1
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
2
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Sarkar A, Das S, Mondal P, Maiti B, Sen Gupta S. Synthesis, Characterization, and Reactivity of High-Valent Carbene Dicarboxamide-Based Nickel Pincer Complexes. Inorg Chem 2023. [PMID: 38001041 DOI: 10.1021/acs.inorgchem.3c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.
Collapse
Affiliation(s)
- Aniruddha Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Prasenjit Mondal
- Department of Chemistry, Indian Institute of Technology Tirupati (IIT Tirupati), Tirupati, AP 517619, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Deolka S, Govindarajan R, Khaskin E, Vasylevskyi S, Bahri J, Fayzullin RR, Roy MC, Khusnutdinova JR. Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chem Sci 2023; 14:7026-7035. [PMID: 37389265 PMCID: PMC10306096 DOI: 10.1039/d3sc01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel perfluoroethyl and perfluoropropyl complexes supported by naphthyridine-type ligands show drastically different aerobic reactivity from their trifluoromethyl analogs resulting in facile oxygen transfer to perfluoroalkyl groups or oxygenation of external organic substrates (phosphines, sulfides, alkenes and alcohols) using O2 or air as a terminal oxidant. Such mild aerobic oxygenation occurs through the formation of spectroscopically detected transient high-valent NiIII and structurally characterized mixed-valent NiII-NiIV intermediates and radical intermediates, resembling O2 activation reported for some Pd dialkyl complexes. This reactivity is in contrast with the aerobic oxidation of naphthyridine-based Ni(CF3)2 complexes resulting in the formation of a stable NiIII product, which is attributed to the effect of greater steric congestion imposed by longer perfluoroalkyl chains.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - R Govindarajan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Janet Bahri
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
5
|
DiMucci IM, Titus CJ, Nordlund D, Bour JR, Chong E, Grigas DP, Hu CH, Kosobokov MD, Martin CD, Mirica LM, Nebra N, Vicic DA, Yorks LL, Yruegas S, MacMillan SN, Shearer J, Lancaster KM. Scrutinizing formally Ni IV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. Chem Sci 2023; 14:6915-6929. [PMID: 37389249 PMCID: PMC10306094 DOI: 10.1039/d3sc02001k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.
Collapse
Affiliation(s)
- Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford California 94305 USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - James R Bour
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Eugene Chong
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Dylan P Grigas
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | | | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS 118 Route de Narbonne 31062 Toulouse France
| | - David A Vicic
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Lydia L Yorks
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Jason Shearer
- Department of Chemistry, Trinity University San Antonio Texas 78212-7200 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
6
|
Dinh HM, Govindarajan R, Deolka S, Fayzullin RR, Vasylevskyi S, Khaskin E, Khusnutdinova JR. Photoinduced Perfluoroalkylation Mediated by Cobalt Complexes Supported by Naphthyridine Ligands. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hoan Minh Dinh
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - R. Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
The once-elusive Ni(IV) species is now a potent candidate for challenging organic transformations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Deolka S, Govindarajan R, Vasylevskyi S, Roy MC, Khusnutdinova JR, Khaskin E. Ligand-free nickel catalyzed perfluoroalkylation of arenes and heteroarenes. Chem Sci 2022; 13:12971-12979. [PMID: 36425484 PMCID: PMC9667918 DOI: 10.1039/d2sc03879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2023] Open
Abstract
We describe a "ligand-free" Ni-catalyzed perfluoroalkylation of heteroarenes to produce a diverse array of trfiluoromethyl, pentafluoroethyl and heptafluoropropyl adducts. Catalysis proceeds at room temperature via a radical pathway. The catalytic protocol is distinguished by its simplicity, and its wide scope demonstrates the potential in the late-stage functionalization of drug analogues and peptides.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Ramadoss Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
10
|
Milbauer MW, Kampf JW, Sanford MS. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp 2)–C(sp 3) Coupling. J Am Chem Soc 2022; 144:21030-21034. [DOI: 10.1021/jacs.2c10778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael W. Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Tricoire M, Wang D, Rajeshkumar T, Maron L, Danoun G, Nocton G. Electron Shuttle in N-Heteroaromatic Ni Catalysts for Alkene Isomerization. JACS AU 2022; 2:1881-1888. [PMID: 36032537 PMCID: PMC9400170 DOI: 10.1021/jacsau.2c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Ding Wang
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Thayalan Rajeshkumar
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Grégory Danoun
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| |
Collapse
|
12
|
Solomon NSD, Bhadbhade M, Tian R, Keaveney ST. Nickel and palladium catalyzed C‐H trifluoromethylation using trifluoromethyliodide: investigations into new reactivity. ChemCatChem 2022. [DOI: 10.1002/cctc.202200918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas S. D. Solomon
