocatalytic Brønsted
base activation of 5-substituted-furan-2(3H)-ones
to generate 2π-components for the diastereoselective [8 + 2]-cycloaddition
involving 8,8-dicyanoheptafulvene as an 8π-component. The use
of dienolates in a higher-order cycloaddition reaction leads to the
formation of biologically relevant polycyclic products bearing a γ-butyrolactone
structural motif, thus broadening the synthetic potential of Brønsted
base activated higher-order cycloadditions.
Collapse
Affiliation(s)
- Marta Romaniszyn
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
15
|
Yan Y, Yu Z, Zhong W, Hou X, Tao Q, Cao M, Wang L, Cai X, Rao Y, Huang S. Characterization of Multifunctional and Non‐stereoselective Oxidoreductase RubE7/IstO, Expanding the Functional Diversity of the Flavoenzyme Superfamily. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Minhang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
16
|
Moureu S, Caradec T, Trivelli X, Drobecq H, Beury D, Bouquet P, Caboche S, Desmecht E, Maurier F, Muharram G, Villemagne B, Herledan A, Hot D, Willand N, Hartkoorn RC. Rubrolone production by Dactylosporangium vinaceum: biosynthesis, modulation and possible biological function. Appl Microbiol Biotechnol 2021; 105:5541-5551. [PMID: 34189614 DOI: 10.1007/s00253-021-11404-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Rare actinomycetes are likely treasure troves for bioactive natural products, and it is therefore important that we enrich our understanding of biosynthetic potential of these relatively understudied bacteria. Dactylosporangium are a genus of such rare Actinobacteria that are known to produce a number of important antibacterial compounds, but for which there are still no fully assembled reference genomes, and where the extent of encoded biosynthetic capacity is not defined. Dactylosporangium vinaceum (NRRL B-16297) is known to readily produce a deep wine red-coloured diffusible pigment of unknown origin, and it was decided to define the chemical identity of this natural product pigment, and in parallel use whole genome sequencing and transcriptional analysis to lay a foundation for understanding the biosynthetic capacity of these bacteria. Results show that the produced pigment is made of various rubrolone conjugates, the spontaneous product of the reactive pre-rubrolone, produced by the bacterium. Genome and transcriptome analysis identified the highly expressed biosynthetic gene cluster (BGC) for pre-rubrolone. Further analysis of the fully assembled genome found it to carry 24 additional BGCs, of which the majority were poorly transcribed, confirming the encoded capacity of this bacterium to produce natural products but also illustrating the main bottleneck to exploiting this capacity. Finally, analysis of the potential environmental role of pre-rubrolone found it to react with a number of amine containing antibiotics, antimicrobial peptides and siderophores pointing to its potential role as a "minesweeper" of xenobiotic molecules in the bacterial environment. KEY POINTS: • D. vinaceum encodes many BGC, but the majority are transcriptionally silent. • Chemical screening identifies molecules that modulate rubrolone production. • Pre-rubrolone is efficient at binding and inactivating many natural antibiotics.
