1
|
Doloczki S, Kern C, Holmberg KO, Swartling FJ, Streuff J, Dyrager C. Photoinduced Ring-Opening and Phototoxicity of an Indolin-3-one Derivative. Chemistry 2023; 29:e202300864. [PMID: 37332083 DOI: 10.1002/chem.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The study of a fluorescent indolin-3-one derivative is reported that, as opposed to its previously described congeners, selectively undergoes photoactivated ring-opening in apolar solvents. The excited state involved in this photoisomerization was partially deactivated by the formation of singlet oxygen. Cell studies revealed lipid droplet accumulation and efficient light-induced cytotoxicity.
Collapse
Affiliation(s)
- Susanne Doloczki
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Christoph Kern
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Jan Streuff
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Christine Dyrager
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| |
Collapse
|
2
|
Höthker S, Gansäuer A. Formal Anti-Markovnikov Addition of Water to Olefins by Titanocene-Catalyzed Epoxide Hydrosilylation: From Stoichiometric to Sustainable Catalytic Reactions. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200240. [PMID: 37483422 PMCID: PMC10362118 DOI: 10.1002/gch2.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Indexed: 07/25/2023]
Abstract
Here, the evolution of the titanocene-catalyzed hydrosilylation of epoxides that yields the corresponding anti-Markovnikov alcohols is summarized. The study focuses on aspects of sustainability, efficient catalyst activation, and stereoselectivity. The latest variant of the reaction employs polymethylhydrosiloxane (PMHS), a waste product of the Müller-Rochow process as terminal reductant, features an efficient catalyst activation with benzylMgBr and the use of the bench stable Cp2TiCl2 as precatalyst. The combination of olefin epoxidation and epoxide hydrosilylation provides a uniquely efficient approach to the formal anti-Markovnikov addition of H2O to olefins.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| |
Collapse
|
3
|
Aksenov NA, Arutiunov NA, Kurenkov IA, Malyuga VV, Aksenov DA, Momotova DS, Zatsepilina AM, Chukanova EA, Leontiev AV, Aksenov AV. A Two-Step Synthesis of Unprotected 3-Aminoindoles via Post Functionalization with Nitrostyrene. Molecules 2023; 28:molecules28093657. [PMID: 37175067 PMCID: PMC10180116 DOI: 10.3390/molecules28093657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A novel, low-cost method for the preparation of not easily accessible free 3-aminoindoles has been developed. This approach is based on a well-established reaction between indoles and nitrostyrene in the presence of phosphorous acid, which results in the formation of 4'-phenyl-4'H-spiro[indole-3,5'-isoxazoles]. The latter could be transformed to corresponding aminated indoles by reaction with hydrazine hydrate in good or excellent yields upon microwave-assisted heating.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Nikolai A Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Vladimir V Malyuga
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Daria S Momotova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Anna M Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Elizaveta A Chukanova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Alexander V Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355009 Stavropol, Russia
| |
Collapse
|
4
|
Zhang W, Tang CS, Xiang SQ. Condensation of acrylonitrile and aryl acetonitrile: construction of α-amino-β-cyano cyclohexene skeletons. RSC Adv 2022; 12:29840-29843. [PMID: 36321094 PMCID: PMC9578340 DOI: 10.1039/d2ra04936h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
A representative condensation of acrylonitrile and aryl acetonitrile has been reported for the synthesis of α-amino-β-cyano cyclohexene. The reaction was carried out mildly in an open environment at room temperature. The scope and versatility of the method have been demonstrated with 20 examples, containing highly active ethynyl groups. Further applications for 4-aminopyrimidine compounds were performed. A mechanism was proposed, involving Michael additions between acrylonitrile and aryl acetonitriles as well as intramolecular condensation.