- Macquarie University Faculty of Science: Macquarie University Faculty of Science and Engineering School of Molecular Sciences AUSTRALIA
| | - Mohan Bhadbhade
- University of New South Wales - Kensington Campus: University of New South Wales Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre AUSTRALIA
| | - Ruoming Tian
- University of New South Wales - Kensington Campus: University of New South Wales Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre AUSTRALIA
| | - Sinead Teresa Keaveney
- University of Wollongong School of Chemistry and Molecular Bioscience Northfields Avenue 2522 Wollongong AUSTRALIA
| |
Collapse
|
13
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
14
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
15
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe III and Fe IV Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano-Transfer One-Electron Oxidants. Angew Chem Int Ed Engl 2022; 61:e202201699. [PMID: 35285116 PMCID: PMC9313551 DOI: 10.1002/anie.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/12/2022]
Abstract
We disclose a new reactivity mode for electrophilic cyano λ3 -iodanes as group transfer one-electron oxidants to synthesize FeIII and FeIV cyanide complexes. The inherent thermal instability of high-valent FeIV compounds without π-donor ligands (such as oxido (O2- ), imido (RN2- ) or nitrido (N3- )) makes their isolation and structural characterization a very challenging task. We report the synthesis of an FeIV cyanide complex [(N3 N')FeCN] (4) by two consecutive single electron transfer (SET) processes from FeII precursor [(N3 N')FeLi(THF)] (1) with cyanobenziodoxolone (CBX). The FeIV complex can also be prepared by reaction of [(N3 N')FeIII ] (3) with CBX. In contrast, the oxidation of FeII with 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (CDBX) enables the preparation of FeIII cyanide complex [(N3 N')FeIII (CN)(Li)(THF)3 ] (2-LiTHF ). Complexes 4 and 2-LiTHF have been structurally characterized by single crystal X-ray diffraction and their electronic structure has been examined by Mössbauer, EPR spectroscopy, and computational analyses.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Sergei Ivlev
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Marcel Swart
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
- Institut de Química Computacional i Catàlisi, Facultat de CiènciesUniversitat de Gironac/ M.A. Capmany 6917003GironaSpain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Alicia Casitas
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
16
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe
III
and Fe
IV
Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano‐Transfer One‐Electron Oxidants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Sergei Ivlev
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Marcel Swart
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
- Institut de Química Computacional i Catàlisi, Facultat de Ciències Universitat de Girona c/ M.A. Capmany 69 17003 Girona Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Alicia Casitas
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
17
|
Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Recent Advances in Transition-Metal Mediated Trifluoromethylation Reactions. Chem Commun (Camb) 2022; 58:10442-10468. [DOI: 10.1039/d2cc04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine compounds are known for their abundance in more than 20% of pharmaceutical and agrochemical products mainly due to the enhanced lipophilicity, metabolic stability and pharmacokinetic properties of organofluorides. Consequently,...
Collapse
|
18
|
Cloutier JP, Zamani F, Zargarian D. Aerobic oxidation-functionalization of the aryl moiety in van Koten's pincer complex (NCN)Ni( ii)Br: relevance to carbon–heteroatom coupling reactions promoted by high-valent nickel species. NEW J CHEM 2022. [DOI: 10.1039/d1nj05162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treating the pincer complex (NCN)NiBr with protic substrates HX (X = OH, OR, or NR2) under aerobic conditions leads to C–X functionalization of the pincer ligand. The crucial importance of aerobic conditions for the success of this coupling reaction implies the formation of high-valent intermediates during the course of the reaction.
Collapse
Affiliation(s)
| | - Fahimeh Zamani
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| |
Collapse
|
19
|
Deolka S, Govindarajan R, Khaskin E, Fayzullin RR, Roy MC, Khusnutdinova JR. Photoinduced Trifluoromethylation of Arenes and Heteroarenes Catalyzed by High-Valent Nickel Complexes. Angew Chem Int Ed Engl 2021; 60:24620-24629. [PMID: 34477296 DOI: 10.1002/anie.202109953] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 12/30/2022]
Abstract
We describe a series of air-stable NiIII complexes supported by a simple, robust naphthyridine-based ligand. Access to the high-valent oxidation state is enabled by the CF3 ligands on the nickel, while the naphthyridine exhibits either a monodentate or bidentate coordination mode that depends on the oxidation state and sterics, and enables facile aerobic oxidation of NiII to NiIII . These NiIII complexes act as efficient catalysts for photoinduced C(sp2 )-H bond trifluoromethylation reactions of (hetero)arenes using versatile synthetic protocols. This blue LED light-mediated catalytic protocol proceeds via a radical pathway and demonstrates potential in the late-stage functionalization of drug analogs.