Collapse
Affiliation(s)
- Sophie Moureu
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Thibault Caradec
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Xavier Trivelli
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Peggy Bouquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Segolene Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Eva Desmecht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florence Maurier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Ruben Christiaan Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
17
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
18
|
Yan Y, Yang J, Wang L, Xu D, Yu Z, Guo X, Horsman GP, Lin S, Tao M, Huang SX. Biosynthetic access to the rare antiarose sugar via an unusual reductase-epimerase. Chem Sci 2020; 11:3959-3964. [PMID: 34122866 PMCID: PMC8152690 DOI: 10.1039/c9sc05766h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rubrolones, isatropolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity. They share similar aglycone skeletons but differ in their sugar moieties, and rubterolones in particular have a rare deoxysugar antiarose of unknown biosynthetic provenance. During our previously reported biosynthetic elucidation of the tropolone ring and pyridine moiety, gene inactivation experiments revealed that RubS3 is involved in sugar moiety biosynthesis. Here we report the in vitro characterization of RubS3 as a bifunctional reductase/epimerase catalyzing the formation of TDP-d-antiarose by epimerization at C3 and reduction at C4 of the key intermediate TDP-4-keto-6-deoxy-d-glucose. These new findings not only explain the biosynthetic pathway of deoxysugars in rubrolone-like natural products, but also introduce RubS3 as a new family of reductase/epimerase enzymes with potential to supply the rare antiarose unit for expanding the chemical space of glycosylated natural products. Rubrolones, isarubrolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity.![]()
Collapse
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Dongdong Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Xiaowei Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University Waterloo ON N2L 3C5 Canada
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
19
|
Hu Y, Zhang Z, Yin Y, Tang GL. Directed Biosynthesis of Iso-aclacinomycins with Improved Anticancer Activity. Org Lett 2020; 22:150-154. [PMID: 31829601 DOI: 10.1021/acs.orglett.9b04069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A four-enzyme catalyzed hydroxy regioisomerization of anthracycline was integrated into the biosynthetic pathway of aclacinomycin A (ALM-A), to generate a series of iso-ALMs via directed combinatorial biosynthesis combined with precursor-directed mutasynthesis. Most of the newly acquired iso-ALMs exhibit obviously (1-5-fold) improved antitumor activity. Therefore, we not only developed iso-ALMs with potential as clinical drugs but also demonstrated the utility of this tailoring tool for modification of anthracycline antibiotics in drug discovery and development.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Zhuan Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Yue Yin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| |
Collapse
|
20
|
Li L, Li S, Jiang B, Zhang M, Zhang J, Yang B, Li L, Yu L, Liu H, You X, Hu X, Wang Z, Li Y, Wu L. Isarubrolones Containing a Pyridooxazinium Unit from Streptomyces as Autophagy Activators. JOURNAL OF NATURAL PRODUCTS 2019; 82:1149-1154. [PMID: 31070914 DOI: 10.1021/acs.jnatprod.8b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isarubrolones are bioactive polycyclic tropoloalkaloids from Streptomyces. Three new isarubrolones (2-4), together with the known isarubrolone C (1) and isatropolones A (5) and C (6, 3( R)-hydroxyisatropolone A), were identified from Streptomyces sp. CPCC 204095. The structures of these compounds were determined using a combination of mass spectrometry, 1D and 2D NMR spectroscopy, and ECD. Compounds 3 and 4 feature a pyridooxazinium unit, which is rarely seen in natural products. Compound 6 could conjugate with amino acids or amines to expand the structural diversity of isarubrolones with a pentacyclic or hexacyclic core. Importantly, 1 and 3-6 were found to induce complete autophagy.
Collapse
Affiliation(s)
- Linli Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Shufen Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Bingya Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Miaoqing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Jingpu Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Beibei Yang
- Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Li Li
- Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Liyan Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Hongyu Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Xuefu You
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Xinxin Hu
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Zhen Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Yuhuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| | - Linzhuan Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , People's Republic of China
| |
Collapse
|
21
|
Abstract
This review on natural products containing a tropolonoid motif highlights analytical methods applied for structural identification and biosynthetic pathway analysis, the ecological context and the pharmacological potential of this compound class.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute
- 07745 Jena
- Germany
| | - David Roman
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute
- 07745 Jena
- Germany
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute
- 07745 Jena
- Germany
| |
Collapse
|
22
|