Collapse
Affiliation(s)
- Wei Zhang
- Chongqing University of Science and TechnologyChongqing401331China
| | | | - Shi-Qun Xiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of EducationChangchun130103China,College of Chemistry, Jilin Normal UniversitySiping136000China
| |
Collapse
|
5
|
Hauguel C, Pozzo J, Hamze A, Provot O. Recent Advances in Synthesis of Pyrrolo[3,2‐
b
]indole and Indolo[3,2‐
b
]indole Derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Jean‐Luc Pozzo
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255 351 cours Libération F-33405 Bordeaux France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| |
Collapse
|
6
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
7
|
Younas SL, Streuff J. Kinetic Analysis Uncovers Hidden Autocatalysis and Inhibition Pathways in Titanium(III)-Catalyzed Ketone-Nitrile Couplings. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sara L. Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Department of Chemistry—BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
8
|
Kamal A, Singh HK, Kumar D, Maury SK, Kumari S, Srivastava V, Singh S. Visible Light‐Induced Cu‐Catalyzed Synthesis of Schiff's Base of 2‐ Amino Benzonitrile Derivatives and Acetophenones. ChemistrySelect 2021. [DOI: 10.1002/slct.202003950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arsala Kamal
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Himanshu Kumar Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Dhirendra Kumar
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Suresh Kumar Maury
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Savita Kumari
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Vandana Srivastava
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| | - Sundaram Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005, U.P. India
| |
Collapse
|
9
|
Hu X, Tan Z, Liu Z, Chen F, Jiang H, Zeng W. Rh(iii)-Catalyzed sulfonylamination of α-indolyl alcohols via Csp2–Csp3 bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d0qo01426e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed beta-carbon amination of α-aryl alcohols with sulfonyl azides has been developed. This transformation features unstrained Csp2–Csp3 σ bond amination via C–C bond cleavage, and provides a direct approach to complex 2-aminoindoles.
Collapse
Affiliation(s)
- Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Zheng Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
10
|
Martínez AR, Morales LP, Ojeda ED, Rodríguez MC, Rodríguez-García I. The Proven Versatility of Cp 2TiCl. J Org Chem 2020; 86:1311-1329. [PMID: 33147037 DOI: 10.1021/acs.joc.0c01233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last two decades, titanocene monochloride has been postulated as a monoelectronic transfer reagent capable of catalyzing an important variety of chemical transformations. In this Perspective, our contributions to this growing field of research are summarized and analyzed. Especially known have been our contributions in C-C bond formation reactions, hydrogen-atom transfer from water to radicals, and isomerization reactions, as well as the development of a catalytic cycle that has subsequently allowed the preparation of a great variety of natural terpenes. It is also worth mentioning our contribution in the postulation of this single-electron transfer agent (SET) as a new green catalyst with a broad range of applications in organic and organometallic chemistry. The most significant catalytic processes developed by other research groups are also briefly described, with special emphasis on the reaction mechanisms involved. Finally, a reflection is made on the future trends in the research of this SET, aimed at consolidating this chemical as a new green reagent that will be widely used in fine chemistry, green chemistry, and industrial chemical processes.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Laura Pozo Morales
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Emilio Díaz Ojeda
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - María Castro Rodríguez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | | |
Collapse
|
11
|
Wiesler S, Younas SL, Kratzert D, Streuff J. Titanocene catalysts with modifiable C-symmetric chiral ligands. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Hong K, Zhou S, Hu W, Xu X. Rh-Catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00294a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Rh-catalyzed nitrene/alkyne metathesis (NAM) cascade reaction terminated by a formal C–N bond insertion has been developed, which provides facile access to the tricyclic 3-iminoindolines in good yields with broad substrate scope.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
13
|
Titanium catalyzed synthesis of amines and N-heterocycles. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Manßen M, Schafer LL. Titanium catalysis for the synthesis of fine chemicals – development and trends. Chem Soc Rev 2020; 49:6947-6994. [DOI: 10.1039/d0cs00229a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atlas as a Titan(ium) is holding the earth-abundant chemistry world. Titanium is the second most abundant transition metal, is a key player in important industrial processes (e.g. polyethylene) and shows much promise for diverse applications in the future.
Collapse
Affiliation(s)
- Manfred Manßen
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Laurel L. Schafer
- The Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
15
|
Lin S, Chen Y, Li F, Shi C, Shi L. Visible-light-driven spirocyclization of epoxides via dual titanocene and photoredox catalysis. Chem Sci 2019; 11:839-844. [PMID: 34123060 PMCID: PMC8146098 DOI: 10.1039/c9sc05601g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
We describe the synergistic utilization of titanocene/photoredox dual catalysis driven by visible light for the radical opening/spirocyclization of easily accessible epoxyalkynes. This environmentally benign process uses the organic donor-acceptor fluorophore 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as a photocatalyst and Hantzsch ester (HE) as an electron donor instead of stoichiometric metallic reductants. The photocatalytic conditions showed exceptionally high reactivity for the synthesis of privileged and synthetically challenging spirocycles featuring a spiro all-carbon quaternary stereocenter. Cyclic voltammetry (CV) studies suggest that Cp2TiIIICl is the catalytically active species.