Collapse
Affiliation(s)
- Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ramadoss Govindarajan
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Robert R Fayzullin
- Abuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan, 420088, Russian Federation
| | - Michael C Roy
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
20
|
Deolka S, Govindarajan R, Khaskin E, Fayzullin RR, Roy MC, Khusnutdinova JR. Photoinduced Trifluoromethylation of Arenes and Heteroarenes Catalyzed by High‐Valent Nickel Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shubham Deolka
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Ramadoss Govindarajan
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Abuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS 8 Arbuzov Street Kazan 420088 Russian Federation
| | - Michael C. Roy
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| | - Julia R. Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University Onna-son, Kunigami-gun Okinawa 904-0495 Japan
| |
Collapse
|
21
|
Demonti L, Saffon-Merceron N, Mézailles N, Nebra N. Cross-Coupling through Ag(I)/Ag(III) Redox Manifold. Chemistry 2021; 27:15396-15405. [PMID: 34473859 DOI: 10.1002/chem.202102836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In ample variety of transformations, the presence of silver as an additive or co-catalyst is believed to be innocuous for the efficiency of the operating metal catalyst. Even though Ag additives are required often as coupling partners, oxidants or halide scavengers, its role as a catalytically competent species is widely neglected in cross-coupling reactions. Most likely, this is due to the erroneously assumed incapacity of Ag to undergo 2e- redox steps. Definite proof is herein provided for the required elementary steps to accomplish the oxidative trifluoromethylation of arenes through AgI /AgIII redox catalysis (i. e. CEL coupling), namely: i) easy AgI /AgIII 2e- oxidation mediated by air; ii) bpy/phen ligation to AgIII ; iii) boron-to-AgIII aryl transfer; and iv) ulterior reductive elimination of benzotrifluorides from an [aryl-AgIII -CF3 ] fragment. More precisely, an ultimate entry and full characterization of organosilver(III) compounds [K]+ [AgIII (CF3 )4 ]- (K-1), [(bpy)AgIII (CF3 )3 ] (2) and [(phen)AgIII (CF3 )3 ] (3), is described. The utility of 3 in cross-coupling has been showcased unambiguously, and a large variety of arylboron compounds was trifluoromethylated via [AgIII (aryl)(CF3 )3 ]- intermediates. This work breaks with old stereotypes and misconceptions regarding the inability of Ag to undergo cross-coupling by itself.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
22
|
Yruegas S, Tang H, Bornovski GZ, Su X, Sung S, Hall MB, Nippe M, Martin CD. Nickel-Borolide Complexes and Their Complex Electronic Structure. Inorg Chem 2021; 60:16160-16167. [PMID: 34637613 DOI: 10.1021/acs.inorgchem.1c01845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borolides (BC42-) can be considered as dianionic heterocyclic analogues of monoanionic cyclopentadienides. Although both are formally six-π-electron donors, we herein demonstrate that the electronic structure of their corresponding transition metal complexes differs significantly, leading to altered properties. Specifically, the 18-electron sandwich complex Ni(iPr2NBC4Ph2)2 (1) features an ∼90° angle between the Ni-B-N planes and is best described as a combination of three limiting resonance structures with the major contribution stemming from a formally Ni2+ species bound to two monoanionic radical (BC4•-) ligands. Compound 1 displays two sequential one-electron oxidation events over a small potential range of <0.2 V, which strikingly contrasts the large potential separations between redox partners in the family of metallocenes, and the potential reasons for this unusual observation are discussed.
Collapse
Affiliation(s)
- Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Hao Tang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Gayle Z Bornovski
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Xiaojun Su
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Siyoung Sung
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
23
|
Mazumder MMR, Burton A, Richburg CS, Saha S, Cronin B, Duin E, Farnum BH. Controlling One-Electron vs Two-Electron Pathways in the Multi-Electron Redox Cycle of Nickel Diethyldithiocarbamate. Inorg Chem 2021; 60:13388-13399. [PMID: 34403586 DOI: 10.1021/acs.inorgchem.1c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique redox cycle of NiII(dtc)2, where dtc- is N,N-diethyldithiocarbamate, in acetonitrile displays 2e- redox chemistry upon oxidation from NiII(dtc)2 → [NiIV(dtc)3]+ but 1e- redox chemistry upon reduction from [NiIV(dtc)3]+ → NiIII(dtc)3 → NiII(dtc)2. The underlying reasons for this cycle lie in the structural changes that occur between four-coordinate NiII(dtc)2 and six-coordinate [NiIV(dtc)3]+. Cyclic voltammetry (CV) experiments show that these 1e- and 2e- pathways can be controlled by the addition of pyridine-based ligands (L) to the electrolyte solution. Specifically, the addition of these ligands resulted in a 1e- ligand-coupled electron transfer (LCET) redox wave, which produced a mixture of pyridine-bound Ni(III) complexes, [NiIII(dtc)2(L)]+, and [NiIII(dtc)2(L)2]+. Although the complexes could not be isolated, electron paramagnetic resonance (EPR) measurements using a chemical oxidant in the presence of 4-methoxypyridine confirmed the formation of trans-[NiIII(dtc)2(L)2]+. Density functional theory calculations were also used to support the formation of pyridine coordinated Ni(III) complexes through structural optimization and calculation of EPR parameters. The reversibility of the LCET process was found to be dependent on both the basicity of the pyridine ligand and the scan rate of the CV experiment. For strongly basic pyridines (e.g., 4-methoxypyridine) and/or fast scan rates, high reversibility was achieved, allowing [NiIII(dtc)2(L)x]+ to be reduced directly back to NiII(dtc)2 + xL. For weakly basic pyridines (e.g., 3-bromopyridine) and/or slow scan rates, [NiIII(dtc)2(L)x]+ decayed irreversibly to form [NiIV(dtc)3]+. Detailed kinetics studies using CV reveal that [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ decay by parallel pathways due to a small equilibrium between the two species. The rate constants for ligand dissociation ([NiIII(dtc)2(L)2]+ → [NiIII(dtc)2(L)]+ + L) along with decomposition of [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ species were found to increase with the electron-withdrawing character of the pyridine ligand, indicating pyridine dissociation is likely the rate-limiting step for decomposition of these complexes. These studies establish a general trend for kinetically trapping 1e- intermediates along a 2e- oxidation path.