Guo H, Benndorf R, König S, Leichnitz D, Weigel C, Peschel G, Berthel P, Kaiser M, Steinbeck C, Werz O, Poulsen M, Beemelmanns C. Expanding the Rubterolone Family: Intrinsic Reactivity and Directed Diversification of PKS-derived Pyrans. Chemistry 2018; 24:11319-11324. [PMID: 29846024 DOI: 10.1002/chem.201802066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Indexed: 12/20/2022]
Abstract
We characterized two key biosynthetic intermediates of the intriguing rubterolone family (tropolone alkaloids) that contain a highly reactive pyran moiety (in equilibrium with the hydrolyzed 1,5-dione form) and undergo spontaneous pyridine formation in the presence of primary amines. We exploited the intrinsic reactivity of the pyran moiety and isolated several new rubterolone derivatives, two of which contain a unique thiazolidine moiety. Three rubterolone derivatives were chemically modified with fluorescence and biotin tags using peptide coupling and click reaction. Overall, eight derivatives were fully characterized by HRMS/MS and 1D and 2D NMR spectroscopy and their antimicrobial, cytotoxic, anti-inflammatory and antiparasitic activities evaluated.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - René Benndorf
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Stefanie König
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Daniel Leichnitz
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Patrick Berthel
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Socinstraße 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Christoph Steinbeck
- Institute for Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstr. 8, 07743, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Michael Poulsen
- Centre for Social Evolution, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research, and Infection Biology-Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| |
Collapse
|
23
|
Sarwar A, Latif Z, Zhang S, Zhu J, Zechel DL, Bechthold A. Biological Control of Potato Common Scab With Rare Isatropolone C Compound Produced by Plant Growth Promoting Streptomyces A1RT. Front Microbiol 2018; 9:1126. [PMID: 29899736 PMCID: PMC5989138 DOI: 10.3389/fmicb.2018.01126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022] Open
Abstract
Potato is prone to many drastic diseases like potato common scab (CS). As no highly effective methods exist for managing CS, this study explored the possibility of using biological control. Ten bacterial strains were isolated from CS-infected potato tubers from four different locations of Punjab, Pakistan, and identified based on biochemical and molecular analysis. Analysis of 16s rDNA sequences amplified by PCR revealed the isolated bacterial strains to be Streptomyces scabies, S. turgidiscabies and S. stelliscabiei. Pathogenic islands were also confirmed among the isolates after identification of txtAB, nec1, and tomA genes with PCR amplification. One strain isolated from soil was antagonistic to the pathogenic Streptomyces spp., and determined to be Streptomyces A1RT on the basis of 16s rRNA sequencing. A methanolic extract of Streptomyces A1RT contained Isatropolone C, which was purified and structurally determined by 1H- and 13C-NMR, 1H/1H-COSY, HMQC, and HMBC techniques. Streptomyces A1RT also produced the plant growth hormone indole-3-acetic acid (IAA) with a titer of 26 μg ml-1 as confirmed by spectrophotometry and HPLC. In a greenhouse assay, disease severity index was established from 0 to 500. Average disease severity indexes were recorded as 63, 130.5, and 78 for Streptomyces scabies, S. turgidiscabies and S. stelliscabiei, respectively. When Streptomyces A1RT was applied in soil that contained one of these pathogenic isolates, the average disease severity indexes were significantly (P < 0.05) reduced to 11.1, 5.6 and 8.4, respectively. A significant increase in tuber weight and shoot development was also observed with the tubers treated with Streptomyces A1RT. The use of the plant growth-promoting Streptomyces A1RT against potato CS thus provides an alternative strategy to control the disease without affecting environmental, plants, animals and human health.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jing Zhu
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
24
|
Guo H, Benndorf R, Leichnitz D, Klassen JL, Vollmers J, Görls H, Steinacker M, Weigel C, Dahse HM, Kaster AK, de Beer ZW, Poulsen M, Beemelmanns C. Isolation, Biosynthesis and Chemical Modifications of Rubterolones A-F: Rare Tropolone Alkaloids from Actinomadura sp. 5-2. Chemistry 2017; 23:9338-9345. [PMID: 28463423 DOI: 10.1002/chem.201701005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 12/15/2022]
Abstract
The discovery of six new, highly substituted tropolone alkaloids, rubterolones A-F, from Actinomadura sp. 5-2, isolated from the gut of the fungus-growing termite Macrotermes natalensis is reported. Rubterolones were identified by using fungus-bacteria challenge assays and a HRMS-based dereplication strategy, and characterised by NMR and HRMS analyses and by X-ray crystallography. Feeding experiments and subsequent chemical derivatisation led to a first library of rubterolone derivatives (A-L). Genome sequencing and comparative analyses revealed their putative biosynthetic pathway, which was supported by feeding experiments. This study highlights how gut microbes can present a prolific source of secondary metabolites.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - René Benndorf
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Daniel Leichnitz
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jonathan L Klassen
- Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - John Vollmers
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Matthias Steinacker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Hans-Martin Dahse
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Z Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael Poulsen
- Centre for Social Evolution, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| |
Collapse
|