Collapse
Affiliation(s)
- Shuangjie Lin
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Yuqing Chen
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Fusheng Li
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Caizhe Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Lei Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Weweler J, Younas SL, Streuff J. Titanium(III)-Catalyzed Reductive Decyanation of Geminal Dinitriles by a Non-Free-Radical Mechanism. Angew Chem Int Ed Engl 2019; 58:17700-17703. [PMID: 31513329 PMCID: PMC6899653 DOI: 10.1002/anie.201908372] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Indexed: 01/14/2023]
Abstract
A titanium-catalyzed mono-decyanation of geminal dinitriles is reported. The reaction proceeds under mild conditions, tolerates numerous functional groups, and can be applied to quaternary malononitriles. A corresponding desulfonylation is demonstrated as well. Mechanistic experiments support a catalyst-controlled cleavage without the formation of free radicals, which is in sharp contrast to traditional stoichiometric radical decyanations. The involvement of two TiIII species in the C-C cleavage is proposed, and the beneficial role of added ZnCl2 and 2,4,6-collidine hydrochloride is investigated.
Collapse
Affiliation(s)
- Jens Weweler
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Sara L. Younas
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Jan Streuff
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| |
Collapse
|
17
|
Dagoneau D, Kolleth A, Quinodoz P, Tanriver G, Catak S, Lumbroso A, Sulzer‐Mossé S, De Mesmaeker A. Keteniminium Salts as Key Intermediates for the Efficient Synthesis of 3‐Amino‐Indoles and ‐Benzofurans. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dylan Dagoneau
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Amandine Kolleth
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Pierre Quinodoz
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Gamze Tanriver
- Bogazici UniversityDepartment of Chemistry Bebek 34342 Istanbul Turkey
| | - Saron Catak
- Bogazici UniversityDepartment of Chemistry Bebek 34342 Istanbul Turkey
| | - Alexandre Lumbroso
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Sarah Sulzer‐Mossé
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
18
|
Weweler J, Younas SL, Streuff J. Titan(III)‐katalysierte, reduktive Decyanierung geminaler Dinitrile ohne freie Radikalintermediate. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jens Weweler
- Institut für Organische ChemieAlbert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Deutschland
| | - Sara L. Younas
- Institut für Organische ChemieAlbert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Deutschland
| | - Jan Streuff
- Institut für Organische ChemieAlbert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg im Breisgau Deutschland
| |
Collapse
|
19
|
Liedtke T, Hilche T, Klare S, Gansäuer A. Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry: Additives and Solvents. CHEMSUSCHEM 2019; 12:3166-3171. [PMID: 30779429 DOI: 10.1002/cssc.201900344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Cyclic voltammetry-based screening method for Cp2 TiX-catalyzed reactions is extended to the screening of solvents other than tetrahydrofuran for bulk electrolysis of the catalyst and radical arylation. It was found that CH3 CN can be used as a solvent for both processes without additives. Furthermore, in tetrahydrofuran, squaramide L2 is more efficient than the previously reported supramolecular halide binder, Schreiner's thiourea L1. The results extend the usefulness of the proposed time and resource-efficient screening method for designing catalysis reactions in single-electron steps.
Collapse
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tobias Hilche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
20
|
Zhang G, Lin L, Yang K, Wang S, Feng Q, Zhu J, Song Q. 3‐Aminoindole Synthesis from 2‐Nitrochalcones and Ammonia or Primary Amines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guan Zhang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering atHuaqiao University 668 Jimei Boulevard, Xiamen Fujian 361021 People's Republic of China
| | - Lu Lin
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 People's Republic of China
| | - Kai Yang
- College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Shihui Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering atHuaqiao University 668 Jimei Boulevard, Xiamen Fujian 361021 People's Republic of China
| | - Qiang Feng
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering atHuaqiao University 668 Jimei Boulevard, Xiamen Fujian 361021 People's Republic of China
| | - Jun Zhu
- College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering atHuaqiao University 668 Jimei Boulevard, Xiamen Fujian 361021 People's Republic of China
- College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| |
Collapse
|
21
|
Zhang Z, Richrath RB, Gansäuer A. Merging Catalysis in Single Electron Steps with Photoredox Catalysis—Efficient and Sustainable Radical Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00787] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhenhua Zhang
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Ruben B. Richrath
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
22
|
Cheng JT, Zheng X, Huang PQ. Construction of multifunctional heterocycles bearing aza-quaternary carbons by titanocene-catalyzed umpolung reactions. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Leijendekker LH, Weweler J, Leuther TM, Kratzert D, Streuff J. Development, Scope, and Applications of Titanium(III)-Catalyzed Cyclizations to Aminated N-Heterocycles. Chemistry 2019; 25:3382-3390. [PMID: 30615817 DOI: 10.1002/chem.201805909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Leonardus H. Leijendekker
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jens Weweler
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Tobias M. Leuther
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Daniel Kratzert
- Institut für Anorganische und Analytische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jan Streuff
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
24
|
Beaumier EP, Pearce AJ, See XY, Tonks IA. Modern applications of low-valent early transition metals in synthesis and catalysis. Nat Rev Chem 2019; 3:15-34. [PMID: 30989127 PMCID: PMC6462221 DOI: 10.1038/s41570-018-0059-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low-valent early transition metals are often intrinsically highly reactive as a result of their strong propensity toward oxidation to more stable high-valent states. Harnessing these highly reducing complexes for productive reactivity is potentially powerful for C-C bond construction, organic reductions, small-molecule activation and many other reactions that offer orthogonal chemoselectivity and/or regioselectivity patterns to processes promoted by late transition metals. Recent years have seen many exciting new applications of low-valent metals through building new catalytic and/or multicomponent reaction manifolds out of classical reactivity patterns. In this Review, we survey new methods that employ early transition metals and invoke low-valent precursors or intermediates in order to identify common themes and strategies in synthesis and catalysis.