Collapse
Affiliation(s)
- Md Motiur R Mazumder
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Andricus Burton
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Chase S Richburg
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Soumen Saha
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Evert Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
24
|
Walker BR, Manabe S, Brusoe AT, Sevov CS. Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan-Lam Coupling Reactions. J Am Chem Soc 2021; 143:6257-6265. [PMID: 33861580 PMCID: PMC8143265 DOI: 10.1021/jacs.1c02103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple copper salts serve as catalysts to effect C-X bond-forming reactions in some of the most utilized transformations in synthesis, including the oxidative coupling of aryl boronic acids and amines. However, these Chan-Lam coupling reactions have historically relied on chemical oxidants that limit their applicability beyond small-scale synthesis. Despite the success of replacing strong chemical oxidants with electrochemistry for a variety of metal-catalyzed processes, electrooxidative reactions with ligandless copper catalysts are plagued by slow electron-transfer kinetics, irreversible copper plating, and competitive substrate oxidation. Herein, we report the implementation of substoichiometric quantities of redox mediators to address limitations to Cu-catalyzed electrosynthesis. Mechanistic studies reveal that mediators serve multiple roles by (i) rapidly oxidizing low-valent Cu intermediates, (ii) stripping Cu metal from the cathode to regenerate the catalyst and reveal the active Pt surface for proton reduction, and (iii) providing anodic overcharge protection to prevent substrate oxidation. This strategy is applied to Chan-Lam coupling of aryl-, heteroaryl-, and alkylamines with arylboronic acids in the absence of chemical oxidants. Couplings under these electrochemical conditions occur with higher yields and shorter reaction times than conventional reactions in air and provide complementary substrate reactivity.
Collapse
Affiliation(s)
- Benjamin R Walker
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Shuhei Manabe
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Andrew T Brusoe
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
26
|
|
27
|
Hu W, Pan S, Xu X, Vicic DA, Qing F. Nickel‐Mediated Trifluoromethylation of Phenol Derivatives by Aryl C−O Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Qiang Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shen Pan
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - David A. Vicic
- Department of Chemistry Lehigh University 6 E. Packer Avenue Bethlehem PA 18015 USA
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
28
|
Dennis CR, Margerum DW, Fourie E, Swarts JC. A Kinetic Study of the Electron-Transfer Reactions of Nickel(III,II) Tripeptide Complexes with Cyano Complexes of Molybdenum, Tungsten, and Iron. Inorg Chem 2020; 59:11695-11703. [PMID: 32799458 DOI: 10.1021/acs.inorgchem.0c01582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimentally measured rate constants, k12obsd, for the reductions of [Ni(III)tripeptides(H2O)2] with Fe(CN)64-, Mo(CN)84-, and W(CN)84- are 102 to 105 times faster than the calculated rate constants with the Marcus theory for outer-sphere electron-transfer processes, k12calc, even when work terms are considered. This gives rise to a kinetic advantage of k12obsd/k12calc = 102-105, which is consistent with an inner-sphere electron-transfer mechanism via a bridged intermediate. In addition, k12obsd values are nearly independent of the electrochemical driving force of the reactions. This is consistent with one of the two axial water ligands coordinated to [Ni(III)tripeptides(H2O)2] being substituted in the rate-limiting step to form bridged intermediates of the type [(CN)5or7M-(CN)-NiIII(tripeptide)(H2O)]4- with M = FeII, MoIV, or WIV. A limiting rate constant of H2O replacement from [Ni(III)tripeptides(H2O)2] of (5 ± 2) × 107 M-1 s-1 at 25.0 °C is observed. Electron paramagnetic resonance spectra of Ni(III) peptide complexes in the presence of Fe(CN)63-, Mo(CN)83-, or IrCl63- provide evidence for the cyanide-bridged intermediates. Substitution-limited electron-transfer reactions could serve as an additional criterion for inner-sphere pathways when atom or group transfer does not occur during electron-transfer and when precursor and successor complexes cannot be observed directly.
Collapse
Affiliation(s)
- C Robert Dennis
- Chemistry department, University of the Free State, Bloemfontein 9300, South Africa
| | - Dale W Margerum
- Professor Emeritus, Inorganic and Analytical Chemistry, Purdue University, West Lafayette 47907, Indiana, United States
| | - Eleanor Fourie
- Chemistry department, University of the Free State, Bloemfontein 9300, South Africa
| | - Jannie C Swarts
- Chemistry department, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
29
|
Shreiber ST, DiMucci IM, Khrizanforov MN, Titus CJ, Nordlund D, Dudkina Y, Cramer RE, Budnikova Y, Lancaster KM, Vicic DA. [(MeCN)Ni(CF 3) 3] - and [Ni(CF 3) 4] 2-: Foundations toward the Development of Trifluoromethylations at Unsupported Nickel. Inorg Chem 2020; 59:9143-9151. [PMID: 32573210 DOI: 10.1021/acs.inorgchem.0c01020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel anions [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2- were prepared by the formal addition of 3 and 4 equiv, respectively, of AgCF3 to [(dme)NiBr2] in the presence of the [PPh4]+ counterion. Detailed insights into the electronic properties of these new compounds were obtained through the use of density functional theory (DFT) calculations, spectroscopy-oriented configuration interaction (SORCI) calculations, X-ray absorption spectroscopy, and cyclic voltammetry. The data collectively show that trifluoromethyl complexes of nickel, even in the most common oxidation state of nickel(II), are highly covalent systems whereby a hole is distributed on the trifluoromethyl ligands, surprisingly rendering the metal to a physically more reduced state. In the cases of [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2-, these complexes are better physically described as d9 metal complexes. [(MeCN)Ni(CF3)3]- is electrophilic and reacts with other nucleophiles such as phenoxide to yield the unsupported [(PhO)Ni(CF3)3]2- salt, revealing the broader potential of [(MeCN)Ni(CF3)3]- in the development of "ligandless" trifluoromethylations at nickel. Proof-in-principle experiments show that the reaction of [(MeCN)Ni(CF3)3]- with an aryl iodonium salt yields trifluoromethylated arene, presumably via a high-valent, unsupported, and formal organonickel(IV) intermediate. Evidence of the feasibility of such intermediates is provided with the structurally characterized [PPh4]2[Ni(CF3)4(SO4)], which was derived through the two-electron oxidation of [Ni(CF3)4]2-.
Collapse
Affiliation(s)
- Scott T Shreiber
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mikhail N Khrizanforov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yulia Dudkina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Roger E Cramer
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Yulia Budnikova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of Russian Academy of Sciences, 8, Arbuzov Str., 420088 Kazan, Russian Federation
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - David A Vicic
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
30
|
Hu WQ, Pan S, Xu XH, Vicic DA, Qing FL. Nickel-Mediated Trifluoromethylation of Phenol Derivatives by Aryl C-O Bond Activation. Angew Chem Int Ed Engl 2020; 59:16076-16082. [PMID: 32452144 DOI: 10.1002/anie.202004116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Indexed: 12/18/2022]
Abstract
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper- and palladium-mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel-mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3 ). The strategy relies on PMe3 -promoted oxidative addition and transmetalation, and CCl3 CN-induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.
Collapse
Affiliation(s)
- Wei-Qiang Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shen Pan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - David A Vicic
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, PA, 18015, USA
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
31
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
32
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
33
|
D’Accriscio F, Ohleier A, Nicolas E, Demange M, Thillaye Du Boullay O, Saffon-Merceron N, Fustier-Boutignon M, Rezabal E, Frison G, Nebra N, Mézailles N. [(dcpp)Ni(η2-Arene)] Precursors: Synthesis, Reactivity, and Catalytic Application to the Suzuki–Miyaura Reaction. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Florian D’Accriscio
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alexia Ohleier
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Emmanuel Nicolas
- Laboratoire Chimie Moléculaire, Ecole Polytechnique, CNRS, 91128 Palaiseau Cédex, France
| | - Matthieu Demange
- Laboratoire Chimie Moléculaire, Ecole Polytechnique, CNRS, 91128 Palaiseau Cédex, France
| | - Olivier Thillaye Du Boullay
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-FR2599, Université Paul Sabatier, CNRS, 31062 Toulouse Cedex, France
| | - Marie Fustier-Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Elixabete Rezabal
- Laboratoire Chimie Moléculaire, Ecole Polytechnique, CNRS, 91128 Palaiseau Cédex, France
| | - Gilles Frison
- Laboratoire Chimie Moléculaire, Ecole Polytechnique, CNRS, 91128 Palaiseau Cédex, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
34
|
Nebra N. High-Valent Ni III and Ni IV Species Relevant to C-C and C-Heteroatom Cross-Coupling Reactions: State of the Art. Molecules 2020; 25:molecules25051141. [PMID: 32143336 PMCID: PMC7179250 DOI: 10.3390/molecules25051141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Ni catalysis constitutes an active research arena with notable applications in diverse fields. By analogy with its parent element palladium, Ni catalysts provide an appealing entry to build molecular complexity via cross-coupling reactions. While Pd catalysts typically involve a M0/MII redox scenario, in the case of Ni congeners the mechanistic elucidation becomes more challenging due to their innate properties (like enhanced reactivity, propensity to undergo single electron transformations vs. 2e− redox sequences or weaker M–Ligand interaction). In recent years, mechanistic studies have demonstrated the participation of high-valent NiIII and NiIV species in a plethora of cross-coupling events, thus accessing novel synthetic schemes and unprecedented transformations. This comprehensive review collects the main contributions effected within this topic, and focuses on the key role of isolated and/or spectroscopically identified NiIII and NiIV complexes. Amongst other transformations, the resulting NiIII and NiIV compounds have efficiently accomplished: i) C–C and C–heteroatom bond formation; ii) C–H bond functionalization; and iii) N–N and C–N cyclizative couplings to forge heterocycles.