Collapse
Affiliation(s)
- Evan P. Beaumier
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Adam J. Pearce
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Xin Yi See
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Santhini PV, V. J, Pradhan SC, Lingamoorthy S, P. R. N, M. V. C, Mishra RK, K. N. NU, John J, Soman S. Indolo[3,2-b]indole donor-based D–π–A dyes for DSCs: investigating the role of π-spacers towards recombination. NEW J CHEM 2019. [DOI: 10.1039/c8nj04561e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A detailed investigation of recombination, employing novel indolo[3,2-b]indole donor-based organic D–π–A dyes with variable π-spacers, using various perturbation techniques.
Collapse
|
26
|
Luu HT, Streuff J. Development of an Efficient Synthesis of rac
-3-Demethoxyerythratidinone via a Titanium(III) Catalyzed Imine-Nitrile Coupling. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hieu-Trinh Luu
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg im Breisgau Germany
| | - Jan Streuff
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
27
|
Qu J, Bhadbhade M, Kumar N, Black DS. Unusual formation of novel highly substituted N-(3-indolyl)-imidazoles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Wu X, Hao W, Ye KY, Jiang B, Pombar G, Song Z, Lin S. Ti-Catalyzed Radical Alkylation of Secondary and Tertiary Alkyl Chlorides Using Michael Acceptors. J Am Chem Soc 2018; 140:14836-14843. [PMID: 30303379 PMCID: PMC6530901 DOI: 10.1021/jacs.8b08605] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkyl chlorides are common functional groups in synthetic organic chemistry. However, the engagement of unactivated alkyl chlorides, especially tertiary alkyl chlorides, in transition-metal-catalyzed C-C bond formation remains challenging. Herein, we describe the development of a TiIII-catalyzed radical addition of 2° and 3° alkyl chlorides to electron-deficient alkenes. Mechanistic data are consistent with inner-sphere activation of the C-Cl bond featuring TiIII-mediated Cl atom abstraction. Evidence suggests that the active TiIII catalyst is generated from the TiIV precursor in a Lewis-acid-assisted electron transfer process.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | | | - Ke-Yin Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Binyang Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gisselle Pombar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zhidong Song
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Chiu HC, Tonks IA. Trimethylsilyl-Protected Alkynes as Selective Cross-Coupling Partners in Titanium-Catalyzed [2+2+1] Pyrrole Synthesis. Angew Chem Int Ed Engl 2018; 57:6090-6094. [PMID: 29573100 DOI: 10.1002/anie.201800595] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 11/05/2022]
Abstract
Trimethylsilyl (TMS)-protected alkynes served as selective alkyne cross-coupling partners in titanium-catalyzed [2+2+1] pyrrole synthesis. Reactions of TMS-protected alkynes with internal alkynes and azobenzene under the catalysis of titanium imido complexes yielded pentasubstituted 2-TMS-pyrroles with greater than 90 % selectivity over the other nine possible pyrrole products. The steric and electronic effects of the TMS group were both identified to play key roles in this highly selective pyrrole synthesis. This strategy provides a convenient method to synthesize multisubstituted pyrroles as well as an entry point for further pyrrole diversification through facile modification of the resulting 2-silyl pyrrole products, as demonstrated through a short formal synthesis of the marine natural product lamellarin R.