Collapse
Affiliation(s)
- Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
35
|
Abstract
To improve the efficacy of molecular syntheses, researchers wish to capitalize upon the selective modification of otherwise inert C-H bonds. The past two decades have witnessed considerable advances in coordination chemistry that have set the stage for transformative tools for C-H functionalizations. Particularly, oxidative C-H/C-H and C-H/Het-H transformations have gained major attention because they avoid all elements of substrate prefunctionalization. Despite considerable advances, oxidative C-H activations have been dominated by precious transition metal catalysts based on palladium, ruthenium, iridium, and rhodium, thus compromising the sustainable nature of the overall C-H activation approach. The same holds true for the predominant use of stoichiometric chemical oxidants for the regeneration of the active catalyst, prominently featuring hypervalent iodine(III), copper(II), and silver(I) oxidants. Thereby, stoichiometric quantities of undesired byproducts are generated, which are preventive for applications of C-H activation on scale. In contrast, the elegant merger of homogeneous metal-catalyzed C-H activation with molecular electrosynthesis bears the unique power to achieve outstanding levels of oxidant and resource economy. Thus, in contrast to classical electrosyntheses by substrate control, metalla-electrocatalysis holds huge and largely untapped potential for oxidative C-H activations with unmet site selectivities by means of catalyst control. While indirect electrolysis using precious palladium complexes has been realized, less toxic and less expensive base metal catalysts feature distinct beneficial assets toward sustainable resource economy. In this Account, I summarize the emergence of electrocatalyzed C-H activation by earth-abundant 3d base metals and beyond, with a topical focus on contributions from our laboratories through November 2019. Thus, cobalt electrocatalysis was identified as a particularly powerful platform for a wealth of C-H transformations, including C-H oxygenations and C-H nitrogenations as well as C-H activations with alkynes, alkenes, allenes, isocyanides, and carbon monoxide, among others. As complementary tools, catalysts based on nickel, copper, and very recently iron have been devised for metalla-electrocatalyzed C-H activations. Key to success were detailed mechanistic insights, prominently featuring oxidation-induced reductive elimination scenarios. Likewise, the development of methods that make use of weak O-coordination benefited from crucial insights into the catalyst's modes of action by experiment, in operando spectroscopy, and computation. Overall, metalla-electrocatalyzed C-H activations have thereby set the stage for molecular syntheses with unique levels of resource economy. These electrooxidative C-H transformations overall avoid the use of chemical oxidants and are frequently characterized by improved chemoselectivities. Hence, the ability to dial in the redox potential at the minimum level required for the desired transformation renders electrocatalysis an ideal platform for the functionalization of structurally complex molecules with sensitive functional groups. This strategy was, inter alia, successfully applied to scale-up by continuous flow and the step-economical assembly of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
36
|
Roberts CC, Chong E, Kampf JW, Canty AJ, Ariafard A, Sanford MS. Nickel(II/IV) Manifold Enables Room-Temperature C(sp 3)-H Functionalization. J Am Chem Soc 2019; 141:19513-19520. [PMID: 31769667 DOI: 10.1021/jacs.9b11999] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This Article demonstrates a mild oxidatively induced C(sp3)-H activation at a high-valent Ni center. In contrast with most C(sp3)-H activation reactions at NiII, the transformation proceeds at room temperature and generates an isolable NiIV σ-alkyl complex. Density functional theory studies show two plausible mechanisms for this C-H activation process involving triflate-assisted C-H cleavage at either a NiIV or a NiIII intermediate. The former pathway is modestly favored over the latter (by ∼3 kcal/mol). The NiIV σ-alkyl product of C-H cleavage reacts with a variety of nucleophiles to form C(sp3)-X bonds (X = halide, oxygen, nitrogen, sulfur, or carbon). These stoichiometric transformations can be coupled using N-fluoro-2,4,6-trimethylpyridinium triflate as a terminal oxidant in conjunction with chloride as a nucleophile to achieve a proof-of-principle NiII/IV-catalyzed C(sp3)-H functionalization reaction.
Collapse
Affiliation(s)
- Courtney C Roberts
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Eugene Chong
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Allan J Canty
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
37
|
Smith SM, Planas O, Gómez L, Rath NP, Ribas X, Mirica LM. Aerobic C-C and C-O bond formation reactions mediated by high-valent nickel species. Chem Sci 2019; 10:10366-10372. [PMID: 32110325 PMCID: PMC6984385 DOI: 10.1039/c9sc03758f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
Nickel complexes have been widely employed as catalysts in C-C and C-heteroatom bond formation reactions. While Ni(0), Ni(i), and Ni(ii) intermediates are most relevant in these transformations, recently Ni(iii) and Ni(iv) species have also been proposed to play a role in catalysis. Reported herein is the synthesis, detailed characterization, and reactivity of a series of Ni(ii) and Ni(iii) metallacycle complexes stabilized by tetradentate pyridinophane ligands with various N-substituents. Interestingly, while the oxidation of the Ni(ii) complexes with various other oxidants led to exclusive C-C bond formation in very good yields, the use of O2 or H2O2 as oxidants led to formation of appreciable amounts of C-O bond formation products, especially for the Ni(ii) complex supported by an asymmetric pyridinophane ligand containing one tosyl N-substituent. Moreover, cryo-ESI-MS studies support the formation of several high-valent Ni species as key intermediates in this uncommon Ni-mediated oxygenase-type chemistry.
Collapse
Affiliation(s)
- Sofia M Smith
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130-4899 , USA
| | - Oriol Planas
- Departament de Química , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , Girona E-17003 , Catalonia , Spain
| | - Laura Gómez
- Serveis Tècnics de Recerca (STR) , Universitat de Girona , Parc Científic i Tecnològic , Girona E-17071 , Catalonia , Spain
| | - Nigam P Rath
- Department of Chemistry and Biochemistry , University of Missouri-St. Louis , One University Boulevard , St. Louis , Missouri 63121-4400 , USA
| | - Xavi Ribas
- Departament de Química , Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , Campus de Montilivi , Girona E-17003 , Catalonia , Spain
| | - Liviu M Mirica
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue , Urbana , Illinois 61801 , USA . .,Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130-4899 , USA
| |
Collapse
|
38
|
Steen JS, Knizia G, Klein JEMN. σ-Noninnocence: Masked Phenyl-Cation Transfer at Formal Ni IV. Angew Chem Int Ed Engl 2019; 58:13133-13139. [PMID: 31206937 PMCID: PMC6771483 DOI: 10.1002/anie.201906658] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/31/2022]
Abstract
Reductive elimination is an elementary organometallic reaction step involving a formal oxidation state change of -2 at a transition-metal center. For a series of formal high-valent NiIV complexes, aryl-CF3 bond-forming reductive elimination was reported to occur readily (Bour et al. J. Am. Chem. Soc. 2015, 137, 8034-8037). We report a computational analysis of this reaction and find that, unexpectedly, the formal NiIV centers are better described as approaching a +II oxidation state, originating from highly covalent metal-ligand bonds, a phenomenon attributable to σ-noninnocence. A direct consequence is that the elimination of aryl-CF3 products occurs in an essentially redox-neutral fashion, as opposed to a reductive elimination. This is supported by an electron flow analysis which shows that an anionic CF3 group is transferred to an electrophilic aryl group. The uncovered role of σ-noninnocence in metal-ligand bonding, and of an essentially redox-neutral elimination as an elementary organometallic reaction step, may constitute concepts of broad relevance to organometallic chemistry.
Collapse
Affiliation(s)
- Jelte S. Steen
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerald Knizia
- Department of ChemistryPennsylvania State University401A Chemistry BldgUniversity ParkPA16802USA
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryFaculty of Science and EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
39
|
Wang D, Moutet J, Tricoire M, Cordier M, Nocton G. Reactive Heterobimetallic Complex Combining Divalent Ytterbium and Dimethyl Nickel Fragments. INORGANICS 2019; 7:58. [PMID: 31463301 PMCID: PMC6713561 DOI: 10.3390/inorganics7050058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe2, 1, as well as the heterobimetallic dimer compounds, Cp*2Yb(bipym)NiMe2, 2, along with 1H solution NMR, solid-state magnetic data, and DFT calculations only for 1. The reactivity with CO was investigated on both compounds and the stoichiometric acetone formation is discussed based on kinetic and mechanistic studies. The key role of the lanthanide fragment was demonstrated by the relatively slow CO migratory insertion step, which indicated the stability of the intermediate.
Collapse
|
40
|
Meucci EA, Ariafard A, Canty AJ, Kampf JW, Sanford MS. Aryl-Fluoride Bond-Forming Reductive Elimination from Nickel(IV) Centers. J Am Chem Soc 2019; 141:13261-13267. [PMID: 31408327 DOI: 10.1021/jacs.9b06896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of pyridine- and pyrazole-ligated NiII σ-aryl complexes with Selectfluor results in C(sp2)-F bond formation under mild conditions. With appropriate design of supporting ligands, diamagnetic NiIV σ-aryl fluoride intermediates can be detected spectroscopically and/or isolated during these transformations. These studies demonstrate for the first time that NiIV σ-aryl fluoride complexes participate in challenging C(sp2)-F bond-forming reductive elimination to yield aryl fluoride products.
Collapse
Affiliation(s)
- Elizabeth A Meucci
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Allan J Canty
- School of Natural Sciences - Chemistry , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
41
|
Meucci EA, Nguyen SN, Camasso NM, Chong E, Ariafard A, Canty AJ, Sanford MS. Nickel(IV)-Catalyzed C-H Trifluoromethylation of (Hetero)arenes. J Am Chem Soc 2019; 141:12872-12879. [PMID: 31379153 DOI: 10.1021/jacs.9b06383] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Article describes the development of a stable NiIV complex that mediates C(sp2)-H trifluoromethylation reactions. This reactivity is first demonstrated stoichiometrically and then successfully translated to a NiIV-catalyzed C-H trifluoromethylation of electron-rich arene and heteroarene substrates. Both experimental and computational mechanistic studies support a radical chain pathway involving NiIV, NiIII, and NiII intermediates.