Collapse
Affiliation(s)
- Hsin-Chun Chiu
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Sreet SE, Minneapolis, MN, 55455, USA
| | - Ian A Tonks
- Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant Sreet SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
30
|
Chiu H, Tonks IA. Trimethylsilyl‐Protected Alkynes as Selective Cross‐Coupling Partners in Titanium‐Catalyzed [2+2+1] Pyrrole Synthesis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hsin‐Chun Chiu
- Department of Chemistry University of Minnesota—Twin Cities 207 Pleasant Sreet SE Minneapolis MN 55455 USA
| | - Ian A. Tonks
- Department of Chemistry University of Minnesota—Twin Cities 207 Pleasant Sreet SE Minneapolis MN 55455 USA
| |
Collapse
|
31
|
Streuff J, Himmel D, Younas SL. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings. Dalton Trans 2018; 47:5072-5082. [PMID: 29561012 DOI: 10.1039/c8dt00643a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.
Collapse
Affiliation(s)
- Jan Streuff
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sara L Younas
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
32
|
Liedtke T, Spannring P, Riccardi L, Gansäuer A. Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Peter Spannring
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Ludovico Riccardi
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
33
|
Liedtke T, Spannring P, Riccardi L, Gansäuer A. Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry. Angew Chem Int Ed Engl 2018; 57:5006-5010. [PMID: 29488673 DOI: 10.1002/anie.201800731] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Indexed: 12/16/2022]
Abstract
A cyclic-voltammetry-based screening method for Cp2 TiX-catalyzed reactions is introduced. Our mechanism-based approach enables the study of the influence of various additives on the electrochemically generated active catalyst Cp2 TiX, which is in equilibrium with catalytically inactive [Cp2 TiX2 ]- . Thioureas and ureas are most efficient in the generation of Cp2 TiX in THF. Knowing the precise position of the equilibrium between Cp2 TiX and [Cp2 TiX2 ]- allowed us to identify reaction conditions for the bulk electrolysis of Cp2 TiX2 complexes and for Cp2 TiX-catayzed radical arylations without having to carry out the reactions. Our time- and resource-efficient approach is of general interest for the design of catalytic reactions that proceed in single-electron steps.
Collapse
Affiliation(s)
- Theresa Liedtke
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Peter Spannring
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Ludovico Riccardi
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
34
|
Li K, Shao X, Tseng L, Malcolmson SJ. 2-Azadienes as Reagents for Preparing Chiral Amines: Synthesis of 1,2-Amino Tertiary Alcohols by Cu-Catalyzed Enantioselective Reductive Couplings with Ketones. J Am Chem Soc 2018; 140:598-601. [PMID: 29272124 PMCID: PMC5936605 DOI: 10.1021/jacs.7b12213] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce a new strategy for synthesis of chiral amines: couplings of α-aminoalkyl nucleophiles generated by enantioselective migratory insertion of 2-azadienes to a Cu-H. In this report, we demonstrate its application in catalytic reductive coupling of 2-azadienes and ketones to furnish 1,2-amino tertiary alcohols with vicinal stereogenic centers.
Collapse
Affiliation(s)
| | | | - Luke Tseng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J. Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
35
|
Geng X, Wu X, Wang C, Zhao P, Zhou Y, Sun X, Wang LJ, Guan WJ, Wu YD, Wu AX. NaHS·nH2O-induced umpolung: the synthesis of 2-acyl-3-aminoindoles from aryl methyl ketones and 2-aminobenzonitriles. Chem Commun (Camb) 2018; 54:12730-12733. [DOI: 10.1039/c8cc07599a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for constructing 2-acyl-3-aminoindoles from methyl ketones and 2-aminobenzonitriles is described, in which NaHS·nH2O is used as a novel umpolung reagent for the first time in organic synthesis.
Collapse
|
36
|
Santhini PV, Krishnan R A, Babu SA, Simethy BS, Das G, Praveen VK, Varughese S, John J. One-Pot MCR-Oxidation Approach toward Indole-Fused Heteroacenes. J Org Chem 2017; 82:10537-10548. [DOI: 10.1021/acs.joc.7b02039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P. V. Santhini
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram 695019, India
| | - Akhil Krishnan R
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sheba Ann Babu
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Betna Shamlin Simethy
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Gourab Das
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram 695019, India
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Vakayil K. Praveen
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram 695019, India
- Photosciences
and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sunil Varughese
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram 695019, India
| | - Jubi John
- Organic
Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram 695019, India
| |
Collapse
|
37
|
Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes. J Am Chem Soc 2017; 139:12141-12144. [DOI: 10.1021/jacs.7b06723] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei Hao
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiangyu Wu
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - James Z. Sun
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Juno C. Siu
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha N. MacMillan
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|