Collapse
Affiliation(s)
- Elizabeth A Meucci
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Shay N Nguyen
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Nicole M Camasso
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Eugene Chong
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Alireza Ariafard
- School of Physical Sciences , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Allan J Canty
- School of Physical Sciences , University of Tasmania , Hobart , Tasmania 7001 , Australia
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
42
|
Steen JS, Knizia G, Klein JEMN. σ‐Noninnocence: Masked Phenyl‐Cation Transfer at Formal Ni
IV. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jelte S. Steen
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Science and Engineering University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerald Knizia
- Department of Chemistry Pennsylvania State University 401A Chemistry Bldg University Park PA 16802 USA
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Science and Engineering University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
43
|
Levason W, Monzittu FM, Reid G. Coordination chemistry and applications of medium/high oxidation state metal and non-metal fluoride and oxide-fluoride complexes with neutral donor ligands. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Bour JR, Ferguson DM, McClain EJ, Kampf JW, Sanford MS. Connecting Organometallic Ni(III) and Ni(IV): Reactions of Carbon-Centered Radicals with High-Valent Organonickel Complexes. J Am Chem Soc 2019; 141:8914-8920. [PMID: 31136162 DOI: 10.1021/jacs.9b02411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes the one-electron interconversions of isolable NiIII and NiIV complexes through their reactions with carbon-centered radicals (R•). First, model NiIII complexes are shown to react with alkyl and aryl radicals to afford NiIV products. Preliminary mechanistic studies implicate a pathway involving direct addition of a carbon-centered radical to the NiIII center. This is directly analogous to the known reactivity of NiII complexes with R•, a step that is commonly implicated in catalysis. Second, a NiIV-CH3 complex is shown to react with aryl and alkyl radicals to afford C-C bonds via a proposed SH2-type mechanism. This pathway is leveraged to enable challenging H3C-CF3 bond formation under mild conditions. Overall, these investigations suggest that NiII/III/IV sequences may be viable redox pathways in high-oxidation-state nickel catalysis.
Collapse
Affiliation(s)
- James R Bour
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Devin M Ferguson
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Edward J McClain
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
45
|
Zhang K, Bian K, Li C, Sheng J, Li Y, Wang X. Nickel‐Catalyzed Carbofluoroalkylation of 1,3‐Enynes to Access Structurally Diverse Fluoroalkylated Allenes. Angew Chem Int Ed Engl 2019; 58:5069-5074. [DOI: 10.1002/anie.201813184] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/14/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Kai‐Fan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
46
|
Zhang K, Bian K, Li C, Sheng J, Li Y, Wang X. Nickel‐Catalyzed Carbofluoroalkylation of 1,3‐Enynes to Access Structurally Diverse Fluoroalkylated Allenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai‐Fan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Chao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular Synthesis of CASUniversity of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
47
|
Cloutier JP, Rechignat L, Canac Y, Ess DH, Zargarian D. C-O and C-N Functionalization of Cationic, NCN-Type Pincer Complexes of Trivalent Nickel: Mechanism, Selectivity, and Kinetic Isotope Effect. Inorg Chem 2019; 58:3861-3874. [PMID: 30821151 DOI: 10.1021/acs.inorgchem.8b03489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report presents the synthesis of new mono- and dicationic NCN-NiIII complexes and describes their reactivities with protic substrates. (NCN is the pincer-type ligand κ N, κ C, κ N-2,6-(CH2NMe2)2-C6H3.) Treating van Koten's trivalent complex (NCN)NiIIIBr2 with AgSbF6 in acetonitrile gives the dicationic complex [(NCN)NiIII(MeCN)3]2+, whereas the latter complex undergoes a ligand-exchange reaction with (NCN)NiIIIBr2 to furnish the related monocationic complex [(NCN)NiIII(Br)(MeCN)]+. These trivalent complexes have been characterized by X-ray diffraction analysis and EPR spectroscopy. Treating these trivalent complexes with methanol and methylamine led, respectively, to C-OCH3 or C-NH(CH3) functionalization of the Ni-aryl moiety in these complexes, C-heteroatom bond formation taking place at the ipso-C. These reactions also generate the cationic divalent complex [(NCN)NiII(NCMe)]+, which was prepared independently and characterized fully. The unanticipated formation of the latter divalent species suggested a comproportionation side reaction between the cationic trivalent precursors and a monovalent species generated at the C-O and C-N bond formation steps; this scenario was supported by direct reaction of the trivalent complexes with the monovalent compound (PPh3)3NiICl. Kinetic measurements and density functional theory analysis have been used to investigate the mechanism of these C-O and C-N functionalization reactions and to rationalize the observed inverse kinetic isotope effect in the reaction of [(NCN)NiIII(Br)(MeCN)]+ with CH3OH/CD3OD.
Collapse
Affiliation(s)
| | | | - Yves Canac
- LCC-CNRS , Université de Toulouse , CNRS, Toulouse , France
| | - Daniel H Ess
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84604 , United States
| | - Davit Zargarian
- Département de chimie , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| |
Collapse
|
48
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
49
|
Zhang SK, Samanta RC, Sauermann N, Ackermann L. Nickel-Catalyzed Electrooxidative C-H Amination: Support for Nickel(IV). Chemistry 2018; 24:19166-19170. [PMID: 30379363 DOI: 10.1002/chem.201805441] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed electrochemical C-H aminations were accomplished by chemo- and position-selective C-H activation with ample scope. Detailed mechanistic studies highlighted a facile C-H cleavage with unique chemo-selectivity, while cyclovoltammetric analysis provided support for a nickel(II/III/IV) manifold.
Collapse
Affiliation(s)
- Shou-Kun Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
50
|
Ghorai D, Finger LH, Zanoni G, Ackermann L. Bimetallic Nickel Complexes for Aniline C–H Alkylations. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03770] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Lars H. Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|